Example #1
0
def simulate(plot=True):
    plotting = Plotting()
    preprocess = PreprocessData()
    preprocess.enable_normalisation_scaler = True
    preprocess.feature_range = [0, 1]

    window_size = 20

    # 1. get data and apply normalisation
    sets_training, sets_test, sets_training_scaled, sets_test_scaled, training_dataset_names, test_dataset_names, maturities = preprocess.get_data(
        chunks_of=window_size)

    print("sets_training_scaled.shape", sets_training_scaled[0].shape)

    # plotting.plot_2d(sets_training_scaled[0][:, 0], "sets_training_scaled[0][:, 0]", save=False)
    # plotting.plot_2d(sets_test_scaled[0][:, 0], "test_feature_normalised_short_end", save=True)

    ae_params = {
        'input_dim': (
            window_size,
            sets_training_scaled[0].shape[1],
        ),  # 10 x 56
        'latent_dim': (
            2,
            56,
        ),
        'hidden_layers': (
            12 * 56,
            4 * 56,
        ),
        'leaky_relu': 0.1,
        'loss': 'mse',
        'last_activation': 'linear',
        'batch_size': 20,
        'epochs': 100,
        'steps_per_epoch': 500,
    }
    ae_params_hash = hashlib.md5(
        json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()

    autoencoder = AutoencoderWindows(ae_params)

    print("sets_training_scaled", sets_training_scaled[0].shape)

    autoencoder.train(sets_training_scaled, sets_test_scaled)
    autoencoder.save_model("ae_" + ae_params_hash)
    # autoencoder.load_model("ae_" + ae_params_hash)

    # 2: encode data using autoencoder
    sets_encoded_training = []
    for set_training_scaled in sets_training_scaled:
        sets_encoded_training.append(autoencoder.encode(set_training_scaled))

    sets_encoded_test = []
    for set_test_scaled in sets_test_scaled:
        sets_encoded_test.append(autoencoder.encode(set_test_scaled))

    print("sets_encoded_training", len(sets_encoded_training),
          sets_encoded_training[0].shape)
    print("sets_encoded_test", sets_encoded_test[0].shape)

    # 6: decode using autoencoder
    decoded_test = autoencoder.decode(sets_encoded_test[0])

    print("decoded_test", decoded_test.shape)

    # 7: undo minimax, for now only the first simulation
    # decoded_generated_segments_first_sim = decoded_generated_segments[0]
    preprocess.enable_curve_smoothing = True
    simulated_smooth = preprocess.rescale_data(
        decoded_test, dataset_name=test_dataset_names[0])

    # reconstruction error
    # reconstruction_error(sets_test_scaled[0], decoded_test)
    # error = reconstruction_error(np.array(sets_test[0]), simulated_smooth)
    # print("error:", error)

    smape_result_smooth = smape(simulated_smooth,
                                np.array(sets_test[0]),
                                over_curves=True)

    print(np.mean(smape_result_smooth), np.var(smape_result_smooth))

    if plot:
        # plotting.plot_2d(sets_encoded_test[0], "test_feature_normalised_encoded_autoencoder_on_", save=True)

        # plotting.plot_some_curves("normalised_compare_ae_before_rescale", sets_test_scaled[0], decoded_test,
        #                           [25, 50, 75, 815], maturities)

        plotting.plot_some_curves("normalised_compare_ae", sets_test[0],
                                  simulated_smooth, [25, 50, 75, 815],
                                  maturities)
def simulate(latent_dim=2,
             plot=False,
             preprocess_type=None,
             model_type=None,
             force_training=True):
    plotting = Plotting()
    preprocess = PreprocessData(preprocess_type)

    window_size = None
    if model_type is AEModel.AE_WINDOWS:
        window_size = 10

