def main(): parser = argparse.ArgumentParser(description='Train a neural imaging pipeline') parser.add_argument('--cam', dest='camera', action='store', help='camera', default='D90') parser.add_argument('--dir', dest='root_dir', action='store', default='/tmp/neural-imaging', help='output directory for temporary results, default: /tmp/neural-imaging') parser.add_argument('--verbose', dest='verbose', action='store_true', default=False, help='print the output of tested tools, default: false') parser.add_argument('--keep', dest='keep', action='store_true', default=False, help='do not remove the test root directory') parser.add_argument('--tests', dest='tests', action='store', default=None, help='list of tests to run') args = parser.parse_args() utils.setup_logging() tf_helpers.disable_warnings() tf_helpers.print_versions() with open('config/tests/framework.json') as f: settings = json.load(f) if os.path.exists(args.root_dir) and not args.keep: print('\n> deleting {}'.format(args.root_dir)) shutil.rmtree(args.root_dir) if not os.path.exists(args.root_dir): os.makedirs(args.root_dir) if args.tests is None: tests = ['train-nip', 'resume-nip', 'train-manipulation', 'train-dcn', 'train-manipulation-dcn'] else: tests = args.tests.split(',') for test in tests: run_test(test, settings[test], args)
def setUp(self): self.config = get_config_and_rules(True) log_file_path = os.path.join(self.config.logs_directory_path, self.config.tests_log_filename ) if self.config.log_to_file else None self.logger = setup_logging(__file__, log_file_path, logging.DEBUG) self.workbook = xlwings.Book( os.path.join(self.config.data_directory_path, self.config.excel_test_workbook_filename)) self.interface_sheet = getitem(self.workbook.sheets, self.config.interface_sheet) self.empty_list = list() self.empty_dict = dict() self.empty_dataframe = pandas.DataFrame(self.empty_dict) self.default_fixture_input = os.path.join( self.config.fixtures_directory_path, self.config.default_fixture_filename) with open(self.default_fixture_input) as f: self.default_model_inputs = json_load_byteified(f) fixture_filename, filextension = os.path.splitext( self.default_fixture_input) fixture_filename = fixture_filename.replace( self.config.in_filename_appender, self.config.out_filename_appender, ) fixture__out_filepath = os.path.join( self.config.fixtures_directory_path, ''.join( (fixture_filename, filextension))) with open(fixture__out_filepath) as f: self.projection_outputs = json.load(f)
def main(): config = ConfigParser.ConfigParser() config.read('config/model_config.config') app_log = setup_logging('gl_gc_logger', config.get('logger', 'log_file_name')) app_log.info('Scoring DUNS number: %d' % user_duns_number) sic_data = get_sic_data(user_sic_code, config.get('data_files', 'sic_data')) model_inputs = dict() model_inputs['division'] = user_division model_inputs['exposure_size'] = user_exposure_size / 1000000 model_inputs['exposure_type'] = user_exposure_type model_inputs['predom_state'] = user_predominant_state model_inputs['sic_class'] = sic_data['SIC_Class'] model_inputs['zero_loss_ind'] = 1 if sum(user_claims_history) == 0 else 0 model_inputs['zip_density'] = get_zip_density(user_zip_code, config.get('data_files', 'easi_data')) model_inputs['avg_claim_count'] = sum(user_claims_history) / len(user_claims_history) predicted_loss, _ = run_model(model_inputs, config.get('data_files', 'model_coefficients_file'), eval(config.get('model_rules', 'rules'))) division_factors = get_division_factors(user_division, config.get('data_files', 'division_factors')) ilf_factors = get_ilf_factors(user_retention_amount, user_occurence_limit, config.getint('constants', 'ilf_loss_cap'), config.get('data_files', 'sic_data')) midpoint = (predicted_loss * config.get('constants', 'loss_development_factor') * (ilf_factors['occurence_limit'] - ilf_factors['retention_amount']) * config.getint('constants', 'aggregate_limit') * division_factors['off_balance_factor'] * (1 + division_factors['rate_need']) / ilf_factors['loss_cap'] * (1 - config.get('constants', 'expense_rate')) )
def test_print_level(self): log = setup_logging('log2', 'test-log2.log', print_level=True) self.assertTrue(os.path.isfile('test-log2.log')) log.info('Test') with open('test-log2.log') as fh: log_lines = fh.readlines() self.assertIn('Test', log_lines[0]) self.assertIn('INFO', log_lines[0])
def test_vanilla(self): log = setup_logging('log1', 'test-log1.log') self.assertTrue(os.path.isfile('test-log1.log')) log.info('Test') with open('test-log1.log') as fh: log_lines = fh.readlines() self.assertIn('Test', log_lines[0]) self.assertNotIn('INFO', log_lines[0])
setup_logging ) try: import ConfigParser as configparser except: import configparser import logging import pandas import numpy import yaml import json import math import os logger = setup_logging(__file__, None, logging.DEBUG) def calculator(coefficient, eazi_dataframe, density_constant): """ Creates and returns a function to calculate the model feature from the input coefficient :param coefficient: coefficient that needs to be calculated :param eazi_dataframe: eazi csv loaded into pandas :param density_constant: density constant used for log density calculation :type coefficient: str :type eazi_dataframe: pandas.DataFrame :type density_constant: int :returns: a callable function to execute the coefficient's calculations :rtype: function
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import argparse import matplotlib.pyplot as plt from collections import OrderedDict # Toolbox imports from helpers import utils, plots, tf_helpers from compression.ratedistortion import plot_bulk utils.setup_logging() plots.configure('tex') tf_helpers.disable_warnings() def main(): parser = argparse.ArgumentParser( description='Compare rate-distortion profiles for various codecs') parser.add_argument( '-d', '--data', dest='data', action='store', default='./data/rgb/clic512', help='directory with training & validation images (png)') parser.add_argument('-i', '--images', dest='images', action='append', default=[],