def script():
	client1 = request.form['client1'];
	client2 = request.form['client2'];
	legal1 = request.form['legal1'];
	legal2 = request.form['legal2'];
	from_d = request.form['from'];
	start = from_d


	df1 = model_call(str(client1),str(legal1))
	model = pickle.load(open('model.pkl', 'rb'))
	lastdate_1=give_last_date(client1, legal1)
	pred1=model.forecast(6)
	pred1_mean=round(pred1.mean(), 3)
	show_predict1=np.array(df1[str(datetime.datetime.strptime(str(lastdate_1),'%Y%m%d').date())])
	show_predict1=np.append(show_predict1, pred1)


	df2 = model_call(str(client2),str(legal2))
	model = pickle.load(open('model.pkl', 'rb'))
	lastdate_2=give_last_date(client2, legal2)
	pred2=model.forecast(6)
	pred2_mean=round(pred2.mean(), 3)
	print(lastdate_2)
	print('.............................................................')
	show_predict2=np.array(df2[str(datetime.datetime.strptime(str(lastdate_2),'%Y%m%d').date())])
	show_predict2=np.append(show_predict2, pred2)
	
	print(type(show_predict2))
	#fig = make_subplots(rows=1, cols=2)
	table_col=['Clients', 'Legal Entity', 'Mean of Predicted Paid Amount (USD)']
	table_title=""
	if pred1_mean > pred2_mean :
		table_row=[[client1, client2], [legal1, legal2], [pred1_mean, pred2_mean]]
		table_title="Client 1 and Legal Entity 1 are expected to do better business based on predicted mean amount"
	else :
		table_title="Client 2 and Legal Entity 2 are expected to do better business based on predicted mean amount "
		table_row=[[client2, client1], [legal2, legal1], [pred2_mean, pred1_mean]]

	fig = make_subplots(rows=2, cols=1,  vertical_spacing=0.03,specs=[ [{"type": "table"}],[{"type": "scatter"}] ] )
	fig.add_trace(go.Table(header=dict(values=table_col,font=dict(size=10),align="left"), cells=dict(values=table_row,  height=40,align="left")), row=1, col=1)
	fig.add_trace(go.Scatter(x =df1[start:].index,y=df1[start:],mode='lines',name='Recorded trend 1'), row=2, col=1)
	fig.add_trace(go.Scatter(x=give_dates(lastdate_1),y=show_predict1,mode='lines',name='Predicted trend 1',line=dict(width=4, dash='dot')), row=2, col=1)
	fig.add_trace(go.Scatter(x = df2[start:].index, y=df2[start:], mode='lines', name='Recorded Trend 2'),  row=2, col=1)
	fig.add_trace(go.Scatter(x=give_dates(lastdate_2), y=show_predict2, mode='lines', name='Predicted trend 2', line=dict(width=4, dash='dot')), row=2, col=1)
	fig.update_yaxes(title_text="Paid Amount", row=2, col=1)
	fig.update_xaxes(title_text='Dates', row=2, col=1)
	fig.update_layout(title_text=table_title)

	pio.write_html(fig, file='templates/output.html', auto_open=False)
	return render_template('output.html')
def plot_com(client1, client2, legal1, legal2, from_d):
    start = from_d

    df1 = model_call(str(client1), str(legal1))
    model = pickle.load(open('model.pkl', 'rb'))
    lastdate_1 = give_last_date(client1, legal1)
    pred1 = model.forecast(6)
    show_predict1 = np.array(df1[str(
        datetime.datetime.strptime(str(lastdate_1), '%Y%m%d').date())])
    show_predict1 = np.append(show_predict1, pred1)

    df2 = model_call(str(client2), str(legal2))
    model = pickle.load(open('model.pkl', 'rb'))
    lastdate_2 = give_last_date(client2, legal2)
    pred2 = model.forecast(6)
    print(lastdate_2)
    print('.............................................................')
    show_predict2 = np.array(df2[str(
        datetime.datetime.strptime(str(lastdate_2), '%Y%m%d').date())])
    show_predict2 = np.append(show_predict2, pred2)

