Example #1
0
def make_old_detector_parfile(
    results, det_origin=(204.8, 204.8), filename=None
    ):
    tiltAngles = np.array(results['tiltAngles'])
    rMat_d     = makeDetectorRotMat(tiltAngles)
    tVec_d     = results['tVec_d'] - results['tVec_s']

    beamXYD = old_detector_params_from_new(
        np.hstack([tiltAngles.flatten(), tVec_d.flatten()]), det_origin
        )

    det_plist = np.zeros(12)
    det_plist[:3]  = beamXYD.flatten()
    det_plist[3:6] = tiltAngles
    det_plist[6:]  = results['dParams']
    if filename is not None:
        if isinstance(filename, file):
            fid = filename
        elif isinstance(filename, str) or isinstance(filename, unicode):
            fid = open(filename, 'w')
        print >> fid, "# DETECTOR PARAMETERS (from new geometry model fit)"
        print >> fid, "# \n# <class 'hexrd.xrd.detector.DetectorGeomGE'>\n#"
        for i in range(len(det_plist)):
            print >> fid, "%1.8e\t%d" % (det_plist[i], 0)
        fid.close()
    return det_plist
Example #2
0
def objFuncSX(pFit, pFull, pFlag, dFunc, dFlag,
              xyo_det, hkls_idx, bMat, vInv, wavelength,
              bVec, eVec, omePeriod,
              simOnly=False, returnScalarValue=returnScalarValue):
    """
    """
    npts   = len(xyo_det)

    refineFlag = np.hstack([pFlag, dFlag])

    # pFull[refineFlag] = pFit/scl[refineFlag]
    pFull[refineFlag] = pFit

    dParams = pFull[-len(dFlag):]
    xy_unwarped = dFunc(xyo_det[:, :2], dParams)

    # detector quantities
    rMat_d = xf.makeDetectorRotMat(pFull[:3])
    tVec_d = pFull[3:6].reshape(3, 1)

    # sample quantities
    chi    = pFull[6]
    tVec_s = pFull[7:10].reshape(3, 1)

    # crystal quantities
    rMat_c = xf.makeRotMatOfExpMap(pFull[10:13])
    tVec_c = pFull[13:16].reshape(3, 1)

    gVec_c = np.dot(bMat, hkls_idx)
    vMat_s = mutil.vecMVToSymm(vInv)                # stretch tensor comp matrix from MV notation in SAMPLE frame
    gVec_s = np.dot(vMat_s, np.dot(rMat_c, gVec_c)) # reciprocal lattice vectors in SAMPLE frame
    gHat_s = mutil.unitVector(gVec_s)               # unit reciprocal lattice vectors in SAMPLE frame
    gHat_c = np.dot(rMat_c.T, gHat_s)               # unit reciprocal lattice vectors in CRYSTAL frame

    match_omes, calc_omes = matchOmegas(xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength,
                                        vInv=vInv, beamVec=bVec, etaVec=eVec, omePeriod=omePeriod)

    calc_xy = np.zeros((npts, 2))
    for i in range(npts):
        rMat_s = xfcapi.makeOscillRotMat([chi, calc_omes[i]])
        calc_xy[i, :] = xfcapi.gvecToDetectorXY(gHat_c[:, i],
                                                rMat_d, rMat_s, rMat_c,
                                                tVec_d, tVec_s, tVec_c,
                                                beamVec=bVec).flatten()
        pass
    if np.any(np.isnan(calc_xy)):
        print "infeasible pFull: may want to scale back finite difference step size"

