def updatefig( frames, artists ): # ignore frames; artists will be to_update (i.e. the animated bits) global step if (step < nstepsTot): step += stepsize if step >= nstepsTot: step = nstepsTot - 1 # update loss artists[loss_start].set_data(step, fitDet['loss'][step]) # update model responses resps_org = hf.organize_resp(fitDet['resp'][step], cellStruct, expInd)[2] [ artists[disp_start + i].set_data(data, mod) for i, data, mod in zip( range(nDisps), measured_byDisp, shapeByDisp(resps_org)) ] # get current params params_curr = fitDet['params'][step] # update filter properties artists[filt_start].set_data(params_curr[prefSf], params_curr[dOrder]) # update non_linear properties artists[nlin_start].set_data(np.power(10, params_curr[normConst]), params_curr[respExp]) # update normalization properties if len(params_curr) > 9: artists[norm_start].set_data(np.exp(params_curr[normMu]), params_curr[normStd]) # update text parameters # update tuning curves if fitType == 2: normPrm = [params_curr[normMu], params_curr[normStd]] else: normPrm = [0, 0] # dummy vars excPrm = [params_curr[prefSf], params_curr[dOrder]] updatePrm = [excPrm, normPrm] [ artists[tune_start + i].set_data(omega, lam(prm)) for i, lam, prm in zip(range(nsfTuning), sfTuningUpdates, updatePrm) ] # update resp non-linearity curve artists[nlinc_start].set_data(nlinIn, nlinPlot(nlinIn, params_curr[respExp])) return artists
normType=norm, lossType=lossType, expInd=expInd, cellNum=cellNum, rvcFits=rvcCurr, excType=excType, maskIn=~mask) for fit, norm in zip(modFits, normTypes) ] modResps = [x[1] for x in modResps] # 1st return output (x[0]) is NLL (don't care about that here) gs_mean = modFit_wg[8] gs_std = modFit_wg[9] # now organize the responses orgs = [ hf.organize_resp(mr, expData, expInd, respsAsRate=False) for mr in modResps ] oriModResps = [org[0] for org in orgs] # only non-empty if expInd = 1 conModResps = [org[1] for org in orgs] # only non-empty if expInd = 1 sfmixModResps = [org[2] for org in orgs] allSfMixs = [org[3] for org in orgs] modLows = [np.nanmin(resp, axis=3) for resp in allSfMixs] modHighs = [np.nanmax(resp, axis=3) for resp in allSfMixs] modAvgs = [np.nanmean(resp, axis=3) for resp in allSfMixs] modSponRates = [fit[6] for fit in modFits] # more tabulation - stim vals, organize measured responses _, stimVals, val_con_by_disp, validByStimVal, _ = hf.tabulate_responses(
# #### Load model fits modFit_fl = fitList_fl[cellNum-1]['params']; # modFit_wg = fitList_wg[cellNum-1]['params']; # modFits = [modFit_fl, modFit_wg]; normTypes = [1, 2]; # flat, then weighted # ### Organize data # #### determine contrasts, center spatial frequency, dispersions modResps = [mod_resp.SFMGiveBof(fit, expData, normType=norm, lossType=lossType, expInd=expInd) for fit, norm in zip(modFits, normTypes)]; modResps = [x[1] for x in modResps]; # 1st return output (x[0]) is NLL (don't care about that here) gs_mean = modFit_wg[8]; gs_std = modFit_wg[9]; # now organize the responses orgs = [hf.organize_resp(mr, expData, expInd) for mr in modResps]; oriModResps = [org[0] for org in orgs]; # only non-empty if expInd = 1 conModResps = [org[1] for org in orgs]; # only non-empty if expInd = 1 sfmixModResps = [org[2] for org in orgs]; allSfMixs = [org[3] for org in orgs]; modLows = [np.nanmin(resp, axis=3) for resp in allSfMixs]; modHighs = [np.nanmax(resp, axis=3) for resp in allSfMixs]; modAvgs = [np.nanmean(resp, axis=3) for resp in allSfMixs]; modSponRates = [fit[6] for fit in modFits]; # more tabulation - stim vals, organize measured responses _, stimVals, val_con_by_disp, _, _ = hf.tabulate_responses(expData, expInd); if rvcAdj == 1: rvcFlag = '_f1'; rvcFits = hf.get_rvc_fits(data_loc, expInd, cellNum, rvcName=rvcBase);
# let's also get the baseline force_baseline = True if force_dc else False # plotting baseline will depend on F1/F0 designation if force_baseline or ( f1f0rat < 1 and expDir != 'LGN/' ): # i.e. if we're in LGN, DON'T get baseline, even if f1f0 < 1 (shouldn't happen) baseline_resp = hf.blankResp(trialInf, expInd, spikes=spikes_rate, spksAsRate=True)[0] else: baseline_resp = int(0) # now get the measured responses _, _, respOrg, respAll = hf.organize_resp(spikes_rate, trialInf, expInd, respsAsRate=True) respMean = respOrg respStd = np.nanstd(respAll, -1) # take std of all responses for a given condition # compute SEM, too findNaN = np.isnan(respAll) nonNaN = np.sum(findNaN == False, axis=-1) respSem = np.nanstd(respAll, -1) / np.sqrt(nonNaN) # pick which measure of response variance if respVar == 1: respVar = respSem else: respVar = respStd
dataTxt = 'data' refClr = 'm' refTxt = 'ref' # #### Plots by dispersion sfs_plot = np.logspace(np.log10(maskSf[0]), np.log10(maskSf[-1]), 100) if ddogs_pred and descrMod == 3: # i.e. is d-DoG-S model all_preds = hf.parker_hawken_all_stim(trialInf, expInd, descrParams, comm_s_calc=comm_S_calc & (joint > 0)) _, _, pred_org, pred_all = hf.organize_resp(all_preds, trialInf, expInd, respsAsRate=True) else: pred_org = None n_v_cons = len(maskCon) fDisp, dispAx = plt.subplots(n_v_cons, 2, figsize=(2 * 10, n_v_cons * 12), sharey=False) minResp = np.min(np.min(respMean[~np.isnan(respMean[:, :])])) maxResp = np.max(np.max(respMean[~np.isnan(respMean[:, :])])) if old_refprm: ref_params = descrParams[-1] if joint > 0 else None
