def summaries(x, d_fake, d_real, args): """Add montage summaries for examples and samples.""" with tf.variable_scope('examples'): ne = int(sqrt(args.examples)) hem.montage_summary(x[0:args.examples], ne, ne, name='examples/inputs') hem.montage_summary(d_real[0:args.examples], ne, ne, name='examples/real_decoded') hem.montage_summary(d_fake[0:args.examples], ne, ne, name='examples/fake_decoded') hem.summarize_activations() hem.summarize_losses() hem.summarize_weights_biases()
def __init__(self, x_y, args): # init/setup m_opt = hem.init_optimizer(args) m_tower_grads = [] global_step = tf.train.get_global_step() # foreach gpu... for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size): # for i in range(len(x_y)): # print('estimator', i, x_y[i]) # x = x_y[0] # y = x_y[1] m_arch = {'E2': mean_depth_estimator.E2} x = x_y[4] x = tf.reshape(x, (-1, 3, 53, 70)) # print('estimator x shape', x) y = x_y[5] with tf.variable_scope('model'): m_func = m_arch[args.m_arch] m = m_func(x, args, reuse=(gpu_id>0)) self.output_layer = m # calculate losses m_loss = mean_depth_estimator.loss(m, x, y, args, reuse=(gpu_id > 0)) # calculate gradients m_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'model') m_tower_grads.append(m_opt.compute_gradients(m_loss, var_list=m_params)) # only need one batchnorm update (ends up being updates for last tower) batchnorm_updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope) # TODO: do we need to do this update for batchrenorm? for instance renorm? # average and apply gradients m_grads = hem.average_gradients(m_tower_grads, check_numerics=args.check_numerics) m_apply_grads = m_opt.apply_gradients(m_grads, global_step=global_step) # add summaries hem.summarize_losses() hem.summarize_gradients(m_grads, name='m_gradients') hem.summarize_layers('m_activations', [l for l in tf.get_collection('conv_layers') if 'model' in l.name], montage=True) mean_depth_estimator.montage_summaries(x, y, m, args) # improved_sampler.montage_summarpies(x, y, g, x_sample, y_sample, g_sampler, x_noise, g_noise, x_shuffled, y_shuffled, g_shuffle, args) # improved_sampler.sampler_summaries(y_sample, g_sampler, g_noise, y_shuffled, g_shuffle, args) # training ops with tf.control_dependencies(batchnorm_updates): self.m_train_op = m_apply_grads self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
def summaries(x, d, avg_grads, args): with tf.variable_scope('examples'): n = int(sqrt(args.examples)) hem.montage(hem.rescale(x[0:args.examples], (-1, 1), (0, 1)), n, n, name='inputs') hem.montage(hem.rescale(d[0:args.examples], (-1, 1), (0, 1)), n, n, name='outputs') hem.summarize_activations() hem.summarize_losses() hem.summarize_weights_biases() hem.summarize_gradients(avg_grads)
def summaries(x, y, x_hat, y_hat, x_grads, y_grads, args): n = math.floor(math.sqrt(args.examples)) with arg_scope([hem.montage], height=n, width=n): x = hem.rescale(x, (-1, 1), (0, 1)) y = hem.rescale(y, (-1, 1), (0, 1)) x_hat = hem.rescale(x_hat, (-1, 1), (0, 1)) y_hat = hem.rescale(y_hat, (-1, 1), (0, 1)) hem.montage(x[0:args.examples], name='x') hem.montage(y[0:args.examples], name='y', colorize=True) hem.montage(x_hat[0:args.examples], name='x_hat') hem.montage(y_hat[0:args.examples], name='y_hat', colorize=True) hem.summarize_gradients(x_grads) hem.summarize_gradients(y_grads) hem.summarize_losses() hem.summarize_activations(False) hem.summarize_weights_biases()