    # 1. get data and apply normalisation
    sets_training, sets_test, sets_training_scaled, sets_test_scaled, training_dataset_names, test_dataset_names, maturities = preprocess.get_data(
        chunks_of=window_size)
    all_training_scaled = np.vstack(sets_training_scaled)

    if model_type is AEModel.AAE:
        ae_params = {
            'preprocess_type': preprocess_type.
            value,  # only to make preprocess_type part of the hash
            'input_dim': sets_training_scaled[0].shape[1],  # 56
            'latent_dim': latent_dim,
            'hidden_layers': (
                56,
                40,
                28,
                12,
                4,
            ),
            'hidden_layers_discriminator': (
                2,
                2,
            ),
            'leaky_relu': 0.1,
            'last_activation': 'linear',
            'last_activation_discriminator': 'sigmoid',
            'loss_generator': 'mean_squared_error',
            'loss_discriminator': 'binary_crossentropy',
            'batch_size': 20,
            'epochs': 20000
        }
        ae_params_hash = hashlib.md5(
            json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()

        # 2. train/load variational autoencoder
        autoencoder = AdversarialAutoencoder(ae_params, plot=False)
    elif model_type is AEModel.VAE:
        ae_params = {
            'preprocess_type': preprocess_type.
            value,  # only to make preprocess_type part of the hash
            'input_dim': sets_training_scaled[0].shape[1],  # 56
            'latent_dim': latent_dim,
            'hidden_layers': (
                56,
                40,
                28,
                12,
                4,
            ),
            'leaky_relu': 0.1,
            'last_activation': 'linear',  # sigmoid or linear
            'loss':
            'mean_squared_error',  # binary_crossentropy or mean_square_error
            'epsilon_std': 1.0,
            'batch_size': 20,
            'epochs': 100,
            'steps_per_epoch': 500
        }
        ae_params_hash = hashlib.md5(
            json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()

        # 2. train/load variational autoencoder
        autoencoder = VariationalAutoencoder(ae_params, plot=False)
    elif model_type is AEModel.AE:
        ae_params = {
            'preprocess_type': preprocess_type.
            value,  # only to make preprocess_type part of the hash
            'input_dim': sets_training_scaled[0].shape[1],  # 56
            'latent_dim': latent_dim,
            'hidden_layers': (
                56,
                40,
                28,
                12,
                4,
            ),
            'leaky_relu': 0.1,
            'loss': 'mse',
            'last_activation': 'linear',
            'batch_size': 20,
            'epochs': 100,
            'steps_per_epoch': 500
        }
        ae_params_hash = hashlib.md5(
            json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()
        autoencoder = Autoencoder(ae_params, plot=False)
    elif model_type is AEModel.PCA:
        ae_params = {
            'preprocess_type': preprocess_type.
            value,  # only to make preprocess_type part of the hash
            'latent_dim': latent_dim
        }
        ae_params_hash = hashlib.md5(
            json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()
        autoencoder = PCAModel(ae_params, plot=False)
    else:  # model_type is AEModel.AE_WINDOWS:
        ae_params = {
            'input_dim': (
                window_size,
                sets_training_scaled[0].shape[1],
            ),  # 10 x 56
            'latent_dim': (
                2,
                56,
            ),
            'hidden_layers': (
                12 * 56,
                4 * 56,
            ),
            'leaky_relu': 0.1,
            'loss': 'mse',
            'last_activation': 'linear',
            'batch_size': 20,
            'epochs': 10,
            'steps_per_epoch': 500,
        }
        ae_params_hash = hashlib.md5(
            json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()
        autoencoder = AutoencoderWindows(ae_params, plot=False)

    if force_training:
        autoencoder.train(all_training_scaled, sets_test_scaled,
                          "ae_" + ae_params_hash)
    else:
        autoencoder.load_else_train(all_training_scaled, sets_test_scaled,
                                    "ae_" + ae_params_hash)

    # 2: encode data using autoencoder
    sets_encoded_training = autoencoder.encode(sets_training_scaled)
    sets_encoded_test = autoencoder.encode(sets_test_scaled)

    # 6: decode using autoencoder
    decoded_test = autoencoder.decode(sets_encoded_test[0])

    # 7: undo scaling
    # decoded_generated_segments_first_sim = decoded_generated_segments[0]
    simulated = preprocess.rescale_data(decoded_test,
                                        dataset_name=test_dataset_names[0])

    preprocess.enable_curve_smoothing = True
    simulated_smooth = preprocess.rescale_data(
        decoded_test, dataset_name=test_dataset_names[0])

