Example #1
0
def main(inargs):
    """
    Runs the main program

    Parameters
    ----------
    inargs : argparse object
      Argparse object with all input arguments
    """

    # Check if pre-processed file exists
    if (pp_exists(inargs) is False) or (inargs.recompute is True):
        print('Compute preprocessed file: ' + get_pp_fn(inargs))
        # Call preprocessing routine with arguments
        compute_variance(inargs)
    else:
        print('Found pre-processed file: ' + get_pp_fn(inargs))

    # Plotting
    if inargs.plot_type in [
            'r_v', 'alpha', 'beta', 'r_v_alpha', 'r_v_beta', 'r_v_alpha_beta',
            'corr_m_N', 'mean_m'
    ]:
        plot_diurnal(inargs)
    elif inargs.plot_type == 'std_vs_mean':
        plot_std_vs_mean(inargs)
    elif inargs.plot_type == 'correlation':
        plot_correlation(inargs)
    elif inargs.plot_type == 'CC06b_fig9':
        plot_CC06b_fig9(inargs)
    else:
        print('No or wrong plot_type. Nothing plotted.')
Example #2
0
def main(inargs):
    """
    Runs the main program

    Parameters
    ----------
    inargs : argparse object
      Argparse object with all input arguments
    """

    # Check if pre-processed file exists
    if (pp_exists(inargs) is False) or (inargs.recompute is True):
        print('Compute preprocessed file: ' + get_pp_fn(inargs))
        # Call preprocessing routine with arguments
        domain_mean_weather_ts(inargs)
    else:
        print('Found pre-processed file: ' + get_pp_fn(inargs))

    # Call analyzing and plotting routine
    if 'prec_ind' in inargs.plot_type:
        plot_domain_mean_timeseries_individual(inargs,
                                               plot_var='precipitation')
    if 'prec_comp' in inargs.plot_type:
        plot_domain_mean_timeseries_composite(inargs,
                                              plot_var='precipitation')
    if 'cape_tauc_ind' in inargs.plot_type:
        plot_domain_mean_timeseries_individual(inargs,
                                               plot_var='cape_tauc')
    if 'cape_tauc_comp' in inargs.plot_type:
        plot_domain_mean_timeseries_composite(inargs,
                                              plot_var='cape_tauc')
    if 'prec_cape_comp' in inargs.plot_type:
        plot_domain_mean_timeseries_composite(inargs,
                                              plot_var='prec_cape')
Example #3
0
def main(inargs):
    """
    Runs the main program

    Parameters
    ----------
    inargs : argparse object
      Argparse object with all input arguments
    """

    # Check if pre-processed file exists
    if (pp_exists(inargs) is False) or (inargs.recompute is True):
        print('Compute preprocessed file: ' + get_pp_fn(inargs))
        # Call preprocessing routine with arguments
        cloud_stats(inargs)
    else:
        print('Found pre-processed file: ' + get_pp_fn(inargs))

    # Plotting
    if 'freq_hist' in inargs.plot_type:
        plot_prec_freq_hist(inargs)
    if 'size_hist' in inargs.plot_type:
        plot_cloud_size_hist(inargs)
    if 'rdf_individual' in inargs.plot_type:
        plot_rdf_individual(inargs)
    if 'rdf_composite' in inargs.plot_type:
        plot_rdf_composite(inargs)
    if 'm_evolution' in inargs.plot_type:
        plot_m_evolution(inargs)
Example #4
0
def create_netcdf(inargs, groups, dimensions, variables,
                  ensemble_dim=False):
    """
    Creates a NetCDF object to store data.

