Example #1
0
    def _bilinear_no_DIM(self, u: ProxyFunction, p: ProxyFunction,
                         v: ProxyFunction, q: ProxyFunction, dt: Parameter,
                         explicit_bilinear: bool) -> ngs.BilinearForm:
        """ Bilinear form when the diffuse interface method is not being used. Handles both CG and DG. """

        a = dt * (
            self.kv *
            ngs.InnerProduct(ngs.Grad(u), ngs.Grad(v))  # Stress, Newtonian
            - ngs.div(u) * q  # Conservation of mass
            - ngs.div(v) * p  # Pressure
            - 1e-10 * p * q  # Stabilization term
        ) * ngs.dx

        # Define the special DG functions.
        n, _, alpha = get_special_functions(self.mesh, self.nu)

        # Bulk of Bilinear form
        if self.DG:
            jump_u = jump(u)
            avg_grad_u = grad_avg(u)

            jump_v = jump(v)
            avg_grad_v = grad_avg(v)

            if not explicit_bilinear:
                # Penalty for discontinuities
                a += -dt * self.kv * (
                    ngs.InnerProduct(avg_grad_u, ngs.OuterProduct(jump_v,
                                                                  n))  # Stress
                    + ngs.InnerProduct(avg_grad_v, ngs.OuterProduct(jump_u,
                                                                    n))  # U
                    - alpha * ngs.InnerProduct(
                        jump_u, jump_v)  # Term for u+=u- on 𝚪_I from ∇u^
                ) * ngs.dx(skeleton=True)

            # Penalty for dirichlet BCs
            if self.dirichlet_names.get('u', None) is not None:
                a += -dt * self.kv * (
                    ngs.InnerProduct(ngs.Grad(u), ngs.OuterProduct(
                        v, n))  # ∇u^ = ∇u
                    + ngs.InnerProduct(ngs.Grad(v), ngs.OuterProduct(
                        u, n))  # 1/2 of penalty for u=g on 𝚪_D
                    - alpha * u *
                    v  # 1/2 of penalty term for u=g on 𝚪_D from ∇u^
                ) * self._ds(self.dirichlet_names['u'])

        return a
Example #2
0
    def _bilinear_no_DIM(self, u: ProxyFunction, v: ProxyFunction,
                         dt: Parameter,
                         explicit_bilinear: bool) -> ngs.BilinearForm:
        """ Bilinear form when the diffuse interface method is not being used. Handles both CG and DG. """

        # Laplacian term
        a = dt * self.dc * ngs.InnerProduct(ngs.Grad(u), ngs.Grad(v)) * ngs.dx

        # Bulk of Bilinear form
        if self.DG:
            # Define the special DG functions.
            n, _, alpha = get_special_functions(self.mesh, self.nu)

            jump_u = jump(u)
            avg_grad_u = grad_avg(u)

            jump_v = jump(v)
            avg_grad_v = grad_avg(v)

            if not explicit_bilinear:
                # Penalty for discontinuities
                a += dt * self.dc * (
                    -jump_u * n * avg_grad_v  # U
                    - avg_grad_u * n *
                    jump_v  # 1/2 term for u+=u- on 𝚪_I from ∇u^
                    + alpha * jump_u *
                    jump_v  # 1/2 term for u+=u- on 𝚪_I from ∇u^
                ) * ngs.dx(skeleton=True)

            if self.dirichlet_names.get('u', None) is not None:
                # Penalty terms for Dirichlet BCs
                a += dt * self.dc * (
                    -u * n * ngs.Grad(v)  # 1/2 of penalty for u=g on 𝚪_D
                    - ngs.Grad(u) * n * v  # ∇u^ = ∇u
                    + alpha * u *
                    v  # 1/2 of penalty term for u=g on 𝚪_D from ∇u^
                ) * self._ds(self.dirichlet_names['u'])

        # Robin BCs for u
        for marker in self.BC.get('robin', {}).get('u', {}):
            r, q = self.BC['robin']['u'][marker]
            a += -dt * self.dc * r * u * v * self._ds(marker)

        return a
Example #3
0
    def _bilinear_IMEX_no_DIM(self, u: ProxyFunction, p: ProxyFunction,
                              v: ProxyFunction, q: ProxyFunction,
                              dt: Parameter,
                              explicit_bilinear) -> ngs.BilinearForm:
        """
        Bilinear form when IMEX linearization is being used and the diffuse interface method is not being used.
        Handles both CG and DG.
        """

