def __init__(self, baseplate, lock, *args, **kwargs): super().__init__(baseplate, lock, acl=kwargs.get('acl')) self.insult_array = [] insults = h.load_file(os.path.join(LOCAL_DIR, 'lists', 'quotes.txt'), raw=True) if insults: self.insult_array = insults.splitlines()
def __init__(self, baseplate, lock, *args, **kwargs): super().__init__(baseplate, lock, acl=kwargs.get('acl')) self.role_modifiers_list = [] self.roles_list = [] self.companies_list = [] role_modifiers = h.load_file(os.path.join(LOCAL_DIR, 'lists', 'role_modifiers.txt'), raw=True) roles = h.load_file(os.path.join(LOCAL_DIR, 'lists', 'roles.txt'), raw=True) companies = h.load_file(os.path.join(LOCAL_DIR, 'lists', 'companies.txt'), raw=True) if role_modifiers and roles and companies: self.role_modifiers_list = role_modifiers.splitlines() self.roles_list = roles.splitlines() self.companies_list = companies.splitlines()
def search(collection: str, query: str, populate: bool) -> list: query = remove_accents(query) model = load_file(f"{collection}.json", model_selector(collection)) def find_match(city: Model): return re.search(query, remove_accents(city.name), re.IGNORECASE | re.MULTILINE) != None res = list(filter(find_match, model)) if (populate): res = populate_collection(res, collection) return res
def __init__(self, baseplate, lock, *args, **kwargs): super().__init__(baseplate, lock, acl=kwargs.get('acl')) self._set_bot_thread() self._set_defaults(kwargs) # set tx locations and load/initialize db tables = {} table_dir = os.path.join(LOCAL_DIR, 'tables') for _file in os.listdir(table_dir): path = os.path.join(table_dir, _file) if os.path.isfile(path): tables.update(h.load_file(path)) self._init_tx_db(tables, kwargs.get('seeds', {}))
def process_seeds(self, seeds): insert = None if seeds: for table_name, info in seeds.items(): if table_name in self.tables: table = getattr(self, table_name) if table.count() == 0: if isinstance(info, list): insert = table.bulk_insert(info) elif isinstance(info, dict): if 'file' in info: load_kwargs = info.get('load_kwargs', {}) data = load_file(info['file'], **load_kwargs) else: data = info.get('data', []) transform = info.get('transform') if transform: data = jsearch(transform, data) insert = table.bulk_insert(data) return insert
print('Getting model...') result = None with open(os.path.join(model_path, 'train.pickle'), 'rb') as f: result = pickle.load(f) label_probs = result[0] probs_per_label = result[1] words = result[2] labels = result[3] predictor = partial(helpers.predict, label_probs, probs_per_label, words, labels) if os.path.isdir(input_path): print('Loading dataset...') test_target, test_data = helpers.load_dataset(input_path) print('Testing dataset...') print("============= RESULT ===============") accuracy = helpers.get_accuracy(test_data, test_target, predictor) print('Accuracy: {0:.2f}%'.format(accuracy * 100)) print('=====================================') else: print('Testing...') label, tokens = helpers.load_file(input_path) predict_label = predictor(tokens) print('================= RESULT ================') print('Expected label for the text: {}'.format(label)) print('Predicted label for the text: {}'.format(predict_label)) print('==========================================')
def _load_results(example_name, wl_method, evaluation_metric, fold, study, alpha=None, inferred_predicates_file='inferred-predicates.txt'): # path to this file relative to caller dirname = os.path.dirname(__file__) # read inferred predicates # predicted dataframe if study == "sampling_study": tuffy_experiment_directory = "{}/../../results/weightlearning/tuffy/sampling_study/{}/{}/{}/{}/{}".format( dirname, example_name, wl_method, evaluation_metric, alpha, fold) else: tuffy_experiment_directory = "{}/../../results/weightlearning/tuffy/{}/{}/{}/{}/{}".format( dirname, study, example_name, wl_method, evaluation_metric, fold) results_path = os.path.join(tuffy_experiment_directory, inferred_predicates_file) print(results_path) results_tmp = load_file(results_path) results = [] targets_path = os.path.join(tuffy_experiment_directory, 'query.db') for result in results_tmp: if len(result) == 1: # then we did not run in marginal mode, i.e. outputs in this file are all "true" or 1 predicate = result[0][result[0].find("(") + 1:result[0].find(")")].replace(' ', '').split(',') predicate.append(1.0) results.append(predicate) else: # we ran this experiment in marginal mode, i.e., the marginal probability precedes the ground atom predicate = result[1][result[1].find("(") + 1:result[1].find(")")].replace(' ', '').split(',') predicate.append(float(result[0])) results.append(predicate) # close the predictions if we ran in discrete mode, i.e. if the target was not in the results then we predicted 0 targets_tmp = load_file(targets_path) targets = [] for target in targets_tmp: predicate = target[0][target[0].find("(") + 1:target[0].find(")")].replace(' ', '').split(',') predicate.append(0.0) targets.append(predicate) # append the targets that were not in the inferred predicates results_dict = {(result[0], result[1]): result[2] for result in results} targets_dict = {(target[0], target[1]): target[2] for target in targets} diff = set(targets_dict.keys()) - set(results_dict.keys()) for target in diff: results.append( [target[0], target[1], targets_dict[(target[0], target[1])]]) return results
def _load_moined(self): path = os.path.join(self.tx_dir, 'moined.json') if os.path.isfile(path): return h.load_file(path) return []
def main(): st.set_option('deprecation.showfileUploaderEncoding', False) def _max_width_(): max_width_str = f"max-width: 1000px;" st.markdown( f""" <style> .reportview-container .main .block-container{{ {max_width_str} }} </style> """, unsafe_allow_html=True, ) # Hide the Streamlit header and footer def hide_header_footer(): hide_streamlit_style = """ <style> footer {visibility: hidden;} </style> """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) # increases the width of the text and tables/figures _max_width_() # hide the footer and optionally the streamlit menu in the topright corner which is unrelated to our app hide_header_footer() # show the intro page text_markdown.intro_page() # load the data, currently allows for csv and excel imports st.sidebar.title(":floppy_disk: Upload Your File") filename = st.sidebar.file_uploader("Choose a file", type=["xlsx", "csv"]) delim = st.sidebar.selectbox("In case of a CSV file, pick the delimiter.", [",", ";", "|"]) if filename: df = helpers.load_file(filename, delim) else: df = pd.read_excel("titanic.xlsx") # space between sections helpers.betweensection_space() helpers.sidebar_space() # Ensures navigation between pages df = eda.first_inspection(df) eda.visuals(df) helpers.betweensection_space() helpers.sidebar_space() preprocessing.preprocess(df) # bottom line and github logo st.markdown("---")