def _convert_to_export(self):
        destination = cache_path('{}{}.hdf'.format(
            self.mp.preprocessing_name(), csv_extension()))
        if os.path.exists(destination):
            return pandas.read_hdf(destination, 'export')

        training_data = self._training_data().copy()
        training_data['use_for_classifier_training'] = True
        training_data['use_for_score_calculation'] = False
        training_data['predict_sentiment'] = False
        training_data['predicted_sentiment'] = None

        unlabeled_training_data = self._unlabeled_training_data().copy()
        unlabeled_training_data['use_for_classifier_training'] = False
        unlabeled_training_data['use_for_score_calculation'] = False
        unlabeled_training_data['sentiment'] = None
        unlabeled_training_data['predict_sentiment'] = False
        unlabeled_training_data['predicted_sentiment'] = None

        if not use_different_source():
            self._preprocess_test_data()
        testing_data = self._testing_data()
        testing_data['use_for_classifier_training'] = False
        testing_data['use_for_score_calculation'] = True
        testing_data['predict_sentiment'] = True
        testing_data['predicted_sentiment'] = None

        reviews = self._post_process(
            [training_data, unlabeled_training_data, testing_data])
        reviews.to_hdf(destination, 'export', mode='w')
        return reviews
    def _convert_to_export(self):
        destination = cache_path('{}{}.hdf'.format(self.mp.preprocessing_name(), csv_extension()))
        if os.path.exists(destination):
            return pandas.read_hdf(destination, 'export')

        training_data = self._training_data().copy()
        training_data['use_for_classifier_training'] = True
        training_data['use_for_score_calculation'] = False
        training_data['predict_sentiment'] = False
        training_data['predicted_sentiment'] = None

        unlabeled_training_data = self._unlabeled_training_data().copy()
        unlabeled_training_data['use_for_classifier_training'] = False
        unlabeled_training_data['use_for_score_calculation'] = False
        unlabeled_training_data['sentiment'] = None
        unlabeled_training_data['predict_sentiment'] = False
        unlabeled_training_data['predicted_sentiment'] = None

        if not use_different_source():
            self._preprocess_test_data()
        testing_data = self._testing_data()
        testing_data['use_for_classifier_training'] = False
        testing_data['use_for_score_calculation'] = True
        testing_data['predict_sentiment'] = True
        testing_data['predicted_sentiment'] = None

        reviews = self._post_process([training_data, unlabeled_training_data, testing_data])
        reviews.to_hdf(destination, 'export', mode='w')
        return reviews
 def save_reviews_with_topics(self, reviews):
     destination = cache_path('{}{}.hdf'.format(
         self.mp.preprocessing_name(), csv_extension()))
     reviews.to_hdf(destination, 'export', mode='w')
 def save_reviews_with_topics(self, reviews):
     destination = cache_path('{}{}.hdf'.format(self.mp.preprocessing_name(), csv_extension()))
     reviews.to_hdf(destination, 'export', mode='w')