    # return values
    if simOnly:
        retval = np.hstack([calc_xy, calc_omes.reshape(npts, 1)])
    else:
        diff_vecs_xy = calc_xy - xy_unwarped[:, :2]
        diff_ome     = xf.angularDifference( calc_omes, xyo_det[:, 2] )
        retval = np.hstack([diff_vecs_xy,
                            diff_ome.reshape(npts, 1)
                            ]).flatten()
        if returnScalarValue:
            retval = sum( retval )
    return retval
Example #3
0
def make_old_detector_parfile(
    results, det_origin=(204.8, 204.8), filename=None
    ):
    tiltAngles = np.array(results['tiltAngles'])
    rMat_d     = makeDetectorRotMat(tiltAngles)
    tVec_d     = results['tVec_d'] - results['tVec_s']

    beamXYD = old_detector_params_from_new(
        np.hstack([tiltAngles.flatten(), tVec_d.flatten()]), det_origin
        )

    det_plist = np.zeros(12)
    det_plist[:3]  = beamXYD.flatten()
    det_plist[3:6] = tiltAngles
    det_plist[6:]  = results['dParams']
    if filename is not None:
        if isinstance(filename, file):
            fid = filename
        elif isinstance(filename, str) or isinstance(filename, unicode):
            fid = open(filename, 'w')
        print >> fid, "# DETECTOR PARAMETERS (from new geometry model fit)"
        print >> fid, "# \n# <class 'hexrd.xrd.detector.DetectorGeomGE'>\n#"
        for i in range(len(det_plist)):
            print >> fid, "%1.8e\t%d" % (det_plist[i], 0)
        fid.close()
    return det_plist
Example #4
0
def objFuncSX(pFit, pFull, pFlag, dFunc, dFlag,
              xyo_det, hkls_idx, bMat, vInv, wavelength,
              bVec, eVec, omePeriod,
              simOnly=False, returnScalarValue=returnScalarValue):
    """
    """
    npts   = len(xyo_det)

    refineFlag = np.hstack([pFlag, dFlag])

    # pFull[refineFlag] = pFit/scl[refineFlag]
    pFull[refineFlag] = pFit

    dParams = pFull[-len(dFlag):]
    xy_unwarped = dFunc(xyo_det[:, :2], dParams)

    # detector quantities
    rMat_d = xf.makeDetectorRotMat(pFull[:3])
    tVec_d = pFull[3:6].reshape(3, 1)

    # sample quantities
    chi    = pFull[6]
    tVec_s = pFull[7:10].reshape(3, 1)

    # crystal quantities
    rMat_c = xf.makeRotMatOfExpMap(pFull[10:13])
    tVec_c = pFull[13:16].reshape(3, 1)

    gVec_c = np.dot(bMat, hkls_idx)
    vMat_s = mutil.vecMVToSymm(vInv)                # stretch tensor comp matrix from MV notation in SAMPLE frame
    gVec_s = np.dot(vMat_s, np.dot(rMat_c, gVec_c)) # reciprocal lattice vectors in SAMPLE frame
    gHat_s = mutil.unitVector(gVec_s)               # unit reciprocal lattice vectors in SAMPLE frame
    gHat_c = np.dot(rMat_c.T, gHat_s)               # unit reciprocal lattice vectors in CRYSTAL frame

    match_omes, calc_omes = matchOmegas(xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength,
                                        vInv=vInv, beamVec=bVec, etaVec=eVec, omePeriod=omePeriod)

    calc_xy = np.zeros((npts, 2))
    for i in range(npts):
        rMat_s = xfcapi.makeOscillRotMat([chi, calc_omes[i]])
        calc_xy[i, :] = xfcapi.gvecToDetectorXY(gHat_c[:, i],
                                                rMat_d, rMat_s, rMat_c,
                                                tVec_d, tVec_s, tVec_c,
                                                beamVec=bVec).flatten()
        pass
    if np.any(np.isnan(calc_xy)):
        print "infeasible pFull: may want to scale back finite difference step size"

    # return values
    if simOnly:
        retval = np.hstack([calc_xy, calc_omes.reshape(npts, 1)])
    else:
        diff_vecs_xy = calc_xy - xy_unwarped[:, :2]
        diff_ome     = xf.angularDifference( calc_omes, xyo_det[:, 2] )
        retval = np.hstack([diff_vecs_xy,
                            diff_ome.reshape(npts, 1)
                            ]).flatten()
        if returnScalarValue:
            retval = sum( retval )
    return retval
Example #5
0
def tVec_d_from_old_detector_params(old_par, det_origin):
    """
    calculate tVec_d from old [xc, yc, D] parameter spec

    as loaded the params have 2 columns: [val, bool]
    """
    rMat_d = makeDetectorRotMat(old_par[3:6, 0])
    #
    P2_d = np.c_[old_par[0, 0] - det_origin[0], old_par[1, 0] - det_origin[1], 0.0].T
    P2_l = np.c_[0.0, 0.0, -old_par[2, 0]].T
    return P2_l - np.dot(rMat_d, P2_d)
Example #6
0
def old_detector_params_from_new(new_par, det_origin):
    """
    calculate beam position in old parameter spec