def fit_descr_DoG(cell_num, data_loc=dataPath, n_repeats=1000, loss_type=3, DoGmodel=1, disp=0, rvcName=rvcName, dir=-1, gain_reg=0, fLname=dogName): nParam = 4 # load cell information dataList = hf.np_smart_load(data_loc + 'dataList.npy') assert dataList != [], "data file not found!" if loss_type == 1: loss_str = '_poiss' elif loss_type == 2: loss_str = '_sqrt' elif loss_type == 3: loss_str = '_sach' elif loss_type == 4: loss_str = '_varExpl' if DoGmodel == 1: mod_str = '_sach' elif DoGmodel == 2: mod_str = '_tony' fLname = str(data_loc + fLname + loss_str + mod_str + '.npy') if os.path.isfile(fLname): descrFits = hf.np_smart_load(fLname) else: descrFits = dict() cellStruct = hf.np_smart_load(data_loc + dataList['unitName'][cell_num - 1] + '_sfm.npy') data = cellStruct['sfm']['exp']['trial'] rvcNameFinal = hf.phase_fit_name(rvcName, dir) rvcFits = hf.np_smart_load(data_loc + rvcNameFinal) adjResps = rvcFits[cell_num - 1][disp]['adjMeans'] adjSem = rvcFits[cell_num - 1][disp]['adjSem'] if 'adjByTr' in rvcFits[cell_num - 1][disp]: adjByTr = rvcFits[cell_num - 1][disp]['adjByTr'] if disp == 1: adjResps = [np.sum(x, 1) if x else [] for x in adjResps] if adjByTr: adjByTr = [np.sum(x, 1) if x else [] for x in adjByTr] adjResps = np.array(adjResps) # indexing multiple SFs will work only if we convert to numpy array first adjSem = np.array([np.array(x) for x in adjSem]) # make each inner list an array, and the whole thing an array print('Doing the work, now') # first, get the set of stimulus values: resps, stimVals, valConByDisp, _, _ = hf.tabulate_responses(data, expInd=expInd) # LGN is expInd=3 all_disps = stimVals[0] all_cons = stimVals[1] all_sfs = stimVals[2] nDisps = len(all_disps) nCons = len(all_cons) if cell_num - 1 in descrFits: bestNLL = descrFits[cell_num - 1]['NLL'] currParams = descrFits[cell_num - 1]['params'] varExpl = descrFits[cell_num - 1]['varExpl'] prefSf = descrFits[cell_num - 1]['prefSf'] charFreq = descrFits[cell_num - 1]['charFreq'] else: # set values to NaN... bestNLL = np.ones((nDisps, nCons)) * np.nan currParams = np.ones((nDisps, nCons, nParam)) * np.nan varExpl = np.ones((nDisps, nCons)) * np.nan prefSf = np.ones((nDisps, nCons)) * np.nan charFreq = np.ones((nDisps, nCons)) * np.nan # set bounds if DoGmodel == 1: bound_gainCent = (1e-3, None) bound_radiusCent = (1e-3, None) bound_gainSurr = (1e-3, None) bound_radiusSurr = (1e-3, None) allBounds = (bound_gainCent, bound_radiusCent, bound_gainSurr, bound_radiusSurr) elif DoGmodel == 2: bound_gainCent = (1e-3, None) bound_gainFracSurr = (1e-2, 1) bound_freqCent = (1e-3, None) bound_freqFracSurr = (1e-2, 1) allBounds = (bound_gainCent, bound_freqCent, bound_gainFracSurr, bound_freqFracSurr) for d in range( 1 ): # should be nDisps - just setting to 1 for now (i.e. fitting single gratings and mixtures separately) for con in range(nCons): if con not in valConByDisp[disp]: continue valSfInds = hf.get_valid_sfs(data, disp, con, expInd) valSfVals = all_sfs[valSfInds] print('.') # adjResponses (f1) in the rvcFits are separate by sf, values within contrast - so to get all responses for a given SF, # access all sfs and get the specific contrast response respConInd = np.where(np.asarray(valConByDisp[disp]) == con)[0] pdb.set_trace() ### interlude... spks = hf.get_spikes(data, rvcFits=rvcFits[cell_num - 1], expInd=expInd) _, _, mnResp, alResp = hf.organize_resp(spks, data, expInd) ### resps = flatten([x[respConInd] for x in adjResps[valSfInds]]) resps_sem = [x[respConInd] for x in adjSem[valSfInds]] if isinstance(resps_sem[0], np.ndarray): # i.e. if it's still array of arrays... resps_sem = flatten(resps_sem) #resps_sem = None; maxResp = np.max(resps) freqAtMaxResp = all_sfs[np.argmax(resps)] for n_try in range(n_repeats): # pick initial params if DoGmodel == 1: init_gainCent = hf.random_in_range( (maxResp, 5 * maxResp))[0] init_radiusCent = hf.random_in_range((0.05, 2))[0] init_gainSurr = init_gainCent * hf.random_in_range( (0.1, 0.8))[0] init_radiusSurr = hf.random_in_range((0.5, 4))[0] init_params = [ init_gainCent, init_radiusCent, init_gainSurr, init_radiusSurr ] elif DoGmodel == 2: init_gainCent = maxResp * hf.random_in_range((0.9, 1.2))[0] init_freqCent = np.maximum( all_sfs[2], freqAtMaxResp * hf.random_in_range((1.2, 1.5))[0]) # don't pick all_sfs[0] -- that's zero (we're avoiding that) init_gainFracSurr = hf.random_in_range((0.7, 1))[0] init_freqFracSurr = hf.random_in_range((.25, .35))[0] init_params = [ init_gainCent, init_freqCent, init_gainFracSurr, init_freqFracSurr ] # choose optimization method if np.mod(n_try, 2) == 0: methodStr = 'L-BFGS-B' else: methodStr = 'TNC' obj = lambda params: DoG_loss(params, resps, valSfVals, resps_std=resps_sem, loss_type=loss_type, DoGmodel=DoGmodel, dir=dir, gain_reg=gain_reg) wax = opt.minimize(obj, init_params, method=methodStr, bounds=allBounds) # compare NLL = wax['fun'] params = wax['x'] if np.isnan(bestNLL[disp, con]) or NLL < bestNLL[disp, con]: bestNLL[disp, con] = NLL currParams[disp, con, :] = params varExpl[disp, con] = hf.var_explained(resps, params, valSfVals) prefSf[disp, con] = hf.dog_prefSf(params, DoGmodel, valSfVals) charFreq[disp, con] = hf.dog_charFreq(params, DoGmodel) # update stuff - load again in case some other run has saved/made changes if os.path.isfile(fLname): print('reloading descrFits...') descrFits = hf.np_smart_load(fLname) if cell_num - 1 not in descrFits: descrFits[cell_num - 1] = dict() descrFits[cell_num - 1]['NLL'] = bestNLL descrFits[cell_num - 1]['params'] = currParams descrFits[cell_num - 1]['varExpl'] = varExpl descrFits[cell_num - 1]['prefSf'] = prefSf descrFits[cell_num - 1]['charFreq'] = charFreq descrFits[cell_num - 1]['gainRegFactor'] = gain_reg np.save(fLname, descrFits) print('saving for cell ' + str(cell_num))