def summaries(g, x, args): """Adds histogram and montage summaries for real and fake examples.""" with tf.variable_scope('examples'): tf.summary.histogram('fakes', g) tf.summary.histogram('real', x) with tf.variable_scope('rescale'): # need to rescale images from [-1,1] to [0,1] real_examples = (x[0:args.examples] + 1.0) / 2 fake_examples = (g[0:args.examples] + 1.0) / 2 real_examples = tf.reshape(real_examples, [-1, 3, 64, 64]) fake_examples = tf.reshape(fake_examples, [-1, 3, 64, 64]) hem.montage_summary(real_examples, 8, 8, name='inputs') hem.montage_summary(fake_examples, 8, 8, name='fake') hem.summarize_activations() hem.summarize_losses() hem.summarize_weights_biases()
def __init__(self, x_y, args): # init/setup g_opt = tf.train.AdamOptimizer(args.g_lr, args.g_beta1, args.g_beta2) d_opt = tf.train.AdamOptimizer(args.d_lr, args.d_beta1, args.d_beta2) g_tower_grads = [] d_tower_grads = [] global_step = tf.train.get_global_step() self.mean_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29)) # self.var_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29)) # foreach gpu... for x_y, scope, gpu_id in hem.tower_scope_range( x_y, args.n_gpus, args.batch_size): with tf.variable_scope('input_preprocess'): # split inputs and rescale x = x_y[0] y = x_y[1] # re-attach shape info x = tf.reshape(x, (args.batch_size, 3, 65, 65)) # rescale from [0,1] to actual world depth y = y * 10.0 y = hem.crop_to_bounding_box(y, 17, 17, 29, 29) # re-attach shape info y = tf.reshape(y, (args.batch_size, 1, 29, 29)) y_bar = tf.reduce_mean(y, axis=[2, 3], keep_dims=True) x_sample = tf.stack([x[0]] * args.batch_size) y_sample = tf.stack([y[0]] * args.batch_size) # create model with tf.variable_scope('generator'): if args.model_version == 'baseline': g = self.g_baseline(x, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g + y_bar y_0 = g_0 + y_bar g_sampler = self.g_baseline(x_sample, args, reuse=True) y_sample_bar = tf.reduce_mean(y_sample, axis=[2, 3], keep_dims=True) y_sampler = g_sampler + y_sample_bar with tf.variable_scope('discriminator'): if args.model_version == 'baseline': # this is the 'mean_adjusted' model from paper_baseline_sampler.py d_fake, d_fake_logits = self.d_baseline(x, y_hat - y_bar, args, reuse=(gpu_id > 0)) d_real, d_real_logits = self.d_baseline(x, y - y_bar, args, reuse=True) # calculate losses g_loss, d_loss = self.loss(d_real, d_real_logits, d_fake, d_fake_logits, reuse=(gpu_id > 0)) # calculate gradients g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator') d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator') g_tower_grads.append( g_opt.compute_gradients(g_loss, var_list=g_params)) d_tower_grads.append( d_opt.compute_gradients(d_loss, var_list=d_params)) # average and apply gradients g_grads = hem.average_gradients(g_tower_grads, check_numerics=args.check_numerics) d_grads = hem.average_gradients(d_tower_grads, check_numerics=args.check_numerics) g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step) d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step) # add summaries hem.summarize_losses() hem.summarize_gradients(g_grads, name='g_gradients') hem.summarize_gradients(d_grads, name='d_gradients') generator_layers = [ l for l in tf.get_collection('conv_layers') if 'generator' in l.name ] discriminator_layers = [ l for l in tf.get_collection('conv_layers') if 'discriminator' in l.name ] hem.summarize_layers('g_activations', generator_layers, montage=True) hem.summarize_layers('d_activations', discriminator_layers, montage=True) self.montage_summaries(x, y, g, y_hat, args, name='y_hat') self.metric_summaries(x, y, g, y_hat, args, name='y_hat') self.metric_summaries(x, y, g_0, y_0, args, name='y_0') self.metric_summaries(x, y, g, self.mean_image_placeholder * 10.0, args, name='y_mean') self.metric_summaries(x_sample, y_sample, g_sampler, y_sampler, args, name='y_sampler') self.montage_summaries(x_sample, y_sample, g_sampler, y_sampler, args, name='y_sampler') # training ops self.g_train_op = g_apply_grads self.d_train_op = d_apply_grads self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