    Parameters
    ----------
    inargs : argparse object
      Argparse object with all input arguments
    groups : list
      List of groups
    dimensions : dict
      Dictionary with dimension name as key and dimension value as value
    variables : dict
      Dictionary with variable name as key and variable dimension list as value
      (must be numpy array). Attention: Type i8 is hardcoded for all dimensions.
    ensemble_dim : bool
      If true, group variables have additional dimension ens_no with size 
      inargs.nens for group 'ens' and 1 for all other groups

    Returns
    -------
    rootgroup : NetCDF object

    """

    pp_fn = get_pp_fn(inargs)

    # Create NetCDF file
    rootgroup = Dataset(pp_fn, 'w', format='NETCDF4')
    rootgroup.log = create_log_str(inargs, 'Preprocessing')

    # Create root dimensions and variables
    for dim_name, dim_val in dimensions.items():
        rootgroup.createDimension(dim_name, dim_val.shape[0])
        tmp_var = rootgroup.createVariable(dim_name, 'i8', dim_name)
        tmp_var[:] = dim_val

    # Create group dimensions and variables
    if ensemble_dim:
        [b.append('ens_no') for a, b in variables.items()]
        dimensions['ens_no'] = 1

    for g in groups:
        rootgroup.createGroup(g)
        if g == 'ens' and ensemble_dim:
            dimensions['ens_no'] = inargs.nens

        # Create dimensions
        for dim_name, dim_len in dimensions.items():
            if type(dim_len) is not int:
                dim_len = dim_len.shape[0]
            rootgroup.groups[g].createDimension(dim_name, dim_len)

        # Create variables
        for var_name, var_dims in variables.items():
            rootgroup.groups[g].createVariable(var_name, 'f8', var_dims)
    return rootgroup
def main(inargs):
    """
    Runs the main program
    
    Parameters
    ----------
    inargs : argparse object
      Argparse object with all input arguments
    """

    # Check arguments
    assert inargs.plot in ['weather_ts', 'prec_stamps', 'prec_hist'], \
        'Plot not supported.'

    # Check if pre-processed file exists
    if (pp_exists(inargs) is False) or (inargs.recompute is True):
        print('Compute preprocessed file: ' + get_pp_fn(inargs))
        # Call preprocessing routine with arguments
        preprocess(inargs)
    else:
        print('Found pre-processed file:' + get_pp_fn(inargs))

    # Call analyzing and plotting routine
    plotting(inargs)
Example #6
0
def create_netcdf(inargs):
    """
    
    Parameters
    ----------
    inargs : argparse object
      Argparse object with all input arguments

    Returns
    -------
    rootgroup : NetCDF dataset object

    """

    dimensions = {
        'date':
        np.array(make_datelist(inargs, out_format='netcdf')),
        'time':
        np.arange(inargs.time_start, inargs.time_end + inargs.time_inc,
                  inargs.time_inc),
        'n':
        np.array([256, 128, 64, 32, 16, 8, 4]),
        'x':
        np.arange(get_config(inargs, 'domain', 'ana_irange')),
        'y':
        np.arange(get_config(inargs, 'domain', 'ana_jrange')),
        'cond_bins_mean_m':
        np.linspace(0, 2e8, 10)[1:],  # TODO: Softcode this stuff
        'cond_bins_m':
        np.linspace(0, 1e9, 50)[1:],
    }

    variables = {
        'var_m': ['date', 'time', 'n', 'x', 'y'],
        'var_M': ['date', 'time', 'n', 'x', 'y'],
        'var_N': ['date', 'time', 'n', 'x', 'y'],
        'mean_m': ['date', 'time', 'n', 'x', 'y'],
        'mean_M': ['date', 'time', 'n', 'x', 'y'],
        'mean_N': ['date', 'time', 'n', 'x', 'y'],
        'corr_m_N': ['date', 'time', 'n', 'x', 'y'],
        'cond_m_hist': ['n', 'cond_bins_mean_m', 'cond_bins_m'],
    }
    if inargs.var is 'm':
        variables.update({
            'var_TTENS': ['date', 'time', 'n', 'x', 'y'],
            'mean_TTENS': ['date', 'time', 'n', 'x', 'y']
        })

    pp_fn = get_pp_fn(inargs)

    # Create NetCDF file
    rootgroup = Dataset(pp_fn, 'w', format='NETCDF4')
    rootgroup.log = create_log_str(inargs, 'Preprocessing')

    # Create root dimensions and variables
    for dim_name, dim_val in dimensions.items():
        rootgroup.createDimension(dim_name, dim_val.shape[0])
        tmp_var = rootgroup.createVariable(dim_name, 'f8', dim_name)
        tmp_var[:] = dim_val

    # Create variables
    for var_name, var_dims in variables.items():
        tmp_var = rootgroup.createVariable(var_name, 'f8', var_dims)
        # Set all variables to nan by default to save time later
        tmp_var[:] = np.nan
    return rootgroup
Example #7
0
def create_netcdf(inargs):
    """
    Creates a NetCDF object to store data.