# #### Load model fits modFit_fl = fitList_fl[cellNum-1]['params']; # modFit_wg = fitList_wg[cellNum-1]['params']; # modFits = [modFit_fl, modFit_wg]; normTypes = [1, 2]; # flat, then weighted # ### Organize data # #### determine contrasts, center spatial frequency, dispersions modResps = [mod_resp.SFMGiveBof(fit, expData, normType=norm, lossType=lossType, expInd=expInd) for fit, norm in zip(modFits, normTypes)]; modResps = [x[1] for x in modResps]; # 1st return output is NLL (don't care about that here) gs_mean = modFit_wg[8]; gs_std = modFit_wg[9]; # now organize the responses orgs = [hf.organize_resp(mr, expData, expInd) for mr in modResps]; #orgs = [hf.organize_modResp(mr, expData) for mr in modResps]; sfmixModResps = [org[2] for org in orgs]; allSfMixs = [org[3] for org in orgs]; # now organize the measured responses in the same way _, _, sfmixExpResp, allSfMixExp = hf.organize_resp(expData['sfm']['exp']['trial']['spikeCount'], expData, expInd); modLows = [np.nanmin(resp, axis=3) for resp in allSfMixs]; modHighs = [np.nanmax(resp, axis=3) for resp in allSfMixs]; modAvgs = [np.nanmean(resp, axis=3) for resp in allSfMixs]; modSponRates = [fit[6] for fit in modFits]; # more tabulation resp, stimVals, val_con_by_disp, _, _ = hf.tabulate_responses(expData, expInd, modResps[0]); respMean = resp[0];
### set up nstepsTot = len(fitDet['loss']) nFrames = np.int(np.ceil(nstepsTot / stepsize)) ## indices for accessing parameters [prefSf, dOrder, normConst, respExp, normMu, normStd] = [0, 1, 2, 3, 8, 9] finalParams = fitDet['params'][-1] # i.e. parameters at end of optimization ## reshape the model/exp responses by condition, group by dispersion # we reshape the responses to combine within dispersion, i.e. (nDisp, nSf*nCon) shapeByDisp = lambda resps: resps.reshape( (resps.shape[0], resps.shape[1] * resps.shape[2])) measured_resps = hf.organize_resp( data['spikeCount'], cellStruct, expInd)[2] # 3rd output is organized sfMix resp. measured_byDisp = shapeByDisp(measured_resps) nDisps = len(measured_byDisp) ## get the final filter tunings omega = np.logspace(-2, 2, 1000) # where are we evaluating? # first, normalization inhSfTuning = hf.getSuppressiveSFtuning(sfs=omega) nInhChan = cellStruct['sfm']['mod']['normalization']['pref']['sf'] nTrials = inhSfTuning.shape[0] if fitType == 2: gs_mean, gs_std = [finalParams[normMu], finalParams[normStd]] inhWeight = hf.genNormWeights(cellStruct, nInhChan, gs_mean, gs_std, nTrials, expInd)
return_measure=True, vecF1=vecF1) # let's also get the baseline if force_baseline or ( f1f0rat < 1 and expDir != 'LGN/' ): # i.e. if we're in LGN, DON'T get baseline, even if f1f0 < 1 (shouldn't happen) baseline_resp = hf.blankResp(trialInf, expInd, spikes=spikes_rate, spksAsRate=True)[0] else: baseline_resp = int(0) # now get the measured responses _, _, respOrg, respAll = hf.organize_resp(spikes_rate, trialInf, expInd, respsAsRate=True) nTrials = np.sum(~np.isnan(respAll[0, -1, -1])) # single grating, highest SF/CON halfway = np.floor(nTrials / 2).astype(int) respMean = respOrg respStd = np.nanstd(respAll, -1) # take std of all responses for a given condition # compute SEM, too findNaN = np.isnan(respAll) nonNaN = np.sum(findNaN == False, axis=-1) respSem = np.nanstd(respAll, -1) / np.sqrt(nonNaN) # pick which measure of response variance if respVar == 1: respVar = respSem
descrParams = descrFits[cellNum - 1]['params'] else: descrParams = None ########### # Organize data ########### # #### determine contrasts, center spatial frequency, dispersions modResp = mod_resp.SFMGiveBof(modFit, expData, normType=fitType, lossType=lossType, expInd=expInd)[1] # now organize the responses orgs = hf.organize_resp(modResp, expData, expInd) oriModResp = orgs[0] # only non-empty if expInd = 1 conModResp = orgs[1] # only non-empty if expInd = 1 sfmixModResp = orgs[2] allSfMix = orgs[3] modLow = np.nanmin(allSfMix, axis=3) modHigh = np.nanmax(allSfMix, axis=3) modAvg = np.nanmean(allSfMix, axis=3) modSponRate = modFit[6] # more tabulation - stim vals, organize measured responses if modRecov == 1: modParamGT, overwriteSpikes = hf.get_recovInfo(expData, fitType)
rates = True if vecF1 == 0 else False # when we get the spikes from rvcFits, they've already been converted into rates (in hf.get_all_fft) baseline = None # f1 has no "DC", yadig? else: # otherwise, if it's complex, just get F0 respMeasure = 0 spikes = hf.get_spikes(expData, get_f0=1, rvcFits=None, expInd=expInd) rates = False # get_spikes without rvcFits is directly from spikeCount, which is counts, not rates! baseline = hf.blankResp(expData, expInd)[0] # we'll plot the spontaneous rate # why mult by stimDur? well, spikes are not rates but baseline is, so we convert baseline to count (i.e. not rate, too) spikes = spikes - baseline * hf.get_exp_params(expInd).stimDur #print('###\nGetting spikes (data): rates? %d\n###' % rates); _, _, _, respAll = hf.organize_resp(spikes, expData, expInd, respsAsRate=rates) # only using respAll to get variance measures resps_data, stimVals, val_con_by_disp, _, _ = hf.tabulate_responses( expData, expInd, overwriteSpikes=spikes, respsAsRates=rates, modsAsRate=rates) if fitList is None: resps = resps_data # otherwise, we'll still keep resps_data for reference elif fitList is not None: # OVERWRITE the data with the model spikes! if use_mod_resp == 1: curr_fit = fitList[which_cell - 1]['params'] modResp = mod_resp.SFMGiveBof(curr_fit,