    *) may need to consider distortion...
    """
    rMat_d = makeDetectorRotMat(new_par[:3])
    tVec_d = new_par[3:6].reshape(3, 1)

    A = np.eye(3); A[:, :2] = rMat_d[:, :2]

    return solve(A, -tVec_d) + np.vstack([det_origin[0], det_origin[1], 0])
Example #7
0
def tVec_d_from_old_detector_params(old_par, det_origin):
    """
    calculate tVec_d from old [xc, yc, D] parameter spec

    as loaded the params have 2 columns: [val, bool]
    """
    rMat_d = makeDetectorRotMat(old_par[3:6, 0])
    #
    P2_d = np.c_[old_par[0, 0] - det_origin[0], old_par[1, 0] - det_origin[1],
                 0.].T
    P2_l = np.c_[0., 0., -old_par[2, 0]].T
    return P2_l - np.dot(rMat_d, P2_d)
Example #8
0
def old_detector_params_from_new(new_par, det_origin):
    """
    calculate beam position in old parameter spec

    *) may need to consider distortion...
    """
    rMat_d = makeDetectorRotMat(new_par[:3])
    tVec_d = new_par[3:6].reshape(3, 1)

    A = np.eye(3); A[:, :2] = rMat_d[:, :2]

    return solve(A, -tVec_d) + np.vstack([det_origin[0], det_origin[1], 0])
Example #9
0
def write_old_parfile(filename, results):
    if isinstance(filename, file):
        fid = filename
    elif isinstance(filename, str) or isinstance(filename, unicode):
        fid = open(filename, 'w')
        pass
    rMat_d = xf.makeDetectorRotMat(results['tiltAngles'])
    tVec_d = results['tVec_d'] - results['tVec_s']
    beamXYD = beamXYD_from_tVec_d(rMat_d, tVec_d, bVec_ref, detOrigin)
    det_plist = np.zeros(12)
    det_plist[:3] = beamXYD.flatten()
    det_plist[3:6] = results['tiltAngles']
    det_plist[6:] = results['dParams']
    print >> fid, "# DETECTOR PARAMETERS (from new geometry model fit)"
    print >> fid, "# \n# <class 'hexrd.xrd.detector.DetectorGeomGE'>\n#"
    for i in range(len(det_plist)):
        print >> fid, "%1.8e\t%d" % (det_plist[i], 0)
    fid.close()
    return
Example #10
0
def write_old_parfile(filename, results):
    if isinstance(filename, file):
        fid = filename
    elif isinstance(filename, str) or isinstance(filename, unicode):
        fid = open(filename, 'w')
        pass
    rMat_d = xf.makeDetectorRotMat(results['tiltAngles'])
    tVec_d = results['tVec_d'] - results['tVec_s']
    beamXYD = beamXYD_from_tVec_d(rMat_d, tVec_d, bVec_ref, detOrigin)
    det_plist = np.zeros(12)
    det_plist[:3]  = beamXYD.flatten()
    det_plist[3:6] = results['tiltAngles']
    det_plist[6:]  = results['dParams']
    print >> fid, "# DETECTOR PARAMETERS (from new geometry model fit)"
    print >> fid, "# \n# <class 'hexrd.xrd.detector.DetectorGeomGE'>\n#"
    for i in range(len(det_plist)):
        print >> fid, "%1.8e\t%d" % (det_plist[i], 0)
    fid.close()
    return
Example #11
0
def tVec_d_from_old_parfile(old_par, detOrigin):
    beamXYD = old_par[:3, 0]
    rMat_d = xf.makeDetectorRotMat(old_par[3:6, 0])
    args = (rMat_d, beamXYD, detOrigin, bVec_ref)
    tvd_xy = opt.leastsq(objFun_tVec_d, -beamXYD[:2], args=args)[0]
    return np.hstack([tvd_xy, -beamXYD[2]]).reshape(3, 1)
Example #12
0
import sys, os, time
import numpy as np

from hexrd.xrd import transforms as xf
from hexrd.xrd import transforms_CAPI as xfcapi