def __init__(self, x_y, args): # init/setup g_opt = tf.train.AdamOptimizer(args.g_lr, args.g_beta1, args.g_beta2) g_tower_grads = [] global_step = tf.train.get_global_step() self.mean_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29)) # self.var_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29)) self.x = [] self.y = [] self.y_hat = [] self.g = [] # foreach gpu... for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size): with tf.variable_scope('input_preprocess'): # split inputs and rescale x = tf.identity(x_y[0], name='tower_{}_x'.format(gpu_id)) y = tf.identity(x_y[1], name='tower_{}_y'.format(gpu_id)) # re-attach shape info x = tf.reshape(x, (args.batch_size, 3, 65, 65)) # rescale from [0,1] to actual world depth y = y * 10.0 y = hem.crop_to_bounding_box(y, 17, 17, 29, 29) # re-attach shape info y = tf.reshape(y, (args.batch_size, 1, 29, 29)) y_bar = tf.reduce_mean(y, axis=[2, 3], keep_dims=True) y_bar = tf.identity(y_bar, name='tower_{}_y_bar'.format(gpu_id)) # create model with tf.variable_scope('generator'): if args.model_version == 'baseline': g = self.g_baseline(x, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g y_0 = g_0 elif args.model_version == 'mean_adjusted': g = self.g_baseline(x, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g + y_bar y_0 = g_0 + y_bar elif args.model_version == 'mean_provided': g = self.g_mean_provided(x, y_bar, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g + y_bar y_0 = g_0 + y_bar elif args.model_version == 'mean_provided2': g = self.g_mean_provided2(x, y_bar, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g + y_bar y_0 = g_0 + y_bar g = tf.identity(g, 'tower_{}_g'.format(gpu_id)) g_0 = tf.identity(g_0, 'tower_{}_g0'.format(gpu_id)) y_hat = tf.identity(y_hat, 'tower_{}_y_hat'.format(gpu_id)) y_0 = tf.identity(y_0, 'tower_{}_y0'.format(gpu_id)) # if gpu_id == 0: # tf.summary.histogram('g', g) # tf.summary.histogram('y_hat', y_hat) # tf.summary.histogram('y_0', y_0) # hem.montage(g, num_examples=64, width=8, height=8, name='g') # hem.montage(y_hat, num_examples=64, width=8, height=8, name='y_hat') # hem.montage(y_0, num_examples=64, width=8, height=8, name='y_0') self.g.append(g) self.y_hat.append(y_hat) self.y.append(y) self.x.append(x) # calculate losses g_loss = self.loss(x, y, y_hat, args, reuse=(gpu_id > 0)) # calculate gradients g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator') g_tower_grads.append(g_opt.compute_gradients(g_loss, var_list=g_params)) # average and apply gradients g_grads = hem.average_gradients(g_tower_grads, check_numerics=args.check_numerics) g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step) # add summaries hem.summarize_losses() hem.summarize_gradients(g_grads, name='g_gradients') generator_layers = [l for l in tf.get_collection('conv_layers') if 'generator' in l.name] hem.summarize_layers('g_activations', generator_layers, montage=True) self.montage_summaries(x, y, g, y_hat, args) self.metric_summaries(x, y, g, y_hat, args, name='y_hat') self.metric_summaries(x, y, g_0, y_0, args, name='y_0') self.metric_summaries(x, y, g, self.mean_image_placeholder * 10.0, args, name='y_mean') # training ops self.g_train_op = g_apply_grads self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