    # reconstruction error
    # error = reconstruction_error(np.array(sets_test[0]), simulated)
    # error_smooth = reconstruction_error(np.array(sets_test[0]), simulated_smooth)

    smape_result = smape(simulated, np.array(sets_test[0]), over_curves=True)
    smape_result_smooth = smape(simulated_smooth,
                                np.array(sets_test[0]),
                                over_curves=True)

    print(np.mean(smape_result_smooth))

    if plot and model_type is not AEModel.AE_WINDOWS:

        plotting.plot_2d(sets_encoded_test[0],
                         preprocess_type.name + "_" + model_type.name +
                         "_latent_space",
                         sets_test_scaled[0].index.values,
                         save=True)

        plotting.plot_some_curves(
            preprocess_type.name + "_" + model_type.name + "_in_vs_out",
            sets_test[0], simulated, [25, 50, 75, 815], maturities)

        # plotting.plot_some_curves("normalised_compare_ae", sets_test[0], sets_test_scaled[0],
        #                           [25, 50, 75, 815, 100, 600, 720, 740], maturities, plot_separate=True)

        preprocess.enable_curve_smoothing = False
        if model_type is AEModel.VAE:
            plotting.plot_grid_2dim(maturities,
                                    autoencoder.generator_model,
                                    preprocess_type.name + "_" +
                                    model_type.name + "_latent_grid",
                                    preprocess,
                                    test_dataset_names[0],
                                    n=6)
        elif model_type is AEModel.AAE:
            plotting.plot_grid_2dim(maturities,
                                    autoencoder.decoder,
                                    preprocess_type.name + "_" +
                                    model_type.name + "_latent_grid",
                                    preprocess,
                                    test_dataset_names[0],
                                    n=6)

    return smape_result_smooth
Example #3
0
def simulate():
    plotting = Plotting()
    preprocess_normalisation = PreprocessData()
    preprocess_normalisation.enable_normalisation_scaler = True
    preprocess_normalisation.feature_range = [0, 1]
    # preprocess_normalisation.enable_scaler = True

    # 1. get data and apply normalisation
    sets_training, sets_test, sets_training_scaled, sets_test_scaled, training_dataset_names, test_dataset_names, maturities = preprocess_normalisation.get_data(
    )

    # plotting.plot_2d(sets_training_scaled[0][:, 0], "sets_training_scaled[0][:, 0]", save=False)
    # plotting.plot_2d(sets_test_scaled[0][:, 0], "test_feature_normalised_short_end", save=True)

    all_stacked = np.vstack((np.vstack(sets_training), np.vstack(sets_test)))
    all_stacked_scaled = np.vstack(
        (np.vstack(sets_training_scaled), np.vstack(sets_test_scaled)))
    all_training_scaled = np.vstack(sets_training_scaled)

    # print("all_stacked_scaled.shape", all_stacked_scaled.shape)
    # plotting.plot_2d(all_stacked[:, 0], "training and test data", save=False)
    # plotting.plot_2d(all_stacked_scaled[:, 0], "training and test data scaled", save=False)

    ae_params = {
        'input_dim': sets_training_scaled[0].shape[1],  # 56
        'latent_dim': 2,
        'hidden_layers': (56, 40, 28, 12, 4, 2),
        'leaky_relu': 0.1,
        'loss': 'mse',
        'last_activation': 'linear',
        'batch_size': 20,
        'epochs': 100,
        'steps_per_epoch': 500
    }
    ae_params_hash = hashlib.md5(
        json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()

    autoencoder = Autoencoder(ae_params)
    # autoencoder.train(all_stacked_scaled, sets_test_scaled)
    # autoencoder.train(sets_test_scaled[0], sets_test_scaled)
    # autoencoder.train(all_training_scaled, sets_test_scaled)
    # autoencoder.save_model("ae_" + ae_params_hash)
    autoencoder.load_model("ae_" + ae_params_hash)

    # 2: encode data using autoencoder
    sets_encoded_training = []
    for set_training_scaled in sets_training_scaled:
        sets_encoded_training.append(autoencoder.encode(set_training_scaled))

    sets_encoded_test = []
    for set_test_scaled in sets_test_scaled:
        sets_encoded_test.append(autoencoder.encode(set_test_scaled))

    plotting.plot_2d(sets_encoded_test[0],
                     "test_feature_normalised_encoded_autoencoder_on_",
                     save=True)

