Example #1
0
 def resolve_all_option_collections(self, info, **kwargs):
     field_map = {
         "option": ("option", "select"),
     }
     return helpers.optimize(OptionCollection.objects.all(),
                             ast_to_dict(info.field_asts),
                             field_map)
Example #2
0
 def resolve_jobs(self, args, context, info):
     field_map = {
         "buildPlatform": ("build_platform", "select"),
         "jobLog": ("job_log", "prefetch"),
         "jobType": ("job_type", "select"),
         "jobGroup": ("job_group", "select"),
         "failureClassification": ("failure_classification", "prefetch"),
         "failureLine": ("job_log__failure_line", "prefetch"),
         "group": ("job_log__failure_line__group", "prefetch"),
         "textLogStep": ("text_log_step", "prefetch"),
         "errors": ("text_log_step__errors", "prefetch"),
     }
     return helpers.optimize(Job.objects.filter(push=self, **args),
                             ast_to_dict(info.field_asts), field_map)
Example #3
0
 def resolve_jobs(self, info, **kwargs):
     field_map = {
         "buildPlatform": ("build_platform", "select"),
         "jobLog": ("job_log", "prefetch"),
         "jobType": ("job_type", "select"),
         "jobGroup": ("job_group", "select"),
         "failureClassification": ("failure_classification", "prefetch"),
         "failureLine": ("job_log__failure_line", "prefetch"),
         "group": ("job_log__failure_line__group", "prefetch"),
         "textLogStep": ("text_log_step", "prefetch"),
         "errors": ("text_log_step__errors", "prefetch"),
     }
     return helpers.optimize(Job.objects.filter(push=self, **kwargs),
                             ast_to_dict(info.field_asts),
                             field_map)
Example #4
0
def model(X_train,
          Y_train,
          X_test,
          Y_test,
          num_iter=2000,
          learn_rate=0.5,
          print_cost=False):
    ## PARAMETERS INIT ##
    w, b = init_with_zeros(X_train.shape[0])

    ## GRADIENT DESCENT ##
    params, grads, costs = optimize(w, b, X_train, Y_train, num_iter,
                                    learn_rate, print_cost)

    ## RETRIEVE PARAMS ##
    w = params["w"]
    b = params["b"]

    ## PREDICTION ##
    Y_predict_test = predict(w, b, X_test)
    Y_predict_train = predict(w, b, X_train)

    print("train accuracy: {} %".format(
        100 - np.mean(np.abs(Y_predict_train - Y_train)) * 100))
    print(
        "test accuracy: {} %".format(100 -
                                     np.mean(np.abs(Y_predict_test - Y_test)) *
                                     100))

    d = {
        "costs": costs,
        "Y_predict_test": Y_predict_test,
        "Y_predict_train": Y_predict_train,
        "w": w,
        "b": b,
        "learn_rate": learn_rate,
        "num_iter": num_iter
    }

    return d
Example #5
0
        best_space = solution[1]
        best_items = solution[2]
print('Best solution exercise A:')
print('Wasted weight: ' + str(best_weight) + ', Wasted space: ' + str(best_space) + ', Unloaded cargo: ' + str(best_items) + '.')
print('')

# # opdracht B (Cargolist 1)
# # loading cargo sorted by density
sortedlist = sorted(cargolist, key = lambda x: [cargolist[x][2]])
helpers.ratio(cargolist, sortedlist, spacecrafts)
solution = helpers.solution(spacecrafts, items)
print('The solution found by sorting the cargo by density for exercise B is as follows:')
print('Wasted weight: ' + str(solution[0]) + ', Wasted space: ' + str(solution[1]) + ', Unloaded cargo: ' + str(solution[2]) + '.')

# # partly brute force on shortened cargolist
optimized = helpers.optimize(cargolist, spacecrafts)
bestscore = 10000; bestsolution = []

for bruteforce in range(0, 100000):
    randomlist = optimized.keys()
    random.shuffle(randomlist)
    helpers.ratio(optimized, randomlist, spacecrafts)
    solution = helpers.solution(spacecrafts, items)
    # score function
    score = solution[0] + 0.01 * solution[2]
    # remember best solution
    if score < bestscore:
        bestscore = score
        bestsolution = solution
print("Best solution exercise B:")
print('Score: ' + str(bestscore))