def plot_save_superposition(which_cell, expDir, use_mod_resp=0, fitType=2, excType=1, useHPCfit=1, conType=None, lgnFrontEnd=None, force_full=1, f1_expCutoff=2, to_save=1): if use_mod_resp == 2: rvcAdj = -1; # this means vec corrected F1, not phase adjustment F1... _applyLGNtoNorm = 0; # don't apply the LGN front-end to the gain control weights recenter_norm = 1; newMethod = 1; # yes, use the "new" method for mrpt (not that new anymore, as of 21.03) lossType = 1; # sqrt _sigmoidSigma = 5; basePath = os.getcwd() + '/' if 'pl1465' in basePath or useHPCfit: loc_str = 'HPC'; else: loc_str = ''; rvcName = 'rvcFits%s_220531' % loc_str if expDir=='LGN/' else 'rvcFits%s_220609' % loc_str rvcFits = None; # pre-define this as None; will be overwritten if available/needed if expDir == 'altExp/': # we don't adjust responses there... rvcName = None; dFits_base = 'descrFits%s_220609' % loc_str if expDir=='LGN/' else 'descrFits%s_220631' % loc_str if use_mod_resp == 1: rvcName = None; # Use NONE if getting model responses, only if excType == 1: fitBase = 'fitList_200417'; elif excType == 2: fitBase = 'fitList_200507'; lossType = 1; # sqrt fitList_nm = hf.fitList_name(fitBase, fitType, lossType=lossType); elif use_mod_resp == 2: rvcName = None; # Use NONE if getting model responses, only if excType == 1: fitBase = 'fitList%s_210308_dG' % loc_str if recenter_norm: #fitBase = 'fitList%s_pyt_210312_dG' % loc_str fitBase = 'fitList%s_pyt_210331_dG' % loc_str elif excType == 2: fitBase = 'fitList%s_pyt_210310' % loc_str if recenter_norm: #fitBase = 'fitList%s_pyt_210312' % loc_str fitBase = 'fitList%s_pyt_210331' % loc_str fitList_nm = hf.fitList_name(fitBase, fitType, lossType=lossType, lgnType=lgnFrontEnd, lgnConType=conType, vecCorrected=-rvcAdj); # ^^^ EDIT rvc/descrFits/fitList names here; ############ # Before any plotting, fix plotting paramaters ############ plt.style.use('https://raw.githubusercontent.com/paul-levy/SF_diversity/master/paul_plt_style.mplstyle'); from matplotlib import rcParams rcParams['font.size'] = 20; rcParams['pdf.fonttype'] = 42 # should be 42, but there are kerning issues rcParams['ps.fonttype'] = 42 # should be 42, but there are kerning issues rcParams['lines.linewidth'] = 2.5; rcParams['axes.linewidth'] = 1.5; rcParams['lines.markersize'] = 8; # this is in style sheet, just being explicit rcParams['lines.markeredgewidth'] = 0; # no edge, since weird tings happen then rcParams['xtick.major.size'] = 15 rcParams['xtick.minor.size'] = 5; # no minor ticks rcParams['ytick.major.size'] = 15 rcParams['ytick.minor.size'] = 0; # no minor ticks rcParams['xtick.major.width'] = 2 rcParams['xtick.minor.width'] = 2; rcParams['ytick.major.width'] = 2 rcParams['ytick.minor.width'] = 0 rcParams['font.style'] = 'oblique'; rcParams['font.size'] = 20; ############ # load everything ############ dataListNm = hf.get_datalist(expDir, force_full=force_full); descrFits_f0 = None; dLoss_num = 2; # see hf.descrFit_name/descrMod_name/etc for details if expDir == 'LGN/': rvcMod = 0; dMod_num = 1; rvcDir = 1; vecF1 = -1; else: rvcMod = 1; # i.e. Naka-rushton (1) dMod_num = 3; # d-dog-s rvcDir = None; # None if we're doing vec-corrected if expDir == 'altExp/': vecF1 = 0; else: vecF1 = 1; dFits_mod = hf.descrMod_name(dMod_num) descrFits_name = hf.descrFit_name(lossType=dLoss_num, descrBase=dFits_base, modelName=dFits_mod, phAdj=1 if vecF1==-1 else None); ## now, let it run dataPath = basePath + expDir + 'structures/' save_loc = basePath + expDir + 'figures/' save_locSuper = save_loc + 'superposition_220713/' if use_mod_resp == 1: save_locSuper = save_locSuper + '%s/' % fitBase dataList = hf.np_smart_load(dataPath + dataListNm); print('Trying to load descrFits at: %s' % (dataPath + descrFits_name)); descrFits = hf.np_smart_load(dataPath + descrFits_name); if use_mod_resp == 1 or use_mod_resp == 2: fitList = hf.np_smart_load(dataPath + fitList_nm); else: fitList = None; if not os.path.exists(save_locSuper): os.makedirs(save_locSuper) cells = np.arange(1, 1+len(dataList['unitName'])) zr_rm = lambda x: x[x>0]; # more flexible - only get values where x AND z are greater than some value "gt" (e.g. 0, 1, 0.4, ...) zr_rm_pair = lambda x, z, gt: [x[np.logical_and(x>gt, z>gt)], z[np.logical_and(x>gt, z>gt)]]; # zr_rm_pair = lambda x, z: [x[np.logical_and(x>0, z>0)], z[np.logical_and(x>0, z>0)]] if np.logical_and(x!=[], z!=[])==True else [], []; # here, we'll save measures we are going use for analysis purpose - e.g. supperssion index, c50 curr_suppr = dict(); ############ ### Establish the plot, load cell-specific measures ############ nRows, nCols = 6, 2; cellName = dataList['unitName'][which_cell-1]; expInd = hf.get_exp_ind(dataPath, cellName)[0] S = hf.np_smart_load(dataPath + cellName + '_sfm.npy') expData = S['sfm']['exp']['trial']; # 0th, let's load the basic tuning characterizations AND the descriptive fit try: dfit_curr = descrFits[which_cell-1]['params'][0,-1,:]; # single grating, highest contrast except: dfit_curr = None; # - then the basics try: basic_names, basic_order = dataList['basicProgName'][which_cell-1], dataList['basicProgOrder'] basics = hf.get_basic_tunings(basic_names, basic_order); except: try: # we've already put the basics in the data structure... (i.e. post-sorting 2021 data) basic_names = ['','','','','']; basic_order = ['rf', 'sf', 'tf', 'rvc', 'ori']; # order doesn't matter if they are already loaded basics = hf.get_basic_tunings(basic_names, basic_order, preProc=S, reducedSave=True) except: basics = None; ### TEMPORARY: save the "basics" in curr_suppr; should live on its own, though; TODO curr_suppr['basics'] = basics; try: oriBW, oriCV = basics['ori']['bw'], basics['ori']['cv']; except: oriBW, oriCV = np.nan, np.nan; try: tfBW = basics['tf']['tfBW_oct']; except: tfBW = np.nan; try: suprMod = basics['rfsize']['suprInd_model']; except: suprMod = np.nan; try: suprDat = basics['rfsize']['suprInd_data']; except: suprDat = np.nan; try: cellType = dataList['unitType'][which_cell-1]; except: # TODO: note, this is dangerous; thus far, only V1 cells don't have 'unitType' field in dataList, so we can safely do this cellType = 'V1'; ############ ### compute f1f0 ratio, and load the corresponding F0 or F1 responses ############ f1f0_rat = hf.compute_f1f0(expData, which_cell, expInd, dataPath, descrFitName_f0=descrFits_f0)[0]; curr_suppr['f1f0'] = f1f0_rat; respMeasure = 1 if f1f0_rat > 1 else 0; if vecF1 == 1: # get the correct, adjusted F1 response if expInd > f1_expCutoff and respMeasure == 1: respOverwrite = hf.adjust_f1_byTrial(expData, expInd); else: respOverwrite = None; if (respMeasure == 1 or expDir == 'LGN/') and expDir != 'altExp/' : # i.e. if we're looking at a simple cell, then let's get F1 if vecF1 == 1: spikes_byComp = respOverwrite # then, sum up the valid components per stimulus component allCons = np.vstack(expData['con']).transpose(); blanks = np.where(allCons==0); spikes_byComp[blanks] = 0; # just set it to 0 if that component was blank during the trial else: if rvcName is not None: try: rvcFits = hf.get_rvc_fits(dataPath, expInd, which_cell, rvcName=rvcName, rvcMod=rvcMod, direc=rvcDir, vecF1=vecF1); except: rvcFits = None; else: rvcFits = None spikes_byComp = hf.get_spikes(expData, get_f0=0, rvcFits=rvcFits, expInd=expInd); spikes = np.array([np.sum(x) for x in spikes_byComp]); rates = True if vecF1 == 0 else False; # when we get the spikes from rvcFits, they've already been converted into rates (in hf.get_all_fft) baseline = None; # f1 has no "DC", yadig? else: # otherwise, if it's complex, just get F0 respMeasure = 0; spikes = hf.get_spikes(expData, get_f0=1, rvcFits=None, expInd=expInd); rates = False; # get_spikes without rvcFits is directly from spikeCount, which is counts, not rates! baseline = hf.blankResp(expData, expInd)[0]; # we'll plot the spontaneous rate # why mult by stimDur? well, spikes are not rates but baseline is, so we convert baseline to count (i.e. not rate, too) spikes = spikes - baseline*hf.get_exp_params(expInd).stimDur; #print('###\nGetting spikes (data): rates? %d\n###' % rates); _, _, _, respAll = hf.organize_resp(spikes, expData, expInd, respsAsRate=rates); # only using respAll to get variance measures resps_data, stimVals, val_con_by_disp, _, _ = hf.tabulate_responses(expData, expInd, overwriteSpikes=spikes, respsAsRates=rates, modsAsRate=rates); if fitList is None: resps = resps_data; # otherwise, we'll still keep resps_data for reference elif fitList is not None: # OVERWRITE the data with the model spikes! if use_mod_resp == 1: curr_fit = fitList[which_cell-1]['params']; modResp = mod_resp.SFMGiveBof(curr_fit, S, normType=fitType, lossType=lossType, expInd=expInd, cellNum=which_cell, excType=excType)[1]; if f1f0_rat < 1: # then subtract baseline.. modResp = modResp - baseline*hf.get_exp_params(expInd).stimDur; # now organize the responses resps, stimVals, val_con_by_disp, _, _ = hf.tabulate_responses(expData, expInd, overwriteSpikes=modResp, respsAsRates=False, modsAsRate=False); elif use_mod_resp == 2: # then pytorch model! resp_str = hf_sf.get_resp_str(respMeasure) curr_fit = fitList[which_cell-1][resp_str]['params']; model = mrpt.sfNormMod(curr_fit, expInd=expInd, excType=excType, normType=fitType, lossType=lossType, lgnFrontEnd=lgnFrontEnd, newMethod=newMethod, lgnConType=conType, applyLGNtoNorm=_applyLGNtoNorm) ### get the vec-corrected responses, if applicable if expInd > f1_expCutoff and respMeasure == 1: respOverwrite = hf.adjust_f1_byTrial(expData, expInd); else: respOverwrite = None; dw = mrpt.dataWrapper(expData, respMeasure=respMeasure, expInd=expInd, respOverwrite=respOverwrite); # respOverwrite defined above (None if DC or if expInd=-1) modResp = model.forward(dw.trInf, respMeasure=respMeasure, sigmoidSigma=_sigmoidSigma, recenter_norm=recenter_norm).detach().numpy(); if respMeasure == 1: # make sure the blank components have a zero response (we'll do the same with the measured responses) blanks = np.where(dw.trInf['con']==0); modResp[blanks] = 0; # next, sum up across components modResp = np.sum(modResp, axis=1); # finally, make sure this fills out a vector of all responses (just have nan for non-modelled trials) nTrialsFull = len(expData['num']); modResp_full = np.nan * np.zeros((nTrialsFull, )); modResp_full[dw.trInf['num']] = modResp; if respMeasure == 0: # if DC, then subtract baseline..., as determined from data (why not model? we aren't yet calc. response to no stim, though it can be done) modResp_full = modResp_full - baseline*hf.get_exp_params(expInd).stimDur; # TODO: This is a work around for which measures are in rates vs. counts (DC vs F1, model vs data...) stimDur = hf.get_exp_params(expInd).stimDur; asRates = False; #divFactor = stimDur if asRates == 0 else 1; #modResp_full = np.divide(modResp_full, divFactor); # now organize the responses resps, stimVals, val_con_by_disp, _, _ = hf.tabulate_responses(expData, expInd, overwriteSpikes=modResp_full, respsAsRates=asRates, modsAsRate=asRates); predResps = resps[2]; respMean = resps[0]; # equivalent to resps[0]; respStd = np.nanstd(respAll, -1); # take std of all responses for a given condition # compute SEM, too findNaN = np.isnan(respAll); nonNaN = np.sum(findNaN == False, axis=-1); respSem = np.nanstd(respAll, -1) / np.sqrt(nonNaN); ############ ### first, fit a smooth function to the overall pred V measured responses ### --- from this, we can measure how each example superposition deviates from a central tendency ### --- i.e. the residual relative to the "standard" input:output relationship ############ all_resps = respMean[1:, :, :].flatten() # all disp>0 all_preds = predResps[1:, :, :].flatten() # all disp>0 # a model which allows negative fits # myFit = lambda x, t0, t1, t2: t0 + t1*x + t2*x*x; # non_nan = np.where(~np.isnan(all_preds)); # cannot fit negative values with naka-rushton... # fitz, _ = opt.curve_fit(myFit, all_preds[non_nan], all_resps[non_nan], p0=[-5, 10, 5], maxfev=5000) # naka rushton myFit = lambda x, g, expon, c50: hf.naka_rushton(x, [0, g, expon, c50]) non_neg = np.where(all_preds>0) # cannot fit negative values with naka-rushton... try: if use_mod_resp == 1: # the reference will ALWAYS be the data -- redo the above analysis for data predResps_data = resps_data[2]; respMean_data = resps_data[0]; all_resps_data = respMean_data[1:, :, :].flatten() # all disp>0 all_preds_data = predResps_data[1:, :, :].flatten() # all disp>0 non_neg_data = np.where(all_preds_data>0) # cannot fit negative values with naka-rushton... fitz, _ = opt.curve_fit(myFit, all_preds_data[non_neg_data], all_resps_data[non_neg_data], p0=[100, 2, 25], maxfev=5000) else: fitz, _ = opt.curve_fit(myFit, all_preds[non_neg], all_resps[non_neg], p0=[100, 2, 25], maxfev=5000) rel_c50 = np.divide(fitz[-1], np.max(all_preds[non_neg])); except: fitz = None; rel_c50 = -99; ############ ### organize stimulus information ############ all_disps = stimVals[0]; all_cons = stimVals[1]; all_sfs = stimVals[2]; nCons = len(all_cons); nSfs = len(all_sfs); nDisps = len(all_disps); maxResp = np.maximum(np.nanmax(respMean), np.nanmax(predResps)); # by disp clrs_d = cm.viridis(np.linspace(0,0.75,nDisps-1)); lbls_d = ['disp: %s' % str(x) for x in range(nDisps)]; # by sf val_sfs = hf.get_valid_sfs(S, disp=1, con=val_con_by_disp[1][0], expInd=expInd) # pick clrs_sf = cm.viridis(np.linspace(0,.75,len(val_sfs))); lbls_sf = ['sf: %.2f' % all_sfs[x] for x in val_sfs]; # by con val_con = all_cons; clrs_con = cm.viridis(np.linspace(0,.75,len(val_con))); lbls_con = ['con: %.2f' % x for x in val_con]; ############ ### create the figure ############ fSuper, ax = plt.subplots(nRows, nCols, figsize=(10*nCols, 8*nRows)) sns.despine(fig=fSuper, offset=10) allMix = []; allSum = []; ### plot reference tuning [row 1 (i.e. 2nd row)] ## on the right, SF tuning (high contrast) sfRef = hf.nan_rm(respMean[0, :, -1]); # high contrast tuning ax[1, 1].plot(all_sfs, sfRef, 'k-', marker='o', label='ref. tuning (d0, high con)', clip_on=False) ax[1, 1].set_xscale('log') ax[1, 1].set_xlim((0.1, 10)); ax[1, 1].set_xlabel('sf (c/deg)') ax[1, 1].set_ylabel('response (spikes/s)') ax[1, 1].set_ylim((-5, 1.1*np.nanmax(sfRef))); ax[1, 1].legend(fontsize='x-small'); ##### ## then on the left, RVC (peak SF) ##### sfPeak = np.argmax(sfRef); # stupid/simple, but just get the rvc for the max response v_cons_single = val_con_by_disp[0] rvcRef = hf.nan_rm(respMean[0, sfPeak, v_cons_single]); # now, if possible, let's also plot the RVC fit if rvcFits is not None: rvcFits = hf.get_rvc_fits(dataPath, expInd, which_cell, rvcName=rvcName, rvcMod=rvcMod); rel_rvc = rvcFits[0]['params'][sfPeak]; # we get 0 dispersion, peak SF plt_cons = np.geomspace(all_cons[0], all_cons[-1], 50); c50, pk = hf.get_c50(rvcMod, rel_rvc), rvcFits[0]['conGain'][sfPeak]; c50_emp, c50_eval = hf.c50_empirical(rvcMod, rel_rvc); # determine c50 by optimization, numerical approx. if rvcMod == 0: rvc_mod = hf.get_rvc_model(); rvcmodResp = rvc_mod(*rel_rvc, plt_cons); else: # i.e. mod=1 or mod=2 rvcmodResp = hf.naka_rushton(plt_cons, rel_rvc); if baseline is not None: rvcmodResp = rvcmodResp - baseline; ax[1, 0].plot(plt_cons, rvcmodResp, 'k--', label='rvc fit (c50=%.2f, gain=%0f)' %(c50, pk)) # and save it curr_suppr['c50'] = c50; curr_suppr['conGain'] = pk; curr_suppr['c50_emp'] = c50_emp; curr_suppr['c50_emp_eval'] = c50_eval else: curr_suppr['c50'] = np.nan; curr_suppr['conGain'] = np.nan; curr_suppr['c50_emp'] = np.nan; curr_suppr['c50_emp_eval'] = np.nan; ax[1, 0].plot(all_cons[v_cons_single], rvcRef, 'k-', marker='o', label='ref. tuning (d0, peak SF)', clip_on=False) # ax[1, 0].set_xscale('log') ax[1, 0].set_xlabel('contrast (%)'); ax[1, 0].set_ylabel('response (spikes/s)') ax[1, 0].set_ylim((-5, 1.1*np.nanmax(rvcRef))); ax[1, 0].legend(fontsize='x-small'); # plot the fitted model on each axis pred_plt = np.linspace(0, np.nanmax(all_preds), 100); if fitz is not None: ax[0, 0].plot(pred_plt, myFit(pred_plt, *fitz), 'r--', label='fit') ax[0, 1].plot(pred_plt, myFit(pred_plt, *fitz), 'r--', label='fit') for d in range(nDisps): if d == 0: # we don't care about single gratings! dispRats = []; continue; v_cons = np.array(val_con_by_disp[d]); n_v_cons = len(v_cons); # plot split out by each contrast [0,1] for c in reversed(range(n_v_cons)): v_sfs = hf.get_valid_sfs(S, d, v_cons[c], expInd) for s in v_sfs: mixResp = respMean[d, s, v_cons[c]]; allMix.append(mixResp); sumResp = predResps[d, s, v_cons[c]]; allSum.append(sumResp); # print('condition: d(%d), c(%d), sf(%d):: pred(%.2f)|real(%.2f)' % (d, v_cons[c], s, sumResp, mixResp)) # PLOT in by-disp panel if c == 0 and s == v_sfs[0]: ax[0, 0].plot(sumResp, mixResp, 'o', color=clrs_d[d-1], label=lbls_d[d], clip_on=False) else: ax[0, 0].plot(sumResp, mixResp, 'o', color=clrs_d[d-1], clip_on=False) # PLOT in by-sf panel sfInd = np.where(np.array(v_sfs) == s)[0][0]; # will only be one entry, so just "unpack" try: if d == 1 and c == 0: ax[0, 1].plot(sumResp, mixResp, 'o', color=clrs_sf[sfInd], label=lbls_sf[sfInd], clip_on=False); else: ax[0, 1].plot(sumResp, mixResp, 'o', color=clrs_sf[sfInd], clip_on=False); except: pass; #pdb.set_trace(); # plot baseline, if f0... # if baseline is not None: # [ax[0, i].axhline(baseline, linestyle='--', color='k', label='spon. rate') for i in range(2)]; # plot averaged across all cons/sfs (i.e. average for the whole dispersion) [1,0] mixDisp = respMean[d, :, :].flatten(); sumDisp = predResps[d, :, :].flatten(); mixDisp, sumDisp = zr_rm_pair(mixDisp, sumDisp, 0.5); curr_rats = np.divide(mixDisp, sumDisp) curr_mn = geomean(curr_rats); curr_std = np.std(np.log10(curr_rats)); # curr_rat = geomean(np.divide(mixDisp, sumDisp)); ax[2, 0].bar(d, curr_mn, yerr=curr_std, color=clrs_d[d-1]); ax[2, 0].set_yscale('log') ax[2, 0].set_ylim(0.1, 10); # ax[2, 0].yaxis.set_ticks(minorticks) dispRats.append(curr_mn); # ax[2, 0].bar(d, np.mean(np.divide(mixDisp, sumDisp)), color=clrs_d[d-1]); # also, let's plot the (signed) error relative to the fit if fitz is not None: errs = mixDisp - myFit(sumDisp, *fitz); ax[3, 