Example #1
0
def output(x):
    #Retrieve r and k
    global ite
    r = x[0:m]
    #k = x[m:]
    cost = hp.C(A, B, r)
    for i in range(m):
        print(ite,
              'r' + str(i + 1) + ' ',
              r[i],
              'k' + str(i + 1) + ' ',
              k[i],
              end='')
    sigmaX = hp.sigma(E, F, r)
    sigmaY_Taylor = hp.sigmaY(sigmaX, D)
    U = hp.U_scrap(cost, USY, miuY, sigmaY_Taylor, k)
    print(ite, ' U=', U)
    ite += 1
Example #2
0
def obj_grad_scipy_inspect(x):
    #retrieve r and k
    grad = np.zeros_like(x)
    r = x[0:m]
    k = x[m:]
    sigmaX = hp.sigma(E, F, r)
    sigmaY_Taylor = hp.sigmaY(sigmaX, D)
    sigmaY_Taylor = lamada * sigmaY_Taylor
    #Compute Unit Cost
    C = hp.C(A, B, r)
    for i in range(0, m):  # Change this for loop to vectorization
        dCi_dri_v = hp.dCi_dri(B[i], r[i])
        dsigmai_dri_v = hp.dsigmai_dri(F[i], r[i])
        dsigmaY_dri_v = hp.dsigmaY_dri(D, sigmaX, r, i, dsigmai_dri_v)
        grad_r[i] = hp.dU_dri_scrap(USY, miuY, sigmaY_Taylor, C, k, i, lamada,
                                    dsigmaY_dri_v, dCi_dri_v)

        grad_k[i] = hp.dU_dki_scrap(USY, miuY, sigmaY_Taylor, k[i], C[i])
    grad_combine = np.concatenate((grad_r, grad_k), axis=0)
    grad[:] = grad_combine
    return grad
Example #3
0
def casestudy_U():
    para = np.array([A, B, E, F])
    result = optimize(True, para)
    U_equation = result['U']
    r_opt = result['r']
    if scenario == INSPECT:
        k_opt = result['k']
    else:
        k_opt = 3 * np.ones_like(r_opt)
    sigma_opt = hp.sigma(E, F, r_opt)
    [N, M] = hp.estimateNandM(miu, E, F, r_opt, k_opt, NSample, USY, miuY,
                              scenario)
    U_simulation = hp.U_inspect_simulation(NSample, r_opt, A, B, E, F, k_opt,
                                           miu, USY, miuY, Sp, Sc)
    print('U Equation: ', U_equation)
    print('U Simulation: ', U_simulation)
    satisfactionrate = hp.satisfactionrate_component_product(
        miu, E, F, r, k, NSample, USY, miuY, scenario)
    print('beta: ', satisfactionrate['beta'])
    print('sigmaY: ', hp.sigmaY(sigma_opt, D, scenario, k_opt))
    print('opt cost:', hp.C(A, B, r_opt))
    print('N: ', N)
    print('M: ', M)
    print('Gama', satisfactionrate['gammas'])
Example #4
0
def obj_nlopt_noinspect(x, grad, para):
    #retrieve r as the optimization variable x. (k will not be optimized, so just use const)
    A = para[0]
    B = para[1]
    E = para[2]
    F = para[3]
    r = x[0:m]
    sigmaX = hp.sigma(E, F, r)
    sigmaY_Taylor = hp.sigmaY(sigmaX, D, scenario, k)
    #Compute Unit Cost
    C = hp.C(A, B, r)
    U = hp.U_noscrap(C, USY, miuY, sigmaY_Taylor, Sp)

    for i in range(0, m):  # Change this for loop to vectorization
        dCi_dri_v = hp.dCi_dri(B[i], r[i])
        dsigmai_dri_v = hp.dsigmai_dri(F[i], r[i])
        dsigmaY_dri_v = hp.dsigmaY_dri(D, sigmaX, r, i, dsigmai_dri_v,
                                       scenario, k)
        grad_r[i] = hp.dU_dri_noscrap(USY, miuY, sigmaY_Taylor, C, k, i,
                                      dsigmaY_dri_v, dCi_dri_v, Sp)
    if grad.size > 0:
        grad[:] = grad_r  #Make sure to assign value using [:]
    #print(U)
    return U
Example #5
0
#Scrap cost of a product
Sp = np.sum(A) / 10
#Scrap costs of components
Sc = A / 10