    print(type(show_predict2))
    #fig = make_subplots(rows=1, cols=2)
    fig = go.Figure()
    fig.add_trace(
        go.Scatter(x=df1[start:].index,
                   y=df1[start:],
                   mode='lines',
                   name='Recorded trend 1'))
    fig.add_trace(
        go.Scatter(x=give_dates(lastdate_1),
                   y=show_predict1,
                   mode='lines',
                   name='Predicted trend 1',
                   line=dict(width=4, dash='dot')))
    fig.add_trace(
        go.Scatter(x=df2[start:].index,
                   y=df2[start:],
                   mode='lines',
                   name='Recorded Trend 2'))
    fig.add_trace(
        go.Scatter(x=give_dates(lastdate_2),
                   y=show_predict2,
                   mode='lines',
                   name='Predicted trend 2',
                   line=dict(width=4, dash='dot')))
    fig.update_yaxes(title_text="Paid Amount")
    fig.update_xaxes(title_text='Dates')

    pio.write_html(fig, file='templates/output.html', auto_open=False)
Example #3
0
def plot_pred(cname, lename, from_d):
    df = model_call(str(cname), str(lename))
    model = pickle.load(open('model.pkl', 'rb'))
    lastdate_ = give_last_date(cname, lename)
    pred = model.forecast(6)
    pred_mean = round(pred.mean(), 3)
    start = from_d
    show_predict = np.array(df[str(
        datetime.datetime.strptime(str(lastdate_), '%Y%m%d').date())])
    show_predict = np.append(show_predict, pred)

    fig = go.Figure()
    fig.add_trace(
        go.Scatter(x=df[start:].index,
                   y=df[start:],
                   mode='lines',
                   name='Recorded'))
    fig.add_trace(
        go.Scatter(x=give_dates(lastdate_),
                   y=show_predict,
                   mode='lines',
                   name='Predicted',
                   line=dict(width=4, dash='dot')))

    final_verdict = ''
    if pred_mean > 0:
        final_verdict = "Mean paid amount of next 6 months is {m}.<br>So, considering this it is beneficial to work with this client.".format(
            m=pred_mean)
    else:
        final_verdict = "Mean paid amount of next 6 months is {m}.<br>So, considering this it is not beneficial to work with this client.".format(
            m=pred_mean)
    fig.update_layout(title_text=final_verdict)
    fig.update_yaxes(title_text="Paid Amount")
    fig.update_xaxes(title_text='Dates')
    pio.write_html(fig, file='templates/predict.html', auto_open=False)
def plot_pred(cname, lename, from_d):
    df = model_call(str(cname), str(lename))
    model = pickle.load(open('model.pkl', 'rb'))
    lastdate_ = give_last_date(cname, lename)
    pred = model.forecast(6)
    start = from_d
    show_predict = np.array(df[str(
        datetime.datetime.strptime(str(lastdate_), '%Y%m%d').date())])
    show_predict = np.append(show_predict, pred)

    fig = go.Figure()
    fig.add_trace(
        go.Scatter(x=df[start:].index,
                   y=df[start:],
                   mode='lines',
                   name='Recorded'))
    fig.add_trace(
        go.Scatter(x=give_dates(lastdate_),
                   y=show_predict,
                   mode='lines',
                   name='Predicted',
                   line=dict(width=4, dash='dot')))
    slope = pred[-1] - df.iloc[-1]
    final_verdict = ''
    if slope > 0:
        final_verdict = "Beneficial to work with this client"
    else:
        final_verdict = "Not beneficial to work with this client"
    fig.update_layout(title_text=final_verdict)
    fig.update_yaxes(title_text="Paid Amount")
    fig.update_xaxes(title_text='Dates')
    pio.write_html(fig, file='templates/predict.html', auto_open=False)