# input parameters
bVec_ref = xf.bVec_ref

tilt_angles = (0.0011546340766314521, -0.0040527538387122993,
               -0.0026221336905160211)
rMat_d = xf.makeDetectorRotMat(tilt_angles)
tVec_d = np.array([[-1.44904], [-3.235616], [-1050.74026]])

chi = -0.0011591608938627839
tVec_s = np.array([[-0.15354144], [0.], [-0.23294777]])

rMat_c = xf.makeRotMatOfExpMap(
    np.array([[0.66931818], [-0.98578066], [0.73593251]]))
tVec_c = np.array([[0.07547626], [0.08827523], [-0.02131205]])

rMat_s = xf.makeOscillRotMat([chi, 0.])

# ######################################################################
# Calculate pixel coordinates
#
pvec = 204.8 * np.linspace(-1, 1, 2048)
dcrds = np.meshgrid(pvec, pvec)
XY = np.ascontiguousarray(
    np.vstack([dcrds[0].flatten(), dcrds[1].flatten()]).T)
Example #13
0
import sys, os, time
import numpy as np

from hexrd.xrd import transforms as xf
from hexrd.xrd import transforms_CAPI as xfcapi

# input parameters
bVec_ref = xf.bVec_ref

rMat_d = xf.makeDetectorRotMat(
    (0.0011546340766314521, -0.0040527538387122993, -0.0026221336905160211))
tVec_d = np.array([[-1.44904], [-3.235616], [-1050.74026]])

chi = -0.0011591608938627839
tVec_s = np.array([[-0.15354144], [0.], [-0.23294777]])

rMat_c = xf.makeRotMatOfExpMap(
    np.array([[0.66931818], [-0.98578066], [0.73593251]]))
tVec_c = np.array([[0.07547626], [0.08827523], [-0.02131205]])

rMat_s = xf.makeOscillRotMat([chi, 0.])

# ######################################################################
# Calculate pixel coordinates
#
pvec = 204.8 * np.linspace(-1, 1, 2048)
dcrds = np.meshgrid(pvec, pvec)
XY = np.ascontiguousarray(
    np.vstack([dcrds[0].flatten(), dcrds[1].flatten()]).T)

# Check the timings
Example #14
0
def tVec_d_from_old_parfile(old_par, detOrigin):
    beamXYD = old_par[:3, 0]
    rMat_d  = xf.makeDetectorRotMat(old_par[3:6, 0])
    args=(rMat_d, beamXYD, detOrigin, bVec_ref)
    tvd_xy = opt.leastsq(objFun_tVec_d, -beamXYD[:2], args=args)[0]
    return np.hstack([tvd_xy, -beamXYD[2]]).reshape(3, 1)
Example #15
0
import sys, os, time, random
import numpy as np

from hexrd.xrd import transforms as xf
from hexrd.xrd import transforms_CAPI as xfcapi

epsf = 2.2e-16

vec = np.array([[random.uniform(-np.pi,np.pi),random.uniform(-np.pi,np.pi),random.uniform(-np.pi,np.pi)]])
vHat1 = xf.unitVector(vec.T)
vHat2 = xfcapi.unitRowVector(vec)
print "unitVector results match:             ",np.linalg.norm(vHat1.T-vHat2)/np.linalg.norm(vHat1) < epsf

tAng = np.array([0.0011546340766314521,-0.0040527538387122993,-0.0026221336905160211])
rMat1 = xf.makeDetectorRotMat(tAng)
rMat2 = xfcapi.makeDetectorRotMat(tAng)
print "makeDetectorRotMat results match:     ",np.linalg.norm(rMat1-rMat2)/np.linalg.norm(rMat1) < epsf