    # 6: decode using autoencoder
    decoded_test = autoencoder.decode(sets_encoded_test[0])

    # 7: undo minimax, for now only the first simulation
    simulated = preprocess_normalisation.rescale_data(
        decoded_test, dataset_name=test_dataset_names[0])

    plotting.plot_some_curves(
        "test_feature_normalised_compare_autoencoder_before_rescale",
        sets_test_scaled[0], decoded_test, [25, 50, 75, 815],
        maturities)  # old: [25, 50, 75, 100, 600, 720, 740, 815]

    plotting.plot_some_curves(
        "test_feature_normalised_compare_autoencoder", sets_test[0], simulated,
        [25, 50, 75, 815],
        maturities)  # old: [25, 50, 75, 100, 600, 720, 740, 815]

    # curve_smooth = []
    # for curve in simulated:
    #     print("curve.shape", curve.shape)
    #     curve_smooth.append(savgol_filter(curve, 23, 5))  # window size 51, polynomial order 3
    # curve_smooth = np.array(curve_smooth)

    print("reconstruction error BEFORE smoothing:")
    reconstruction_error(np.array(sets_test[0]), simulated)

    preprocess_normalisation.enable_curve_smoothing = True
    simulated = preprocess_normalisation.rescale_data(
        decoded_test, dataset_name=test_dataset_names[0])

    plotting.plot_some_curves(
        "test_feature_normalised_compare_autoencoder", sets_test[0], simulated,
        [25, 50, 75, 815],
        maturities)  # old: [25, 50, 75, 100, 600, 720, 740, 815]

    # plotting.plot_some_curves("test_feature_normalised_compare_normalisation", sets_test[0], sets_test_scaled[0],
    #                           [25, 50, 75, 815, 100, 600, 720, 740], maturities, plot_separate=True)

    # reconstruction error
    # reconstruction_error(sets_test_scaled[0], decoded_test)
    print("reconstruction error AFTER smoothing:")
    reconstruction_error(np.array(sets_test[0]), simulated)
def simulate(latent_dim=2,
             preprocess_type1=None,
             preprocess_type2=None,
             ae_model=None,
             gan_model=None,
             force_training=True,
             plot=False):
    preprocess1 = PreprocessData(preprocess_type1)
    preprocess2 = PreprocessData(preprocess_type2)

    # 1. get data and apply scaling
    sets_training, sets_test, sets_training_scaled, sets_test_scaled, training_dataset_names, test_dataset_names, maturities = preprocess1.get_data(
    )

    if ae_model is AEModel.AAE:
        ae_params = {
            'preprocess_type': preprocess_type1.
            value,  # only to make preprocess_type part of the hash
            'input_dim': sets_training_scaled[0].shape[1],  # 56
            'latent_dim': latent_dim,
            'hidden_layers': (
                56,
                40,
                28,
                12,
                4,
            ),
            'hidden_layers_discriminator': (
                2,
                2,
            ),
            'leaky_relu': 0.1,
            'last_activation': 'linear',
            'last_activation_discriminator': 'sigmoid',
            'loss_generator': 'mean_squared_error',
            'loss_discriminator': 'binary_crossentropy',
            'batch_size': 20,
            'epochs': 20000
        }
        ae_params_hash = hashlib.md5(
            json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()
        autoencoder = AdversarialAutoencoder(ae_params, plot=False)
    elif ae_model is AEModel.VAE:
        ae_params = {
            'preprocess_type': preprocess_type1.
            value,  # only to make preprocess_type part of the hash
            'input_dim': sets_training_scaled[0].shape[1],  # 56
            'latent_dim': latent_dim,
            'hidden_layers': (
                56,
                40,
                28,
                12,
                4,
            ),
            'leaky_relu': 0.1,
            'last_activation': 'linear',  # sigmoid or linear
            'loss':
            'mean_square_error',  # binary_crossentropy or mean_square_error
            'epsilon_std': 1.0,
            'batch_size': 20,
            'epochs': 100,
            'steps_per_epoch': 500
        }
        ae_params_hash = hashlib.md5(
            json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()
        autoencoder = VariationalAutoencoder(ae_params, plot=False)
    elif ae_model is AEModel.AE:
        ae_params = {
            'preprocess_type': preprocess_type1.
            value,  # only to make preprocess_type part of the hash
            'input_dim': sets_training_scaled[0].shape[1],  # 56
            'latent_dim': latent_dim,
            'hidden_layers': (
                56,
                40,
                28,
                12,
                4,
            ),
            'leaky_relu': 0.1,
            'loss': 'mse',
            'last_activation': 'linear',
            'batch_size': 20,
            'epochs': 100,
            'steps_per_epoch': 500
        }
        ae_params_hash = hashlib.md5(
            json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()
        autoencoder = Autoencoder(ae_params, plot=False)
    else:  # elif ae_model is AEModel.PCA:
        ae_params = {
            'preprocess_type': preprocess_type1.
            value,  # only to make preprocess_type part of the hash
            'latent_dim': latent_dim
        }
        ae_params_hash = hashlib.md5(
            json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()
        autoencoder = PCAModel(ae_params, plot=False)