    Parameters
    ----------
    inargs : argparse object
      Argparse object with all input arguments

    Returns
    -------
    rootgroup : NetCDF object

    """

    prec_freq_binedges, cld_size_binedges, cld_sum_binedges, \
        cld_size_sep_binedges, cld_sum_sep_binedges = create_bin_edges(inargs)

    datearray = np.array(make_datelist(inargs, out_format='netcdf'))
    timearray = np.arange(inargs.time_start, inargs.time_end + inargs.time_inc,
                          inargs.time_inc)
    rdf_radius = np.arange(0., inargs.rdf_r_max + inargs.rdf_dr, inargs.rdf_dr)
    rdf_radius = (rdf_radius[:-1] + rdf_radius[1:]) / 2.

    dimensions = {
        'time': timearray,
        'date': datearray,
        'cld_size_bins': np.array(cld_size_binedges[1:]),
        'cld_sum_bins': np.array(cld_sum_binedges[1:]),
        'cld_size_sep_bins': np.array(cld_size_sep_binedges[1:]),
        'cld_sum_sep_bins': np.array(cld_sum_sep_binedges[1:]),
        'rdf_radius': rdf_radius
    }
    variables = {
        'cld_size': ['date', 'time', 'cld_size_bins'],
        'cld_sum': ['date', 'time', 'cld_sum_bins'],
        'cld_size_sep': ['date', 'time', 'cld_size_sep_bins'],
        'cld_sum_sep': ['date', 'time', 'cld_sum_sep_bins'],
        'cld_size_mean': ['date', 'time'],
        'cld_sum_mean': ['date', 'time'],
        'cld_size_sep_mean': ['date', 'time'],
        'cld_sum_sep_mean': ['date', 'time'],
        'rdf': ['date', 'time', 'rdf_radius'],
        'rdf_sep': ['date', 'time', 'rdf_radius'],
    }
    if inargs.var == 'PREC_ACCUM':
        groups = ['obs', 'det', 'ens']
        dimensions.update({'prec_freq_bins': np.array(prec_freq_binedges[1:])})
        variables.update({'prec_freq': ['date', 'time', 'prec_freq_bins']})
    elif inargs.var == 'm':
        groups = ['det', 'ens']
    else:
        raise Exception('Wrong variable.')

    pp_fn = get_pp_fn(inargs)

    # Create NetCDF file
    rootgroup = Dataset(pp_fn, 'w', format='NETCDF4')
    rootgroup.log = create_log_str(inargs, 'Preprocessing')

    # Create root dimensions and variables
    for dim_name, dim_val in dimensions.items():
        rootgroup.createDimension(dim_name, dim_val.shape[0])
        tmp_var = rootgroup.createVariable(dim_name, 'f8', dim_name)
        tmp_var[:] = dim_val

    # Create group dimensions and variables
    [b.append('ens_no') for a, b in variables.items()]
    dimensions['ens_no'] = 1

    for g in groups:
        rootgroup.createGroup(g)
        if g == 'ens':
            dimensions['ens_no'] = inargs.nens

        # Create dimensions
        for dim_name, dim_len in dimensions.items():
            if type(dim_len) is not int:
                dim_len = dim_len.shape[0]
            rootgroup.groups[g].createDimension(dim_name, dim_len)

        # Create variables
        for var_name, var_dims in variables.items():
            rootgroup.groups[g].createVariable(var_name, 'f8', var_dims)

    return rootgroup