oAng = np.array([-0.0011591608938627839,0.0011546340766314521])
rMat1 = xf.makeOscillRotMat(oAng)
rMat2 = xfcapi.makeOscillRotMat(oAng)
print "makeOscillRotMat results match:       ",np.linalg.norm(rMat1-rMat2)/np.linalg.norm(rMat1) < epsf

eMap = np.array([ 0.66931818,-0.98578066,0.73593251])
rMat1 = xf.makeRotMatOfExpMap(eMap)
rMat2 = xfcapi.makeRotMatOfExpMap(eMap)
print "makeRotMatOfExpMap results match:     ",np.linalg.norm(rMat1-rMat2)/np.linalg.norm(rMat1) < epsf

axis = np.array([ 0.66931818,-0.98578066,0.73593251])
rMat1 = xf.makeBinaryRotMat(axis)
rMat2 = xfcapi.makeBinaryRotMat(axis)
Example #16
0
def check_indexing_plots(cfg_filename,
                         plot_trials=False,
                         plot_from_grains=False):
    cfg = config.open(cfg_filename)[0]  # use first block, like indexing

    working_dir = cfg.working_dir
    analysis_dir = os.path.join(working_dir, cfg.analysis_name)

    #instrument parameters
    icfg = get_instrument_parameters(cfg)
    chi = icfg['oscillation_stage']['chi']

    # load maps that were used
    oem = cPickle.load(open(cfg.find_orientations.orientation_maps.file, 'r'))
    nmaps = len(oem.dataStore)
    omeEdges = np.degrees(oem.omeEdges)
    nome = len(omeEdges) - 1
    etaEdges = np.degrees(oem.etaEdges)
    neta = len(etaEdges) - 1
    delta_ome = abs(omeEdges[1] - omeEdges[0])

    full_ome_range = xf.angularDifference(omeEdges[0], omeEdges[-1]) == 0
    full_eta_range = xf.angularDifference(etaEdges[0], etaEdges[-1]) == 0

    # grab plane data and figure out IDs of map HKLS
    pd = oem.planeData
    gvids = [
        pd.hklDataList[i]['hklID']
        for i in np.where(pd.exclusions == False)[0].tolist()
    ]

    # load orientations
    quats = np.atleast_2d(
        np.loadtxt(os.path.join(working_dir, 'accepted_orientations.dat')))
    if plot_trials:
        scored_trials = np.load(
            os.path.join(working_dir, 'scored_orientations.dat'))
        quats = scored_orientations[:4, scored_orientations[
            -1, :] >= cfg.find_orientations.clustering.completeness]
        pass
    expMaps = np.tile(2. * np.arccos(quats[:, 0]),
                      (3, 1)) * unitVector(quats[:, 1:].T)

    ##########################################
    #      SPECIAL CASE FOR FIT GRAINS       #
    ##########################################
    if plot_from_grains:
        distortion = (GE_41RT, icfg['detector']['distortion']['parameters'])
        #
        grain_table = np.atleast_2d(
            np.loadtxt(os.path.join(analysis_dir, 'grains.out')))
        ngrains = len(grain_table)
        #
        expMaps = grain_table[:, 3:6]
        tVec_c = grain_table[:, 6:9]
        vInv = grain_table[:, 6:12]
        #
        rMat_d = xf.makeDetectorRotMat(
            icfg['detector']['transform']['tilt_angles'])
        tVec_d = np.vstack(icfg['detector']['transform']['t_vec_d'])
        #
        chi = icfg['oscillation_stage']['chi']
        tVec_s = np.vstack(icfg['oscillation_stage']['t_vec_s'])
        #
        oes = np.zeros(oem.dataStore.shape)
        for i_grn in range(ngrains):
            spots_table = np.loadtxt(
                os.path.join(analysis_dir, 'spots_%05d.out' % i_grn))
            idx_m = spots_table[:, 0] >= 0
            for i_map in range(nmaps):
                idx_g = spots_table[:, 1] == gvids[i_map]
                idx = np.logical_and(idx_m, idx_g)
                nrefl = sum(idx)

                omes_fit = xf.mapAngle(spots_table[idx, 9],
                                       np.radians(
                                           cfg.find_orientations.omega.period),
                                       units='radians')
                xy_det = spots_table[idx, -3:]
                xy_det[:, 2] = np.zeros(nrefl)

                rMat_s_array = xfcapi.makeOscillRotMatArray(chi, omes_fit)