D1 = hp.dy_dx1(miu[0], miu[1], miu[2])
D2 = hp.dy_dx2(miu[0], miu[1], miu[2])
D3 = hp.dy_dx3(miu[0], miu[1], miu[2])

D = np.array([D1, D2, D3])

#r=hp.sigmator(sigmaX,E,F)
r = 10 * np.random.rand(3)
k = 5 * np.random.rand(3)  #3 * np.ones_like(r) #

sigmaX = hp.sigma(E, F, r)
#Compute Unit Cost of initial value
C = hp.C(A, B, r)

sigmaY_Taylor = hp.sigmaY(sigmaX, D, scenario, k)

#Nominal value of Y
miuY = np.radians(7.0124)
##Upper specification limit
USY = miuY + np.radians(2.0)

#U = hp.U_scrap(C,USY,sigmaY,k)

grad_numerical_r = np.zeros(m)
grad_equation_r = np.zeros(m)
grad_numerical_k = np.zeros(m)
Example #6
0
def gradientcheck(x, case):
    if case == SCRAP:
        grad_equation = obj_grad_scipy_inspect(x)

        #retrieve grad of r and k
        grad_equation_r = grad_equation[0:m]
        grad_equation_k = grad_equation[m:]

        grad_numerical_k = np.zeros(m)
        grad_numerical_r = np.zeros(m)
    elif case == NOSCRAP:
        grad_equation_r = obj_grad_scipy_noinspect(x)
        grad_numerical_r = np.zeros(m)

    C = hp.C(A, B, r)

    for i in range(0, m):
        ri_add_epsilon = np.copy(r)
        ri_minus_epsilon = np.copy(r)
        ri_add_epsilon[i] += epsilon
        ri_minus_epsilon[i] -= epsilon
        ki_add_epsilon = np.copy(k)
        ki_minus_epsilon = np.copy(k)
        ki_add_epsilon[i] += epsilon
        ki_minus_epsilon[i] -= epsilon
        sigmaX_plus = hp.sigma(E, F, ri_add_epsilon)
        sigmaX_minus = hp.sigma(E, F, ri_minus_epsilon)
        C_plus = hp.C(A, B, ri_add_epsilon)
        C_minus = hp.C(A, B, ri_minus_epsilon)
        sigmaY_Taylor_plus = hp.sigmaY(sigmaX_plus, D)
        sigmaY_Taylor_minus = hp.sigmaY(sigmaX_minus, D)

        if case == SCRAP:
            sigmaY_Taylor_p = lamada * sigmaY_Taylor
            #Varify dr
            sigmaY_Taylor_plus *= lamada
            sigmaY_Taylor_minus *= lamada
            #gradient computed by numerical estimation
            grad_numerical_r[i] = (
                hp.U_scrap(C_plus, USY, miuY, sigmaY_Taylor_plus, k) -
                hp.U_scrap(C_minus, USY, miuY, sigmaY_Taylor_minus, k)) / (
                    2 * epsilon)
            #varify dk
            grad_numerical_k[i] = (
                hp.U_scrap(C, USY, miuY, sigmaY_Taylor_p, ki_add_epsilon) -
                hp.U_scrap(C, USY, miuY, sigmaY_Taylor_p,
                           ki_minus_epsilon)) / (2 * epsilon)
            print('Numerical_scrap_' + 'dr' + str(i), '=', grad_numerical_r[i])
            print('Equation_scrap_' + 'dr' + str(i), '=', grad_equation_r[i])
            print('Numerical_scrap_' + 'dk' + str(i), '=', grad_numerical_k[i])
            print('Equation_scrap_' + 'dk' + str(i), '=', grad_equation_k[i])

        elif case == NOSCRAP:
            #gradient computed by numerical estimation
            grad_numerical_r[i] = (hp.U_noscrap(
                C_plus, USY, miuY, sigmaY_Taylor_plus) - hp.U_noscrap(
                    C_minus, USY, miuY, sigmaY_Taylor_minus)) / (2 * epsilon)
            print('Numerical_No scrap_' + 'dr' + str(i), '=',
                  grad_numerical_r[i])
            print('Equation_No scrap_' + 'dr' + str(i), '=',
                  grad_equation_r[i])

