Example #1
0
    def detect(self, image, windim, winstep=2, pyramidscale=1.5, minprob=0.7):
        #initialize the list of bounding boxes and associated probabilities
        boxes = []
        probs = []

        #loop over the image pyramid
        for layer in helper.pyramid(image, scale=pyramidscale, minSize=windim):
            # determine the current scale of the pyramid
            scale = image.shape[0] / float(layer.shape[0])

            #loop over the sliding windows for the current pyramid layer
            for (x, y,
                 window) in helper.sliding_window(layer, winstep, windim):
                # grab the dimensions of the window
                (winh, winw) = window.shape[:2]

                #ensure the window dimensions match the supplied sliding window dimensions
                if winh == windim[1] and winw == windim[0]:
                    #extract HOG features from the current window and classify whether or
                    # not this window contains an object we are interested in
                    features = self.desc.describe(window).reshape(1, -1)
                    prob = self.model.predict_proba(features)[0][1]

                    #check to see if the classifier has found an object with sufficient probability
                    if prob > minprob:
                        #compute the (x,y)-coordinates of the bounding box using the current scale of the image pyramid
                        (startx, starty) = (int(scale * x), int(scale * y))
                        endx = int(startx + (scale * winw))
                        endy = int(starty + (scale * winh))

                        #update the list of bounding boxes and probablities
                        boxes.append((startx, starty, endx, endy))
                        probs.append(prob)

        #return a tuple of the bounding boxes and probabilities
        return (boxes, probs)
Example #2
0
def detect_faster(img, feature_type, downscale=1.5, visualize=False,
                  apply_nms=True, jobs=2):
    """use sliding window and pyramid to detect object with
    batch sliding window and batch classification"""
    detections = []  # detected candidates
    min_window_size = (int(config.img_width * 1.5),
                       int(config.img_height * 1.5))
    min_ws = (config.img_width, config.img_height)
    classifier = joblib.load(config.model_path)
    scale_level = 0

    for scaled_img in helper.pyramid(img, downscale, min_window_size):
        # detections at current scale used for visualization
        curr_scale_dets = []

        x_vec, y_vec, windows = helper.sliding_window_faster(scaled_img,
                                                             min_ws,
                                                             config.step_size)
        pool = Pool(processes=config.jobs)
        partial_compute_feature = partial(compute_feature,
                                          feature_type=feature_type)
        features = pool.map(partial_compute_feature, windows)
        features = np.array(features)
        pool.close()
        pool.join()
        preds = classifier.predict(features)
        confidence = classifier.decision_function(features)
        idxs = np.where(preds == 1)[0]
        print ('Detected {} candidates with scale level {}'.format(len(idxs),
                                                                  scale_level))
        expand_rate = downscale ** scale_level
        for i in idxs:
            attr_vec = np.array([x_vec[i], y_vec[i],
                                 min_ws[0] + x_vec[i], min_ws[1] + y_vec[i]])
            curr_scale_dets.append((attr_vec, confidence[i]))
            attr_vec = np.around(attr_vec * expand_rate).astype('int')
            detections.append((attr_vec, confidence[i]))

        if visualize:
            im_copy = scaled_img.copy()
            for det, _ in curr_scale_dets:
                cv2.rectangle(im_copy, (det[0], det[1]), (det[2], det[3]),
                              color=(0, 0, 0), thickness=2)

            cv2.imshow('sliding window', im_copy)
            cv2.waitKey(20)

        scale_level += 1

    if not apply_nms:
        # withour non-maximum suppression, return with confidence
        # can be used for hard-negative mining and graphcut segmentation
        return detections

    # apply non-maximum suppression
    dets = np.array([i[0] for i in detections])
    detections = non_max_suppression(dets, only_one=True)
    if visualize:
        im_copy = img.copy()
        helper.draw_detections(im_copy, detections)

    return detections
Example #3
0
import numpy as np
import cv2
faces_image = np.load('olivetti_faces.npy')
#faces_target = np.load('label_target_face.npy')
#note that when you are testing age prediction,you should comment the previous line and de-comment the next line
faces_target = np.load('olivetti_faces_target.npy')
import time