        # Define the special DG functions.
        n, _, alpha = get_special_functions(self.mesh, self.nu)

        p_I = construct_p_mat(p, self.mesh.dim)

        a = dt * (
            self.kv *
            ngs.InnerProduct(ngs.Grad(u), ngs.Grad(v))  # Stress, Newtonian
            - ngs.div(u) * q  # Conservation of mass
            - ngs.div(v) * p  # Pressure
            - 1e-10 * p * q  # Stabilization term
        ) * ngs.dx

        if self.DG:
            jump_u = jump(u)
            avg_grad_u = grad_avg(u)

            jump_v = jump(v)
            avg_grad_v = grad_avg(v)

            if not explicit_bilinear:
                # Penalty for discontinuities
                a += dt * (
                    -self.kv * ngs.InnerProduct(
                        avg_grad_u, ngs.OuterProduct(jump_v, n))  # Stress
                    - self.kv * ngs.InnerProduct(
                        avg_grad_v, ngs.OuterProduct(jump_u, n))  # U
                    + self.kv * alpha * ngs.InnerProduct(
                        jump_u, jump_v)  # Penalty term for u+=u- on 𝚪_I
                    # from ∇u^
                ) * ngs.dx(skeleton=True)

            # Penalty for dirichlet BCs
            if self.dirichlet_names.get('u', None) is not None:
                a += dt * (
                    -self.kv * ngs.InnerProduct(
                        ngs.Grad(u), ngs.OuterProduct(v, n))  # ∇u^ = ∇u
                    - self.kv *
                    ngs.InnerProduct(ngs.Grad(v), ngs.OuterProduct(
                        u, n))  # 1/2 of penalty for u=g on
                    + self.kv * alpha * u * v  # 1/2 of penalty term for u=g
                    # on 𝚪_D from ∇u^
                ) * self._ds(self.dirichlet_names['u'])

        # Parallel Flow BC
        for marker in self.BC.get('parallel', {}).get('parallel', {}):
            if self.DG:
                a += dt * v * (u -
                               n * ngs.InnerProduct(u, n)) * self._ds(marker)
            else:
                a += dt * v.Trace() * (
                    u.Trace() -
                    n * ngs.InnerProduct(u.Trace(), n)) * self._ds(marker)

        return a
Example #4
0
    def _bilinear_IMEX_DIM(self, u: ProxyFunction, p: ProxyFunction,
                           v: ProxyFunction, q: ProxyFunction, dt: Parameter,
                           explicit_bilinear) -> ngs.BilinearForm:
        """
        Bilinear form when the diffuse interface method is being used with IMEX linearization. Handles both CG and DG.
        """

        # Define the special DG functions.
        n, _, alpha = get_special_functions(self.mesh, self.nu)

        p_I = construct_p_mat(p, self.mesh.dim)

        a = dt * (
            self.kv *
            ngs.InnerProduct(ngs.Grad(u), ngs.Grad(v))  # Stress, Newtonian
            - ngs.div(u) * q  # Conservation of mass
            - ngs.div(v) * p  # Pressure
            - 1e-10 * p * q  # Stabilization term
        ) * self.DIM_solver.phi_gfu * ngs.dx

        # Force u and grad(p) to zero where phi is zero.
        a += dt * (
            alpha * u *
            v  # Removing the alpha penalty following discussion with James.
            - p * (ngs.div(v))) * (1.0 - self.DIM_solver.phi_gfu) * ngs.dx

        if self.DG:
            jump_u = jump(u)
            avg_grad_u = grad_avg(u)

            jump_v = jump(v)
            avg_grad_v = grad_avg(v)

            if not explicit_bilinear:
                # Penalty for discontinuities
                a += dt * (
                    -self.kv * ngs.InnerProduct(
                        avg_grad_u, ngs.OuterProduct(jump_v, n))  # Stress
                    - self.kv * ngs.InnerProduct(
                        avg_grad_v, ngs.OuterProduct(jump_u, n))  # U
                    + self.kv * alpha * ngs.InnerProduct(
                        jump_u, jump_v)  # Penalty term for u+=u- on 𝚪_I
                    # from ∇u^
                ) * self.DIM_solver.phi_gfu * ngs.dx(skeleton=True)