    distance12_r = distance.euclidean(grad_equation_r, grad_numerical_r)
    length1_r = distance.euclidean(grad_equation_r,
                                   np.zeros_like(grad_equation_r))
    length2_r = distance.euclidean(grad_numerical_r,
                                   np.zeros_like(grad_numerical_r))
    graderror_r = distance12_r / (length1_r + length2_r)
    print('error of dr=', graderror_r)

    if case == SCRAP:
        distance12_k = distance.euclidean(grad_equation_k, grad_numerical_k)
        length1_k = distance.euclidean(grad_equation_k,
                                       np.zeros_like(grad_equation_k))
        length2_k = distance.euclidean(grad_numerical_k,
                                       np.zeros_like(grad_numerical_k))
        graderror_k = distance12_k / (length1_k + length2_k)
        print('error of dk=', graderror_k)
Example #7
0
    for i in range(m):
        print(ite,
              'r' + str(i + 1) + ' ',
              r[i],
              'k' + str(i + 1) + ' ',
              k[i],
              end='')
    sigmaX = hp.sigma(E, F, r)
    sigmaY_Taylor = hp.sigmaY(sigmaX, D)
    U = hp.U_scrap(cost, USY, miuY, sigmaY_Taylor, k)
    print(ite, ' U=', U)
    ite += 1


#Unit cost of initial values
sigmaX = hp.sigma(E, F, r)
sigmaY_Taylor = hp.sigmaY(sigmaX, D)
cost = hp.C(A, B, r)

SCIPY = 0
NLOPT = 1
opt_lib = NLOPT

if opt_lib == SCIPY:
    if case == SCRAP:  #Scrap
        #Define Upper and Lower boundaries
        #The order is ([lower bnd for x1, lower bnd for x2], [Higher bnd for x1, Higher bnd for x2])
        mbounds = Bounds([
            smallvalue, smallvalue, smallvalue, smallvalue, smallvalue,
            smallvalue
        ], [
Example #8
0
# -*- coding: utf-8 -*-
"""
Created on Sun May 26 10:04:08 2019

@author: wyue
"""

#import packages
import numpy as np
import helpers as hp

epsilon = 1e-7

rMin = 1e-2  # Lower bound is 0, to prevent dividing by zero, set lower bond to a small value
rMax = 100
rRst = np.array([20, 20, 20])

A = np.array([0.87, 1.71, 3.54])  #np.array([5.0, 3.0, 1.0])
B = np.array([2.062, 1.276, 1.965])  #np.array([20.0, 36.7, 36.0])
F = np.array([0.001798 / 3, 0.001653 / 3, 0.002 / 3])
#E =  sigmaX_init - np.multiply(F,np.power(r,2)) #np.array([sigmaX_init1-1, sigmaX_init2-1, sigmaX_init3-1])
E = np.array([0.083, 0.096, 0.129])

sigmaMin = hp.sigma(E, F, rMin)
sigmaMax = hp.sigma(E, F, rMax)
simgaRst = hp.sigma(E, F, rRst)
Example #9
0
    for i in range(m):
        print(ite,
              'r' + str(i + 1) + ' ',
              r[i],
              'k' + str(i + 1) + ' ',
              k[i],
              end='')
    sigmaX = hp.sigma(E, F, r)
    sigmaY_Taylor = hp.sigmaY(sigmaX, D)
    U = hp.U_scrap(cost, USY, miuY, sigmaY_Taylor, k, Sp, Sc)
    print(ite, ' U=', U)
    ite += 1


#Unit cost of initial values
sigmaX = hp.sigma(E, F, r)
sigmaY_Taylor = hp.sigmaY(sigmaX, D)
cost = hp.C(A, B, r)

SCIPY = 0
NLOPT = 1
opt_lib = NLOPT

if opt_lib == SCIPY:
    if scenario == INSPECT:  #Scrap
        #Define Upper and Lower boundaries
        #The order is ([lower bnd for x1, lower bnd for x2], [Higher bnd for x1, Higher bnd for x2])
        mbounds = Bounds([
            smallvalue, smallvalue, smallvalue, smallvalue, smallvalue,
            smallvalue
        ], [