0].bar(d, np.mean(errs), yerr=np.std(errs), color=clrs_d[d-1]) # -- and normalized by the prediction output response errs_norm = np.divide(mixDisp - myFit(sumDisp, *fitz), myFit(sumDisp, *fitz)); ax[4, 0].bar(d, np.mean(errs_norm), yerr=np.std(errs_norm), color=clrs_d[d-1]) # and set some labels/lines, as needed if d == 1: ax[2, 0].set_xlabel('dispersion'); ax[2, 0].set_ylabel('suppression ratio (linear)') ax[2, 0].axhline(1, ls='--', color='k') ax[3, 0].set_xlabel('dispersion'); ax[3, 0].set_ylabel('mean (signed) error') ax[3, 0].axhline(0, ls='--', color='k') ax[4, 0].set_xlabel('dispersion'); ax[4, 0].set_ylabel('mean (signed) error -- as frac. of fit prediction') ax[4, 0].axhline(0, ls='--', color='k') curr_suppr['supr_disp'] = dispRats; ### plot averaged across all cons/disps sfInds = []; sfRats = []; sfRatStd = []; sfErrs = []; sfErrsStd = []; sfErrsInd = []; sfErrsIndStd = []; sfErrsRat = []; sfErrsRatStd = []; curr_errNormFactor = []; for s in range(len(val_sfs)): try: # not all sfs will have legitmate values; # only get mixtures (i.e. ignore single gratings) mixSf = respMean[1:, val_sfs[s], :].flatten(); sumSf = predResps[1:, val_sfs[s], :].flatten(); mixSf, sumSf = zr_rm_pair(mixSf, sumSf, 0.5); rats_curr = np.divide(mixSf, sumSf); sfInds.append(s); sfRats.append(geomean(rats_curr)); sfRatStd.append(np.std(np.log10(rats_curr))); if fitz is not None: #curr_NR = myFit(sumSf, *fitz); # unvarnished curr_NR = np.maximum(myFit(sumSf, *fitz), 0.5); # thresholded at 0.5... curr_err = mixSf - curr_NR; sfErrs.append(np.mean(curr_err)); sfErrsStd.append(np.std(curr_err)) curr_errNorm = np.divide(mixSf - curr_NR, mixSf + curr_NR); sfErrsInd.append(np.mean(curr_errNorm)); sfErrsIndStd.append(np.std(curr_errNorm)) curr_errRat = np.divide(mixSf, curr_NR); sfErrsRat.append(np.mean(curr_errRat)); sfErrsRatStd.append(np.std(curr_errRat)); curr_normFactors = np.array(curr_NR) curr_errNormFactor.append(geomean(curr_normFactors[curr_normFactors>0])); else: sfErrs.append([]); sfErrsStd.append([]); sfErrsInd.append([]); sfErrsIndStd.append([]); sfErrsRat.append([]); sfErrsRatStd.append([]); curr_errNormFactor.append([]); except: pass # get the offset/scale of the ratio so that we can plot a rescaled/flipped version of # the high con/single grat tuning for reference...does the suppression match the response? offset, scale = np.nanmax(sfRats), np.nanmax(sfRats) - np.nanmin(sfRats); sfRef = hf.nan_rm(respMean[0, val_sfs, -1]); # high contrast tuning sfRefShift = offset - scale * (sfRef/np.nanmax(sfRef)) ax[2,1].scatter(all_sfs[val_sfs][sfInds], sfRats, color=clrs_sf[sfInds], clip_on=False) ax[2,1].errorbar(all_sfs[val_sfs][sfInds], sfRats, sfRatStd, color='k', linestyle='-', clip_on=False, label='suppression tuning') # ax[2,1].plot(all_sfs[val_sfs][sfInds], sfRats, 'k-', clip_on=False, label='suppression tuning') ax[2,1].plot(all_sfs[val_sfs], sfRefShift, 'k--', label='ref. tuning', clip_on=False) ax[2,1].axhline(1, ls='--', color='k') ax[2,1].set_xlabel('sf (cpd)') ax[2,1].set_xscale('log') ax[2,1].set_xlim((0.1, 10)); #ax[2,1].set_xlim((np.min(all_sfs), np.max(all_sfs))); ax[2,1].set_ylabel('suppression ratio'); ax[2,1].set_yscale('log') #ax[2,1].yaxis.set_ticks(minorticks) ax[2,1].set_ylim(0.1, 10); ax[2,1].legend(fontsize='x-small'); curr_suppr['supr_sf'] = sfRats; ### residuals from fit of suppression if fitz is not None: # mean signed error: and labels/plots for the error as f'n of SF ax[3,1].axhline(0, ls='--', color='k') ax[3,1].set_xlabel('sf (cpd)') ax[3,1].set_xscale('log') ax[3,1].set_xlim((0.1, 10)); #ax[3,1].set_xlim((np.min(all_sfs), np.max(all_sfs))); ax[3,1].set_ylabel('mean (signed) error'); ax[3,1].errorbar(all_sfs[val_sfs][sfInds], sfErrs, sfErrsStd, color='k', marker='o', linestyle='-', clip_on=False) # -- and normalized by the prediction output response + output respeonse val_errs = np.logical_and(~np.isnan(sfErrsRat), np.logical_and(np.array(sfErrsIndStd)>0, np.array(sfErrsIndStd) < 2)); norm_subset = np.array(sfErrsInd)[val_errs]; normStd_subset = np.array(sfErrsIndStd)[val_errs]; ax[4,1].axhline(0, ls='--', color='k') ax[4,1].set_xlabel('sf (cpd)') ax[4,1].set_xscale('log') ax[4,1].set_xlim((0.1, 10)); #ax[4,1].set_xlim((np.min(all_sfs), np.max(all_sfs))); ax[4,1].set_ylim((-1, 1)); ax[4,1].set_ylabel('error index'); ax[4,1].errorbar(all_sfs[val_sfs][sfInds][val_errs], norm_subset, normStd_subset, color='k', marker='o', linestyle='-', clip_on=False) # -- AND simply the ratio between the mixture response and the mean expected mix response (i.e. Naka-Rushton) # --- equivalent to the suppression ratio, but relative to the NR fit rather than perfect linear summation val_errs = np.logical_and(~np.isnan(sfErrsRat), np.logical_and(np.array(sfErrsRatStd)>0, np.array(sfErrsRatStd) < 2)); rat_subset = np.array(sfErrsRat)[val_errs]; ratStd_subset = np.array(sfErrsRatStd)[val_errs]; #ratStd_subset = (1/np.log(2))*np.divide(np.array(sfErrsRatStd)[val_errs], rat_subset); ax[5,1].scatter(all_sfs[val_sfs][sfInds][val_errs], rat_subset, color=clrs_sf[sfInds][val_errs], clip_on=False) ax[5,1].errorbar(all_sfs[val_sfs][sfInds][val_errs], rat_subset, ratStd_subset, color='k', linestyle='-', clip_on=False, label='suppression tuning') ax[5,1].axhline(1, ls='--', color='k') ax[5,1].set_xlabel('sf (cpd)') ax[5,1].set_xscale('log') ax[5,1].set_xlim((0.1, 10)); ax[5,1].set_ylabel('suppression ratio (wrt NR)'); ax[5,1].set_yscale('log', basey=2) # ax[2,1].yaxis.set_ticks(minorticks) ax[5,1].set_ylim(np.power(2.0, -2), np.power(2.0, 2)); ax[5,1].legend(fontsize='x-small'); # - compute the variance - and put that value on the plot errsRatVar = np.var(np.log2(sfErrsRat)[val_errs]); curr_suppr['sfRat_VAR'] = errsRatVar; ax[5,1].text(0.1, 2, 'var=%.2f' % errsRatVar); # compute the unsigned "area