    # 2. train/load autoencoder
    autoencoder.load_else_train(np.vstack(sets_training_scaled),
                                sets_test_scaled, "ae_" + ae_params_hash)

    # 2: encode data using autoencoder
    sets_encoded_training = autoencoder.encode(sets_training_scaled)
    sets_encoded_test = autoencoder.encode(sets_test_scaled)

    # 3: log returns of encoded data
    sets_encoded_log_training = preprocess2.scale_data(sets_encoded_training,
                                                       training_dataset_names,
                                                       should_fit=True)
    sets_encoded_log_test = preprocess2.scale_data(sets_encoded_test,
                                                   test_dataset_names,
                                                   should_fit=True)

    num_z = 6 * 7
    num_c = 6 * 7
    num_o = 6 * 7
    if gan_model is GANModel.WGAN:
        gan_params = {
            'ae_params_hash': ae_params_hash,
            'num_tenors': sets_encoded_log_training[0].shape[1],
            'num_c': num_c,
            'num_z': num_z,
            'num_o': num_o,
            'gen_model_type': 'standard',  # conv
            'dis_model_type': 'standard',  # conv
            'gen_layers': (4 * (6 * 7 * 2), ),  # 4 * num_o * num_tenors
            'dis_layers': (4 * (6 * 7), ),  # 4 * num_o
            'gen_last_activation': 'tanh',
            'dis_last_activation': 'sigmoid',
            'loss': 'binary_crossentropy',
            'batch_size': 32,
            'epochs': 10000,
            'sample_interval': 1000
        }
        gan_params_hash = hashlib.md5(
            json.dumps(gan_params,
                       sort_keys=True).encode('utf-8')).hexdigest()
        gan = CWGANGP(gan_params, plot=False)
    else:
        if gan_model is GANModel.GAN_CONV:
            model_type = 'conv'
        else:  # if gan_model is GANModel.GAN:
            model_type = 'standard'

        gan_params = {
            'ae_params_hash': ae_params_hash,
            'num_tenors': sets_encoded_log_training[0].shape[1],
            'num_c': num_c,
            'num_z': num_z,
            'num_o': num_o,
            'gen_model_type': model_type,  # conv
            'dis_model_type': model_type,  # conv
            'gen_layers': (4 * (6 * 7 * 2), ),  # 4 * num_o * num_tenors
            'dis_layers': (4 * (6 * 7), ),  # 4 * num_o
            'gen_last_activation': 'tanh',
            'dis_last_activation': 'sigmoid',
            'loss': 'binary_crossentropy',
            'batch_size': 128,
            'epochs': 20000
        }
        gan_params_hash = hashlib.md5(
            json.dumps(gan_params,
                       sort_keys=True).encode('utf-8')).hexdigest()
        gan = GAN(gan_params,
                  plot=False)  # try training on larger input and output

    if force_training:
        gan.train(sets_encoded_log_training, "gan_" + gan_params_hash)
    else:
        gan.load_else_train(sets_encoded_log_training,
                            "gan_" + gan_params_hash)

    # 4: simulate on encoded log returns, conditioned on test dataset
    num_simulations = 100
    num_repeats = 1
    generated, _ = gan.generate(condition=sets_encoded_log_test[-1],
                                condition_on_end=False,
                                num_simulations=num_simulations,
                                repeat=num_repeats)