#faces_image = np.load('training_image.npy')  #faces_image
#print(faces_image.shape)
#faces_target = np.load('label_target_face.npy')
# load the image and define the window width and height
image = cv2.imread('physics.png')
(winW, winH) = (64, 64)
result = {}
for resized in pyramid(image, scale=1.5):
    # loop over the sliding window for each layer of the pyramid
    for (x, y, window) in sliding_window(resized,
                                         stepSize=19,
                                         windowSize=(winW, winH)):
        # if the window does not meet our desired window size, ignore it
        if window.shape[0] != winH or window.shape[1] != winW:
            continue
        #knn classifiers
        nn = NearestNeighbor()
        faces_image = faces_image.reshape(400, 64 * 64)
        print(faces_target.shape)
        nn.train(faces_image, faces_target)
        window = cv2.cvtColor(window, cv2.COLOR_BGR2GRAY)
        window = window.reshape(1, 64 * 64)
        # print(1)
Example #4
0
def detect(img, feature_type, downscale=1.5, visualize=False, apply_nms=True):
    """use sliding window and pyramid to detect object"""
    detections = []  # detected candidates
    min_window_size = (int(config.img_width * 1.5),
                       int(config.img_height * 1.5))
    min_ws = (config.img_width, config.img_height)
    classifier = joblib.load(config.model_path)
    scale_level = 0

    for scaled_img in helper.pyramid(img, downscale, min_window_size):
        # detections at current scale used for visualization
        curr_scale_dets = []

        for (x, y, im_window) in helper.sliding_window(scaled_img, min_ws,
                                                       config.step_size):
            # filter out not standard spliting window
            if im_window.shape[0] != config.img_height or \
               im_window.shape[1] != config.img_width:
                continue

            # compute feature
            feature = compute_feature(im_window, feature_type)

            # prediction
            pred = classifier.predict([feature])[0]
            confidence = classifier.decision_function([feature])[0]
            if pred == 1:
                print ('Detection at location ({}, {})'.format(x, y))
                print ('scale level: {}, confidence: {}'.format(scale_level,
                                                               confidence))

                # TODO: potential bug for coordinate restore
                # attr_vec: [x1, y1, x2, y2]
                attr_vec = np.array([x, y, min_ws[0] + x, min_ws[1] + y])
                curr_scale_dets.append((attr_vec, confidence))

                expand_rate = downscale ** scale_level
                attr_vec = np.around(attr_vec * expand_rate).astype('int')
                # detection: ([x1, y1, x2, y2], confidence)
                detections.append((attr_vec, confidence))

            # visualize: draw current sliding withdow
            # and detections at this scale
            # TODO: show confidence on the bounding box
            if visualize:
                im_copy = scaled_img.copy()
                for det, _ in curr_scale_dets:
                    cv2.rectangle(im_copy, (det[0], det[1]), (det[2], det[3]),
                                  color=(0, 0, 0), thickness=2)

                cv2.rectangle(im_copy, (x, y),
                              (x + im_window.shape[1], y + im_window.shape[0]),
                              color=(255, 255, 255), thickness=2)

                cv2.imshow('sliding window', im_copy)
                cv2.waitKey(20)

        scale_level += 1

    if not apply_nms:
        # withour non-maximum suppression, return with confidence
        # can be used for hard-negative mining and graphcut segmentation
        return detections

    # apply non-maximum suppression
    dets = np.array([i[0] for i in detections])
    detections = non_max_suppression(dets, only_one=True)
    if visualize:
        im_copy = img.copy()
        helper.draw_detections(im_copy, detections)

    return detections
Example #5
0
# Construct the argument and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the image")
ap.add_argument("-s",
                "--scale",
                type=float,
                default=1.05,
                help="Scale factor size")
args = vars(ap.parse_args())

# Load the image
image = cv2.imread(args["image"])

# Method 1: No smooth, just scaling
# Loop over the image pyramid
for (i, resized) in enumerate(pyramid(image, scale=args["scale"])):
    # show the resized image
    cv2.imshow("Layer {}".format(i + 1), resized)
    cv2.waitKey(0)

# Close all the windows
cv2.destroyAllWindows()

# Method 2: Resizing + Gaussian Smoothing
for (i, resized) in enumerate(pyramid_gaussian(image, downscale=2)):
    # if the image is too small, break from the loop
    if resized.shape[0] < 30 or resized.shape[1] < 30:
        break

    # Show the resized image
    cv2.imshow("Layer {}".format(i + 1), resized)