under curve" for the sfErrsInd, and normalize by the octave span of SF values considered val_errs = np.logical_and(~np.isnan(sfErrsRat), np.logical_and(np.array(sfErrsIndStd)>0, np.array(sfErrsIndStd) < 2)); val_x = all_sfs[val_sfs][sfInds][val_errs]; ind_var = np.var(np.array(sfErrsInd)[val_errs]); curr_suppr['sfErrsInd_VAR'] = ind_var; # - and put that value on the plot ax[4,1].text(0.1, -0.25, 'var=%.3f' % ind_var); else: curr_suppr['sfErrsInd_VAR'] = np.nan curr_suppr['sfRat_VAR'] = np.nan ######### ### NOW, let's evaluate the derivative of the SF tuning curve and get the correlation with the errors ######### mod_sfs = np.geomspace(all_sfs[0], all_sfs[-1], 1000); mod_resp = hf.get_descrResp(dfit_curr, mod_sfs, DoGmodel=dMod_num); deriv = np.divide(np.diff(mod_resp), np.diff(np.log10(mod_sfs))) deriv_norm = np.divide(deriv, np.maximum(np.nanmax(deriv), np.abs(np.nanmin(deriv)))); # make the maximum response 1 (or -1) # - then, what indices to evaluate for comparing with sfErr? errSfs = all_sfs[val_sfs][sfInds]; mod_inds = [np.argmin(np.square(mod_sfs-x)) for x in errSfs]; deriv_norm_eval = deriv_norm[mod_inds]; # -- plot on [1, 1] (i.e. where the data is) ax[1,1].plot(mod_sfs, mod_resp, 'k--', label='fit (g)') ax[1,1].legend(); # Duplicate "twin" the axis to create a second y-axis ax2 = ax[1,1].twinx(); ax2.set_xscale('log'); # have to re-inforce log-scale? ax2.set_ylim([-1, 1]); # since the g' is normalized # make a plot with different y-axis using second axis object ax2.plot(mod_sfs[1:], deriv_norm, '--', color="red", label='g\''); ax2.set_ylabel("deriv. (normalized)",color="red") ax2.legend(); sns.despine(ax=ax2, offset=10, right=False); # -- and let's plot rescaled and shifted version in [2,1] offset, scale = np.nanmax(sfRats), np.nanmax(sfRats) - np.nanmin(sfRats); derivShift = offset - scale * (deriv_norm/np.nanmax(deriv_norm)); ax[2,1].plot(mod_sfs[1:], derivShift, 'r--', label='deriv(ref. tuning)', clip_on=False) ax[2,1].legend(fontsize='x-small'); # - then, normalize the sfErrs/sfErrsInd and compute the correlation coefficient if fitz is not None: norm_sfErr = np.divide(sfErrs, np.nanmax(np.abs(sfErrs))); norm_sfErrInd = np.divide(sfErrsInd, np.nanmax(np.abs(sfErrsInd))); # remember, sfErrsInd is normalized per condition; this is overall non_nan = np.logical_and(~np.isnan(norm_sfErr), ~np.isnan(deriv_norm_eval)) corr_nsf, corr_nsfN = np.corrcoef(deriv_norm_eval[non_nan], norm_sfErr[non_nan])[0,1], np.corrcoef(deriv_norm_eval[non_nan], norm_sfErrInd[non_nan])[0,1] curr_suppr['corr_derivWithErr'] = corr_nsf; curr_suppr['corr_derivWithErrsInd'] = corr_nsfN; ax[3,1].text(0.1, 0.25*np.nanmax(sfErrs), 'corr w/g\' = %.2f' % corr_nsf) ax[4,1].text(0.1, 0.25, 'corr w/g\' = %.2f' % corr_nsfN) else: curr_suppr['corr_derivWithErr'] = np.nan; curr_suppr['corr_derivWithErrsInd'] = np.nan; # make a polynomial fit try: hmm = np.polyfit(allSum, allMix, deg=1) # returns [a, b] in ax + b except: hmm = [np.nan]; curr_suppr['supr_index'] = hmm[0]; for j in range(1): for jj in range(nCols): ax[j, jj].axis('square') ax[j, jj].set_xlabel('prediction: sum(components) (imp/s)'); ax[j, jj].set_ylabel('mixture response (imp/s)'); ax[j, jj].plot([0, 1*maxResp], [0, 1*maxResp], 'k--') ax[j, jj].set_xlim((-5, maxResp)); ax[j, jj].set_ylim((-5, 1.1*maxResp)); ax[j, jj].set_title('Suppression index: %.2f|%.2f' % (hmm[0], rel_c50)) ax[j, jj].legend(fontsize='x-small'); fSuper.suptitle('Superposition: %s #%d [%s; f1f0 %.2f; szSupr[dt/md] %.2f/%.2f; oriBW|CV %.2f|%.2f; tfBW %.2f]' % (cellType, which_cell, cellName, f1f0_rat, suprDat, suprMod, oriBW, oriCV, tfBW)) if fitList is None: save_name = 'cell_%03d.pdf' % which_cell else: save_name = 'cell_%03d_mod%s.pdf' % (which_cell, hf.fitType_suffix(fitType)) pdfSv = pltSave.PdfPages(str(save_locSuper + save_name)); pdfSv.savefig(fSuper) pdfSv.close(); ######### ### Finally, add this "superposition" to the newest ######### if to_save: if fitList is None: from datetime import datetime suffix = datetime.today().strftime('%y%m%d') super_name = 'superposition_analysis_%s.npy' % suffix; else: super_name = 'superposition_analysis_mod%s.npy' % hf.fitType_suffix(fitType); pause_tm = 5*np.random.rand(); print('sleeping for %d secs (#%d)' % (pause_tm, which_cell)); time.sleep(pause_tm); if os.path.exists(dataPath + super_name): suppr_all = hf.np_smart_load(dataPath + super_name); else: suppr_all = dict(); suppr_all[which_cell-1] = curr_suppr; np.save(dataPath + super_name, suppr_all); return curr_suppr;
expInd=expInd) spikes = np.array([np.sum(x) for x in spikes_byComp]) rates = True # when we get the spikes from rvcFits, they've already been converted into rates (in hf.get_all_fft) baseline_sfMix = None # f1 has no "DC", yadig? else: # otherwise, if it's complex, just get F0 spikes = hf.get_spikes(expData, get_f0=1, rvcFits=None, expInd=expInd) rates = False # get_spikes without rvcFits is directly from spikeCount, which is counts, not rates! baseline_sfMix = hf.blankResp(expData, expInd)[0] # we'll plot the spontaneous rate # why mult by stimDur? well, spikes are not rates but baseline is, so we convert baseline to count (i.e. not rate, too) spikes = spikes - baseline_sfMix * hf.get_exp_params(expInd).stimDur _, _, respOrg, respAll = hf.organize_resp(spikes, expData, expInd) resps, stimVals, val_con_by_disp, _, _ = hf.tabulate_responses( expData, expInd, overwriteSpikes=spikes, respsAsRates=rates) predResps = resps[2] respMean = resps[0] # equivalent to resps[0]; respStd = np.nanstd(respAll, -1) # take std of all responses for a given condition # compute SEM, too findNaN = np.isnan(respAll) nonNaN = np.sum(findNaN == False, axis=-1) respSem = np.nanstd(respAll, -1) / np.sqrt(nonNaN) # organize stimulus values all_disps = stimVals[0]