    # insert the last real futures curve in order to do rescaling
    if preprocess_type2 is PreprocessType.LOG_RETURNS_OVER_TENORS:
        generated = np.insert(generated,
                              0,
                              sets_encoded_log_test[-1].iloc[num_c],
                              axis=1)

    # 5: undo scaling
    encoded_generated = preprocess2.rescale_data(
        generated,
        start_value=sets_encoded_test[-1][num_c],
        dataset_name=test_dataset_names[-1])
    if preprocess_type2 is PreprocessType.LOG_RETURNS_OVER_TENORS:
        encoded_generated = encoded_generated[:,
                                              1:]  # remove first curve again

    # 6: decode using autoencoder
    decoded_generated_segments = autoencoder.decode(encoded_generated)

    # 7: undo scaling, this can be log-returns
    simulated = preprocess1.rescale_data(decoded_generated_segments,
                                         start_value=sets_test[-1].iloc[num_c],
                                         dataset_name=test_dataset_names[-1])

    preprocess1.enable_curve_smoothing = True
    simulated_smooth = preprocess1.rescale_data(
        decoded_generated_segments,
        start_value=sets_test[-1].iloc[num_c],
        dataset_name=test_dataset_names[-1])

    if preprocess_type2 is PreprocessType.LOG_RETURNS_OVER_TENORS:
        real = sets_test[-1].iloc[
            num_c:num_c + num_o * num_repeats +
            1]  # `+1` because the log-returns also does +1
    else:
        real = sets_test[-1].iloc[num_c:num_c + num_o * num_repeats + 1]

    print("simulated, real", simulated.shape, real.shape)

    smape_result = smape(simulated, real)
    smape_result_smooth = smape(simulated_smooth, real)

    print("smape_result_smooth mean and std:", np.mean(smape_result_smooth),
          np.std(smape_result_smooth))

    if plot:
        plotting = Plotting()
        plotting.plot_3d("real", real, show_title=False)

        cov_log_returns = cov_log_returns_over_tenors(real)
        plotting.plot_3d_cov("gan_real_cov", cov_log_returns, show_title=False)

        for i in np.arange(1, 11):
            # name =  '_' + preprocess_type1.name + '_' + preprocess_type2.name + '_' + str(latent_dim) + '_' + ae_model.name + '_'+ gan_model.name
            plotting.plot_3d("gan_simulated_" + str(i),
                             simulated_smooth[i],
                             maturities=maturities,
                             time=real.index.values,
                             show_title=False)
            smape_result = smape(simulated_smooth[i], real)
            print("simulated_smooth[i], real", simulated_smooth[i].shape,
                  real.shape)
            print("simulate rates", i)
            print("smape:", smape_result)
            print("=============\n")

            cov_log_returns = cov_log_returns_over_tenors(simulated_smooth[i])
            plotting.plot_3d_cov("gan_simulated_" + str(i) + "_cov",
                                 cov_log_returns,
                                 maturities=maturities,
                                 show_title=False)

    return smape_result_smooth
Example #5
0
def simulate():
    plotting = Plotting()
    preprocess_normalisation = PreprocessData()
    preprocess_logreturns = PreprocessData()
    preprocess_normalisation.enable_normalisation_scaler = True
    preprocess_logreturns.enable_log_returns = True

    # 1. get data and apply pre-processing
    sets_training, sets_test, sets_training_scaled, sets_test_scaled, training_dataset_names, test_dataset_names, maturities = preprocess_normalisation.get_data()

    ae_params = { 'preprocess_type': PreprocessType.NORMALISATION_OVER_TENORS.value,
                  'input_dim': (10, sets_training_scaled[0].shape[1],), # 56
                  'latent_dim': 2*56,
                  'hidden_layers': (12*56, 4*56, ),
                  'leaky_relu': 0.1,
                  'loss': 'mse',
                  'last_activation': 'linear',
                  'batch_size': 5,
                  'epochs': 5,
                  'steps_per_epoch': 500}

    ae_params_hash = hashlib.md5(json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()

    autoencoder = Autoencoder(ae_params)
    # autoencoder.train(np.vstack(sets_training_scaled), sets_test_scaled)
    # autoencoder.save_model("ae_" + ae_params_hash)
    autoencoder.load_else_train(sets_training_scaled, sets_test_scaled, "ae_" + ae_params_hash)

