"read_from_fs": False }, { "samples": n_samples, "backend": "hub:pytorch", "read_from_fs": True }, { "samples": n_samples, "backend": "tensorflow", "read_from_fs": False }, { "samples": n_samples, "backend": "tensorflow", "read_from_fs": True }, { "samples": n_samples, "backend": "hub:tensorflow", "read_from_fs": False }, { "samples": n_samples, "backend": "hub:tensorflow", "read_from_fs": True }, ] logs = [empty_train_hub(**args) for args in params] report(logs)
import helper helper.load_backends() code = """ (begin (define (grow) (set! s (string-append "123" s "456" s "789")) (set! s (string-append (substring s (quotient (string-length s) 2) (string-length s)) (substring s 0 (+ 1 (quotient (string-length s) 2))))) s) (define (trial n) (do ((i 0 (+ i 1))) ((> (string-length s) n) (string-length s)) (grow)))) """ def call_trial(vm): vm.eval(vm.compile('(define s "abcdef")')) scm = vm.eval(vm.compile('(trial 1000000)')) assert vm.fromscheme(scm) == 1048566 bm = Benchmark(title="string-append and substring performance", repeat=10) for backend in helper.BACKENDS: vm = helper.VM(backend=backend) vm.eval(vm.compile(code)) bm.measure(backend, call_trial, vm) helper.report(bm.report())
from benchmark import Benchmark import helper helper.load_backends() code = """ (define (tak x y z) (if (not (< y x)) z (tak (tak (- x 1) y z) (tak (- y 1) z x) (tak (- z 1) x y)))) """ def call_tak(vm): for case in [(7, (18, 12, 6)), (15, (30, 15, 9)), (10, (33, 15, 9)), (15, (40, 15, 9))]: scm = vm.apply(vm.get("tak"), [vm.toscheme(x) for x in case[1]]) assert vm.fromscheme(scm) == case[0] bm = Benchmark(title="tak benchmark", repeat=1) for backend in helper.BACKENDS: vm = helper.VM(backend=backend) vm.eval(vm.compile(code)) bm.measure(backend, call_tak, vm) helper.report(bm.report())
"download": t3 - t2, "write_to_fs": t1 - t0, } def upload_and_download(samples=30, chunksize=None, name="hub"): """ Uploads dataset into S3 and then downlods using hub package """ ds = generate_dataset([(samples, 256, 256), (samples, 256, 256)], chunksize=1) t1 = time.time() ds = ds.store(f"{BUCKET}/transfer/upload") t2 = time.time() ds.store("/tmp/download") t3 = time.time() return {"name": name, "upload": t2 - t1, "download": t3 - t2} if __name__ == "__main__": samples = 64 chunksize = None import hub hub.init(processes=True, n_workers=8, threads_per_worker=1) r1 = upload_and_download(samples, chunksize=chunksize) r2 = aws_cli_copy(samples, chunksize=chunksize) report([r1, r2])
def send_story_report(story_to_read): item = story_to_read reported_by = session['username'] report_reason = request.form["reason"] report(item, report_reason, story_to_read, reported_by) return redirect(url_for("admin_page"))
from helper import report """ Daily report - positions - balance - Margin balance - Unrealized PNL """ if __name__ == '__main__': report()