def __init__(self, x_y, estimator, args): # init/setup g_opt = hem.init_optimizer(args) d_opt = hem.init_optimizer(args) g_tower_grads = [] d_tower_grads = [] global_step = tf.train.get_global_step() # sess = tf.Session(config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) # new_saver = tf.train.import_meta_graph( # '/mnt/research/projects/autoencoders/workspace/improved_sampler/experimentE/meandepth.e1/checkpoint-4.meta', import_scope='estimator') # new_saver.restore(sess, tf.train.latest_checkpoint('/mnt/research/projects/autoencoders/workspace/improved_sampler/experimentE/meandepth.e1')) # # # estimator_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) # # print('estimator_vars:', estimator_vars) # # # print('all ops!') # # for op in tf.get_default_graph().get_operations(): # # if 'l8' in str(op.name): # # print(str(op.name)) # # # # sess.graph # # graph = tf.get_default_graph() # estimator_tower0 = sess.graph.as_graph_element('estimator/tower_0/model/l8/add').outputs[0] # estimator_tower1 = sess.graph.as_graph_element('estimator/tower_1/model/l8/add').outputs[0] # self.estimator_placeholder = sess.graph.as_graph_element('estimator/input_pipeline/Placeholder') #.outputs[0] # print('PLACEHOLDER:', self.estimator_placeholder) # print('estimator_tower0:', estimator_tower0) # print('estimator_tower1:', estimator_tower1) # estimator_tower0 = tf.stop_gradient(estimator_tower0) # estimator_tower1 = tf.stop_gradient(estimator_tower1) # sess.close() # foreach gpu... for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size): with tf.variable_scope('input_preprocess'): # split inputs and rescale x = hem.rescale(x_y[0], (0, 1), (-1, 1)) y = hem.rescale(x_y[1], (0, 1), (-1, 1)) # if args.g_arch == 'E2': y = hem.crop_to_bounding_box(y, 16, 16, 32, 32) y = tf.reshape(y, (-1, 1, 32, 32)) x_loc = x_y[2] y_loc = x_y[3] scene_image = x_y[4] mean_depth = tf.stop_gradient(estimator.output_layer) # print('mean_depth_layer:', estimator.output_layer) # mean_depth = estimator(scene_image) # mean_depth = tf.expand_dims(mean_depth, axis=-1) # mean_depth = tf.expand_dims(mean_depth, axis=-1) mean_depth_channel = tf.stack([mean_depth] * 64, axis=2) mean_depth_channel = tf.stack([mean_depth_channel] * 64, axis=3) # mean_depth_channel = tf.squeeze(mean_depth_channel) # print('mean_depth_layer99:', mean_depth_channel) # mean_depth_channel = tf.ones_like(x_loc) * mean_depth # print('x', x) # print('x_loc', x_loc) # print('y_loc', y_loc) # print('mean_depth_channel', mean_depth_channel) x = tf.concat([x, x_loc, y_loc, mean_depth_channel], axis=1) # print('x shape:', x) # create repeated image tensors for sampling x_sample = tf.stack([x[0]] * args.batch_size) y_sample = tf.stack([y[0]] * args.batch_size) # shuffled x for variance calculation x_shuffled = tf.random_shuffle(x) y_shuffled = y # noise vector for testing x_noise = tf.random_uniform(tf.stack([tf.Dimension(args.batch_size), x.shape[1], x.shape[2], x.shape[3]]), minval=-1.0, maxval=1.0) g_arch = {'E2': experimental_sampler.generatorE2} d_arch = {'E2': experimental_sampler.discriminatorE2} # create model with tf.variable_scope('generator'): g_func = g_arch[args.g_arch] g = g_func(x, args, reuse=(gpu_id > 0)) g_sampler = g_func(x_sample, args, reuse=True) g_shuffle = g_func(x_shuffled, args, reuse=True) g_noise = g_func(x_noise, args, reuse=True) with tf.variable_scope('discriminator'): d_func = d_arch[args.d_arch] d_real, d_real_logits = d_func(x, y, args, reuse=(gpu_id > 