    # 2: encode data using autoencoder
    sets_encoded_training = autoencoder.encode(sets_training_scaled)
    sets_encoded_test = autoencoder.encode(sets_test_scaled)

    print("sets_encoded_test", sets_encoded_test[0].shape)
    plotting.plot_2d(sets_encoded_test[0], "encoded test data with deep autoencoder", save=False)

    # 3: log returns of encoded data
    sets_encoded_log_training = preprocess_logreturns.scale_data(sets_encoded_training)
    sets_encoded_log_test = preprocess_logreturns.scale_data(sets_encoded_test)

    plotting.plot_2d(sets_encoded_log_test[0], "encoded test data with deep autoencoder, then log returns", save=False)

    num_c = 6*7
    num_o = 6*7
    gan_params = {'ae_params_hash': ae_params_hash,
                  'num_tenors': sets_encoded_log_training[0].shape[1],
                  'num_c': num_c,
                  'num_z': 6*7,
                  'num_o': num_o,
                  'gen_model_type': 'standard', # conv
                  'dis_model_type': 'standard', # conv
                  'gen_layers': (4*(6*7*2),), # 4 * num_o * num_tenors
                  'dis_layers': (4*(6*7),), # 4 * num_o
                  'gen_last_activation': 'tanh',
                  'dis_last_activation': 'sigmoid',
                  'loss': 'binary_crossentropy',
                  'batch_size': 128,
                  'epochs': 20000}
    gan_params_hash = hashlib.md5(json.dumps(gan_params, sort_keys=True).encode('utf-8')).hexdigest()

    gan = GAN(gan_params)  # try training on larger input and output
    # gan.train(sets_encoded_log_training, sample_interval=200)
    # gan.save_model("gan_" + gan_params_hash)
    gan.load_model("gan_" + gan_params_hash)

    # COV TEST, TEMPORARY
    # for name, set in zip(training_dataset_names, sets_training):
    #     print("name:", name)
    #     set_cov_log_returns_over_features = cov_log_returns_over_features(set)
    #     plotting.plot_3d_cov("covariance_time_series_" + name, set_cov_log_returns_over_features, show_title=False)
    #     plotting.plot_3d("time_series_" + name, set, maturities)
    # END COV TEST.

    # 4: simulate on encoded log returns, conditioned on test dataset
    num_simulations = 10
    num_repeats = 0
    generated, _ = gan.generate(condition=sets_encoded_log_test[-1], condition_on_end=False, num_simulations=num_simulations, repeat=num_repeats)

    # insert the last real futures curve in order to do rescaling
    print("sets_encoded_log_test[-1][num_c] shape", sets_encoded_log_test[-1].iloc[num_c].shape)
    print("generated_segments.shape", generated.shape)
    generated = np.insert(generated, 0, sets_encoded_log_test[-1].iloc[num_c], axis=0)

    # 5: undo log-returns # todo: this start_value is actually one off! Error still persists... autoencoder causing the difference?
    encoded_generated = preprocess_logreturns.rescale_data(generated, start_value=sets_encoded_test[-1][num_c])
    encoded_generated = encoded_generated[:, 1:] # remove first curve again
    # 6: decode using autoencoder
    decoded_generated_segments = autoencoder.decode(encoded_generated)

    # 7: undo minimax, for now only the first simulation
    simulated = preprocess_normalisation.rescale_data(decoded_generated_segments, dataset_name=test_dataset_names[-1])

    preprocess_normalisation.enable_curve_smoothing = True
    simulated_smooth = preprocess_normalisation.rescale_data(decoded_generated_segments, dataset_name=test_dataset_names[-1])

    real = np.array(sets_test[-1])[num_c:num_c + num_o]

    print("simulated, real", simulated.shape, real.shape)

    smape_result = smape(simulated, real)
    smape_result_smooth = smape(simulated_smooth, real)
    print("smape_result and smooth", smape_result, smape_result_smooth)
    print("smape_resul_smooth", smape_result_smooth)