def beam_lin(count, room_time_limit, seed): #beam parameters: init_width_domain = [20] growf_domain = [(2, 'lin'), (4, 'lin'), (8, 'lin'), (16, 'lin')] heuristic_s = [heuristics.PowerHeuristic2(), heuristics.LinearHeuristic()] #------------------ Create Agents ------------------ agent_list = [] for h in heuristic_s: for init_width in init_width_domain: for growf in growf_domain: algorithm = AnytimeBeamSearch(init_width, growf) agent = TestAgent(algorithm, h) agent_list.append(agent) #---------------- Create Roomsets -------------------- roomsets = [ c_roomsets.easy_roomset(count, seed), c_roomsets.mild_roomset(count, seed), c_roomsets.heavy_roomset(count, seed) ] #---------------- measure -------------------- dbs = ameasure(agent_list, roomsets, room_time_limit) return dbs
def beam(count, room_time_limit): #beam parametres: init_width_domain = [2, 6, 12] growf_domain = [(1.1, 'exp'), (1.3, 'exp'), (2, 'lin'), (4, 'lin')] heuristic_s = [heuristics.PowerHeuristic2(), heuristics.LinearHeuristic()] #------------------ Create Agents ------------------ agent_list = [] for h in heuristic_s: for init_width in init_width_domain: for growf in growf_domain: algorithm = AnytimeBeamSearch(init_width, growf) agent = TestAgent(algorithm, h) agent_list.append(agent) #---------------- Create Roomsets -------------------- roomsets = [ c_roomsets.easy_roomset(count), c_roomsets.heavy_roomset(count), c_roomsets.static_rooms() ] dbs = ameasure(agent_list, roomsets, room_time_limit) return dbs
def test(): ag = TestAgent(AnytimeBestFirstGraphSearch(), heuristics.PowerHeuristic2()) rs = RoomSet("d") a = ProblemSetSolution(ag, rs) # path =r"C:\Users\inesmeya\Desktop\out\Test\p.p" path = r"C:\Users\inesmeya\Desktop\out\Test\e.txt" a = pload(path) print "F" print a
def test_algs(): from measure_core import TestAgent from anytime_best_first import AnytimeBestFirstGraphSearch import heuristics import room_problems alg = AnytimeBestFirstGraphSearch(10) h = heuristics.PowerHeuristic2() a = TestAgent(alg, h) sol = a.solve3(room_problems.all_static_rooms['linear_test'], 0.5) print sol return sol
def best_first_depth(count, room_time_limit, seed): ''' @param count: number of rooms ''' #beam parametres: depths = [400] heuristic_s = [heuristics.PowerHeuristic2()] #------------------ Create Agents ------------------ agent_list = [] for h in heuristic_s: for depth in depths: algorithm = AnytimeBestFirstGraphSearch() #algorithm = AnytimeBeamSearch(100, (2,'lin')) agent = TestAgent(algorithm, h) agent_list.append(agent) #---------------- Create Roomsets -------------------- roomsets = [c_roomsets.static_rooms()] dbs = ameasure(agent_list, roomsets, room_time_limit) return dbs
def best_first(count, room_time_limit): ''' @param count: number of rooms ''' #beam parametres: depths = [10, 80, 250, 400] heuristic_s = [heuristics.PowerHeuristic2(), heuristics.LinearHeuristic()] #------------------ Create Agents ------------------ agent_list = [] for h in heuristic_s: for depth in depths: algorithm = AnytimeBestFirstGraphSearch(depth) agent = TestAgent(algorithm, h) agent_list.append(agent) #---------------- Create Roomsets -------------------- roomsets = [ c_roomsets.easy_roomset(count), c_roomsets.heavy_roomset(count), c_roomsets.static_rooms() ] dbs = ameasure(agent_list, roomsets, room_time_limit) return dbs
def __init__(self): self.heuristic = heuristics.PowerHeuristic2() self.algo = AnytimeBeamSearch(10, (1.2, "exp"))
def __init__(self): self.heuristic = heuristics.PowerHeuristic2() self.algorithm = AnytimeBeamSearch(20, (1.3, 'exp'))