            if self.dirichlet_names.get('u', None) is not None:
                # Penalty terms for conformal Dirichlet BCs
                a += dt * (
                    -self.kv * ngs.InnerProduct(
                        ngs.Grad(u), ngs.OuterProduct(v, n))  # ∇u^ = ∇u
                    - self.kv *
                    ngs.InnerProduct(ngs.Grad(v), ngs.OuterProduct(
                        u, n))  # 1/2 of penalty for u=g on
                    + self.kv * alpha * u *
                    v  # 1/2 of penalty term for u=g on 𝚪_D from ∇u^
                ) * self._ds(self.dirichlet_names['u'])

        # Penalty term for DIM Dirichlet BCs. This is the Nitsche method.
        for marker in self.DIM_BC.get('dirichlet', {}).get('u', {}):
            a += dt * (self.kv * ngs.InnerProduct(
                ngs.Grad(u), ngs.OuterProduct(v, self.DIM_solver.grad_phi_gfu))
                       + self.kv * ngs.InnerProduct(
                           ngs.Grad(v),
                           ngs.OuterProduct(u, self.DIM_solver.grad_phi_gfu)) +
                       self.kv * alpha * u * v *
                       self.DIM_solver.mag_grad_phi_gfu
                       ) * self.DIM_solver.mask_gfu_dict[marker] * ngs.dx

        # Conformal parallel flow BC
        for marker in self.BC.get('parallel', {}).get('parallel', {}):
            if self.DG:
                a += dt * v * (u -
                               n * ngs.InnerProduct(u, n)) * self._ds(marker)
            else:
                a += dt * v.Trace() * (
                    u.Trace() -
                    n * ngs.InnerProduct(u.Trace(), n)) * self._ds(marker)

        # TODO: Add non-Dirichlet DIM BCs.

        return a
Example #5
0
    def _bilinear_DIM(self, u: ProxyFunction, v: ProxyFunction, dt: Parameter,
                      explicit_bilinear: bool) -> ngs.BilinearForm:
        """ Bilinear form when the diffuse interface method is being used. Handles both CG and DG. """

        # Define the special DG functions.
        n, _, alpha = get_special_functions(self.mesh, self.nu)

        # Laplacian term
        a = dt * self.dc * ngs.InnerProduct(
            ngs.Grad(u), ngs.Grad(v)) * self.DIM_solver.phi_gfu * ngs.dx

        # Force u to zero where phi is zero.
        # Applying a penalty can help convergence, but the penalty seems to interfere with Neumann BCs.
        if self.DIM_BC.get('neumann', {}).get('u', {}):
            a += dt * u * v * (1.0 - self.DIM_solver.phi_gfu) * ngs.dx
        else:
            a += dt * alpha * u * v * (1.0 - self.DIM_solver.phi_gfu) * ngs.dx

        # Bulk of Bilinear form
        if self.DG:
            jump_u = jump(u)
            avg_grad_u = grad_avg(u)

            jump_v = jump(v)
            avg_grad_v = grad_avg(v)

            if not explicit_bilinear:
                # Penalty for discontinuities
                a += dt * self.dc * (
                    -jump_u * n * avg_grad_v  # U
                    - avg_grad_u * jump_v *
                    n  # 1/2 term for u+=u- on 𝚪_I from ∇u^
                    + alpha * jump_u *
                    jump_v  # 1/2 term for u+=u- on 𝚪_I from ∇u^
                ) * self.DIM_solver.phi_gfu * ngs.dx(skeleton=True)

            if self.dirichlet_names.get('u', None) is not None:
                # Penalty terms for conformal Dirichlet BCs
                a += dt * self.dc * (
                    -u * n * ngs.Grad(v)  # 1/2 of penalty for u=g on 𝚪_D
                    - ngs.Grad(u) * n * v  # ∇u^ = ∇u
                    + alpha * u *
                    v  # 1/2 of penalty term for u=g on 𝚪_D from ∇u^
                ) * self._ds(self.dirichlet_names['u'])