0)) d_fake, d_fake_logits = d_func(x, g, args, reuse=True) # calculate losses g_loss, d_loss = experimental_sampler.loss(d_real, d_real_logits, d_fake, d_fake_logits, x, g, y, None, args, reuse=(gpu_id > 0)) # calculate gradients g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator') d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator') g_tower_grads.append(g_opt.compute_gradients(g_loss, var_list=g_params)) d_tower_grads.append(d_opt.compute_gradients(d_loss, var_list=d_params)) # only need one batchnorm update (ends up being updates for last tower) batchnorm_updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope) # TODO: do we need to do this update for batchrenorm? for instance renorm? # average and apply gradients g_grads = hem.average_gradients(g_tower_grads, check_numerics=args.check_numerics) d_grads = hem.average_gradients(d_tower_grads, check_numerics=args.check_numerics) g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step) d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step) # add summaries hem.summarize_losses() hem.summarize_gradients(g_grads, name='g_gradients') hem.summarize_gradients(d_grads, name='d_gradients') hem.summarize_layers('g_activations', [l for l in tf.get_collection('conv_layers') if 'generator' in l.name], montage=True) hem.summarize_layers('d_activations', [l for l in tf.get_collection('conv_layers') if 'discriminator' in l.name], montage=True) experimental_sampler.montage_summaries(x, y, g, x_sample, y_sample, g_sampler, x_noise, g_noise, x_shuffled, y_shuffled, g_shuffle, args) experimental_sampler.sampler_summaries(y_sample, g_sampler, g_noise, y_shuffled, g_shuffle, args) # training ops with tf.control_dependencies(batchnorm_updates): self.g_train_op = g_apply_grads self.d_train_op = d_apply_grads self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))
def __init__(self, x_y, args): # init/setup # wgan training if args.training_version == 'wgan': g_opt = tf.train.RMSPropOptimizer(args.g_lr) d_opt = tf.train.AdamOptimizer(args.d_lr) else: g_opt = tf.train.AdamOptimizer(args.g_lr, args.g_beta1, args.g_beta2) d_opt = tf.train.AdamOptimizer(args.d_lr, args.d_beta1, args.d_beta2) g_tower_grads = [] d_tower_grads = [] global_step = tf.train.get_global_step() self.x = [] self.y = [] self.y_hat = [] self.g = [] self.mean_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29)) # self.var_image_placeholder = tf.placeholder(dtype=tf.float32, shape=(1, 29, 29)) # foreach gpu... for x_y, scope, gpu_id in hem.tower_scope_range(x_y, args.n_gpus, args.batch_size): with tf.variable_scope('input_preprocess'): # split inputs and rescale x = tf.identity(x_y[0], name='tower_{}_x'.format(gpu_id)) y = tf.identity(x_y[1], name='tower_{}_y'.format(gpu_id)) # re-attach shape info x = tf.reshape(x, (args.batch_size, 3, 65, 65)) # rescale from [0,1] to actual world depth y = y * 10.0 y = hem.crop_to_bounding_box(y, 17, 17, 29, 29) # re-attach shape info y = tf.reshape(y, (args.batch_size, 1, 29, 29)) y_bar = tf.reduce_mean(y, axis=[2, 3], keep_dims=True) y_bar = tf.identity(y_bar, name='tower_{}_y_bar'.format(gpu_id)) # create model with tf.variable_scope('generator'): if args.model_version == 'baseline': g = self.g_baseline(x, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g y_0 = g_0 elif args.model_version == 'mean_adjusted': g = self.g_baseline(x, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g + y_bar y_0 = g_0 + y_bar elif args.model_version == 'mean_provided': g = self.g_mean_provided(x, y_bar, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g + y_bar y_0 = g_0 + y_bar elif args.model_version == 'mean_provided2': g = self.g_mean_provided2(x, y_bar, args, reuse=(gpu_id > 0)) g_0 = tf.zeros_like(g) y_hat = g + y_bar y_0 = g_0 + y_bar g = tf.identity(g, 'tower_{}_g'.format(gpu_id)) g_0 = tf.identity(g_0, 'tower_{}_g0'.format(gpu_id)) y_hat = tf.identity(y_hat, 'tower_{}_y_hat'.format(gpu_id)) y_0 = tf.identity(y_0, 'tower_{}_y0'.format(gpu_id)) with tf.variable_scope('discriminator'): if args.model_version == 'baseline': d_fake, d_fake_logits = self.d_baseline(x, y_hat, args, reuse=(gpu_id > 0)) d_real, d_real_logits = self.d_baseline(x, y, args, reuse=True) elif args.model_version == 'mean_adjusted': d_fake, d_fake_logits = self.d_baseline(x, y_hat - y_bar, args, reuse=(gpu_id > 0)) d_real, d_real_logits = self.d_baseline(x, y - y_bar, args, reuse=True) elif args.model_version == 'mean_provided': d_fake, d_fake_logits = self.d_mean_provided(x, y_hat - y_bar, y_bar, args, reuse=(gpu_id > 0)) d_real, d_real_logits = self.d_mean_provided(x, y - y_bar, y_bar, args, reuse=True) elif args.model_version == 'mean_provided2': d_fake, d_fake_logits = self.d_mean_provided2(x, y_hat - y_bar, y_bar, args, reuse=(gpu_id > 0)) d_real, d_real_logits = self.d_mean_provided2(x, y - y_bar, y_bar, args, reuse=True) d_fake = tf.identity(d_fake, 'tower_{}_d_fake'.format(gpu_id)) d_real = tf.identity(d_real, 'tower_{}_d_real'.format(gpu_id)) d_fake_logits = tf.identity(d_fake_logits, 'tower_{}_d_fake_logits'.format(gpu_id)) d_real_logits = tf.identity(d_real_logits, 'tower_{}_d_real_logits'.format(gpu_id)) self.g.append(g) self.y_hat.append(y_hat) self.y.append(y) self.x.append(x) # calculate losses g_loss, d_loss = self.loss(d_real, d_real_logits, d_fake, d_fake_logits, args, reuse=(gpu_id > 0)) # calculate gradients g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator') d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator') g_tower_grads.append(g_opt.compute_gradients(g_loss, var_list=g_params)) d_tower_grads.append(d_opt.compute_gradients(d_loss, var_list=d_params)) # average and apply gradients g_grads = hem.average_gradients(g_tower_grads, check_numerics=args.check_numerics) d_grads = hem.average_gradients(d_tower_grads, check_numerics=args.check_numerics) g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step) d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step) # add summaries hem.summarize_losses() hem.summarize_gradients(g_grads, name='g_gradients') hem.summarize_gradients(d_grads, name='d_gradients') generator_layers = [l for l in tf.get_collection('conv_layers') if 'generator' in l.name] discriminator_layers = [l for l in tf.get_collection('conv_layers') if 'discriminator' in l.name] hem.summarize_layers('g_activations', generator_layers, montage=True) hem.summarize_layers('d_activations', discriminator_layers, montage=True) self.montage_summaries(x, y, g, y_hat, args) self.metric_summaries(x, y, g, y_hat, args, name='y_hat') self.metric_summaries(x, y, g_0, y_0, args, name='y_0') self.metric_summaries(x, y, g, self.mean_image_placeholder * 10.0, args, name='y_mean') # training ops if args.training_version == 'wgan': clip_D = [p.assign(tf.clip_by_value(p, -0.01, 0.01)) for p in d_params] clip_G = [p.assign(tf.clip_by_value(p, -0.01, 0.01)) for p in g_params] with tf.control_dependencies(clip_D): self.d_train_op = d_apply_grads with tf.control_dependencies(clip_G): self.g_train_op = g_apply_grads else: self.g_train_op = g_apply_grads self.d_train_op = d_apply_grads self.all_losses = hem.collection_to_dict(tf.get_collection('losses'))