def run_against_random(self, num_games=25, game_num=0): wrong_moves = 0 total_moves = 0 games_won = 0 for _ in range(num_games): game = Hex(5, 1) while len(game.get_moves()) > 0: if game.player == Hex.PLAYER_TOP: # model player next_move = ANET.predict(get_feature( game.get_state(), game.player == Hex.PLAYER_LEFT), model=self.model) next_move = ( next_move[1], next_move[0] ) if game.player == Hex.PLAYER_LEFT else next_move if next_move not in game.get_moves(): wrong_moves += 1 next_move = choice(game.get_moves()) else: next_move = choice(game.get_moves()) game.do_move(next_move) total_moves += 1 res_model = game.get_result(Hex.PLAYER_TOP) res_random = game.get_result(Hex.PLAYER_LEFT) if res_model == 0 and res_random == 0: print("Draw") continue games_won += res_model win_rate = games_won / num_games wrong_moves_rate = wrong_moves / total_moves pp.pprint("Game {} : {}".format(game_num, win_rate)) pp.pprint("Wrong moves: {}".format(wrong_moves_rate)) return win_rate, wrong_moves_rate
def run_tournament(self, path="topp"): self.fetch_game_models(path) games = self.get_games() wrong_moves = 0 total_moves = 0 for p1, p2 in games: for i in range(self.num_games): game = Hex(5, 1) while len(game.get_moves()) > 0: if self.random and game.player == Hex.PLAYER_LEFT: next_move = choice(game.get_moves()) else: model = self.models[p1 if game.player == Hex.PLAYER_TOP else p2] next_move = ANET.predict(get_feature( game.get_state(), game.player == Hex.PLAYER_LEFT), model=model) next_move = ( next_move[1], next_move[0] ) if game.player == Hex.PLAYER_LEFT else next_move if next_move not in game.get_moves(): wrong_moves += 1 next_move = choice(game.get_moves()) total_moves += 1 game.do_move(next_move) res_p1 = game.get_result(Hex.PLAYER_TOP) res_p2 = game.get_result(Hex.PLAYER_LEFT) if res_p1 == 0 and res_p2 == 0: raise Exception if res_p1 == 1 and res_p2 == 1: raise Exception winning_model = p1 if res_p1 == 1 else p2 loosing_model = p2 if res_p2 == 0 else p1 if self.results.get( (winning_model, loosing_model)) is not None: self.results[(winning_model, loosing_model)] += 1 else: self.results[(winning_model, loosing_model)] = 1 pp = pprint.PrettyPrinter(indent=4) pp.pprint(self.results) if total_moves > 0: pp.pprint("Wrong moves (%): " + str(wrong_moves / total_moves))
def main(): # n, num_games, verbose, starting_player, max_rollouts = setup_game() n, num_games, verbose, starting_player, max_rollouts = 5, 200, False, 1, 0.5 results = [] game_num = 1 viewer = None run_tournament = True with_training = True num_games_tournament = 25 if run_tournament: save_path = "short_topp" else: save_path = "long_topp" ##### CONFIG ##### buffer_size = 40 train_interval = 40 saving_interval = 10 moves_done = 0 epochs = 300 ################## buffer = ReplayBuffer(vfrac=0.1, tfrac=0.1, size=buffer_size) anet = init_anet(n, buffer) if with_training: anet.save_to_file(save_path + "/model_step_{0}.h5".format(0)) game = Hex(n, starting_player) ROOT_NODE = Node(game=game) while with_training and num_games >= game_num: game = Hex(n, starting_player) next_root = ROOT_NODE # viewer = Board(game) print("Game number {}".format(game_num)) while game.get_moves(): mc = MonteCarlo(game, max_rollouts, next_root) mc.run(lambda _input: ANET.predict(_input, model=anet.model)) case = mc.get_training_case() buffer.push(case) next_root = mc.get_best_move() game.do_move(next_root.move) moves_done += 1 if viewer: viewer.do_move(next_root.move, game.player) if moves_done % train_interval == 0: buffer.update() anet.train_model(epochs) anet.run_against_random(num_games=50, game_num=game_num) if saving_interval > 0 and game_num % saving_interval == 0: anet.save_to_file(save_path + "/model_step_{0}.h5".format(game_num)) buffer.size += 20 # train_interval += 5 # anet.optimizer.lr /= 2 if game.get_result(game.player) == 1: results.append(game.player) game_num += 1 if viewer: viewer.persist() if run_tournament: tournament = Tournament(num_games_tournament) tournament.run_tournament(save_path) else: anet.save_to_file("best_topp/model_2.h5")