        # Penalty term for DIM Dirichlet BCs. This is the Nitsche method.
        for marker in self.DIM_BC.get('dirichlet', {}).get('u', {}):
            a += dt * self.dc * (
                ngs.Grad(u) * self.DIM_solver.grad_phi_gfu * v +
                ngs.Grad(v) * self.DIM_solver.grad_phi_gfu * u +
                alpha * u * v * self.DIM_solver.mag_grad_phi_gfu
            ) * self.DIM_solver.mask_gfu_dict[marker] * ngs.dx

        # DIM Robin BCs for u.
        for marker in self.DIM_BC.get('robin', {}).get('u', {}):
            r, q = self.DIM_BC['robin']['u'][marker]
            a += dt * self.dc * (
                r * u * v * self.DIM_solver.mag_grad_phi_gfu
            ) * self.DIM_solver.mask_gfu_dict[marker] * ngs.dx

        # Conformal Robin BCs for u
        for marker in self.BC.get('robin', {}).get('u', {}):
            r, q = self.BC['robin']['u'][marker]
            a += -dt * self.dc * r * u * v * self._ds(marker)

        return a
Example #6
0
    def _bilinear_DIM(self, u: ProxyFunction, p: ProxyFunction,
                      v: ProxyFunction, q: ProxyFunction, dt: Parameter,
                      explicit_bilinear: bool) -> ngs.BilinearForm:
        """ Bilinear form when the diffuse interface method is being used. Handles both CG and DG. """

        # Define the special DG functions.
        n, _, alpha = get_special_functions(self.mesh, self.nu)

        a = dt * (
            self.kv *
            ngs.InnerProduct(ngs.Grad(u), ngs.Grad(v))  # Stress, Newtonian
            - ngs.div(u) * q  # Conservation of mass
            - ngs.div(v) * p  # Pressure
            #- 1e-10 * p * q   # Stabilization term.
        ) * self.DIM_solver.phi_gfu * ngs.dx

        # Force u and grad(p) to zero where phi is zero.
        a += dt * (alpha * u * v -
                   p * ngs.div(v)) * (1.0 - self.DIM_solver.phi_gfu) * ngs.dx

        # Bulk of Bilinear form
        if self.DG:
            jump_u = jump(u)
            avg_grad_u = grad_avg(u)

            jump_v = jump(v)
            avg_grad_v = grad_avg(v)

            if not explicit_bilinear:
                # Penalty for discontinuities
                a += -dt * self.kv * (
                    ngs.InnerProduct(avg_grad_u, ngs.OuterProduct(jump_v,
                                                                  n))  # Stress
                    + ngs.InnerProduct(avg_grad_v, ngs.OuterProduct(jump_u,
                                                                    n))  # U
                    - alpha * ngs.InnerProduct(
                        jump_u, jump_v)  # Term for u+=u- on 𝚪_I from ∇u^
                ) * self.DIM_solver.phi_gfu * ngs.dx(skeleton=True)

            if self.dirichlet_names.get('u', None) is not None:
                # Penalty terms for conformal Dirichlet BCs
                a += -dt * self.kv * (
                    ngs.InnerProduct(ngs.Grad(u), ngs.OuterProduct(
                        v, n))  # ∇u^ = ∇u
                    + ngs.InnerProduct(ngs.Grad(v), ngs.OuterProduct(
                        u, n))  # 1/2 of penalty for u=g on 𝚪_D
                    - alpha * u *
                    v  # 1/2 of penalty term for u=g on 𝚪_D from ∇u^
                ) * self._ds(self.dirichlet_names['u'])

        # Penalty term for DIM Dirichlet BCs. This is the Nitsche method.
        for marker in self.DIM_BC.get('dirichlet', {}).get('u', {}):
            a += dt * self.kv * (
                ngs.InnerProduct(
                    ngs.Grad(u),
                    ngs.OuterProduct(v, self.DIM_solver.grad_phi_gfu)) +
                ngs.InnerProduct(
                    ngs.Grad(v),
                    ngs.OuterProduct(u, self.DIM_solver.grad_phi_gfu)) +
                alpha * u * v * self.DIM_solver.mag_grad_phi_gfu
            ) * self.DIM_solver.mask_gfu_dict[marker] * ngs.dx

        # TODO: Add non-Dirichlet DIM BCs.

        return a