                # form in-plane vectors for detector points list in DETECTOR FRAME
                P2_d = xy_det.T

                # in LAB FRAME
                P2_l = np.dot(rMat_d, P2_d) + tVec_d  # point on detector
                P0_l = np.hstack([
                    tVec_s +
                    np.dot(rMat_s_array[j], tVec_c[i_grn, :].reshape(3, 1))
                    for j in range(nrefl)
                ])  # origin of CRYSTAL FRAME

                # diffraction unit vector components in LAB FRAME
                dHat_l = unitVector(P2_l - P0_l)
                P2_l = np.dot(rMat_d, xy_det.T) + tVec_d

                # angles for reference frame
                dHat_ref_l = unitVector(P2_l)

                # append etas and omes
                etas_fit = np.arctan2(dHat_ref_l[1, :],
                                      dHat_ref_l[0, :]).flatten()

                # find indices, then truncate or wrap
                i_ome = cellIndices(oem.omeEdges, omes_fit)
                if full_ome_range:
                    i_ome[i_ome < 0] = np.mod(i_ome, nome) + 1
                    i_ome[i_ome >= nome] = np.mod(i_ome, nome)
                else:
                    incl = np.logical_or(i_ome >= 0, i_ome < nome)
                    i_ome = i_ome[incl]
                j_eta = cellIndices(oem.etaEdges, etas_fit)
                if full_eta_range:
                    j_eta[j_eta < 0] = np.mod(j_eta, neta) + 1
                    j_eta[j_eta >= neta] = np.mod(j_eta, neta)
                else:
                    incl = np.logical_or(j_eta >= 0, j_eta < neta)
                    j_eta = j_eta[incl]

                #if np.max(i_ome) >= nome or np.min(i_ome) < 0 or np.max(j_eta) >= neta or np.min(j_eta) < 0:
                #    import pdb; pdb.set_trace()
                # add to map
                oes[i_map][i_ome, j_eta] = 1
            pass
        pass

    # simulate quaternion points
    if not plot_from_grains:
        oes = simulateOmeEtaMaps(omeEdges,
                                 etaEdges,
                                 pd,
                                 expMaps,
                                 chi=chi,
                                 etaTol=0.01,
                                 omeTol=0.01,
                                 etaRanges=None,
                                 omeRanges=None,
                                 bVec=xf.bVec_ref,
                                 eVec=xf.eta_ref,
                                 vInv=xf.vInv_ref)

    # tick labling
    omes = np.degrees(oem.omeEdges)
    etas = np.degrees(oem.etaEdges)
    num_ticks = 7
    xmin = np.amin(etas)
    xmax = np.amax(etas)
    dx = (xmax - xmin) / (num_ticks - 1.)
    dx1 = (len(etas) - 1) / (num_ticks - 1.)
    xtlab = ["%.0f" % (xmin + i * dx) for i in range(num_ticks)]
    xtloc = np.array([i * dx1 for i in range(num_ticks)]) - 0.5
    ymin = np.amin(omes)
    ymax = np.amax(omes)
    dy = (ymax - ymin) / (num_ticks - 1.)
    dy1 = (len(omes) - 1) / (num_ticks - 1.)
    ytlab = ["%.0f" % (ymin + i * dy) for i in range(num_ticks)]
    ytloc = np.array([i * dy1 for i in range(num_ticks)]) - 0.5

    # Plot the three kernel density estimates
    n_maps = len(oem.iHKLList)

    fig_list = [plt.figure(num=i + 1) for i in range(n_maps)]
    ax_list = [fig_list[i].gca() for i in range(n_maps)]
    for i_map in range(n_maps):
        y, x = np.where(oes[i_map] > 0)
        ax_list[i_map].hold(True)
        ax_list[i_map].imshow(oem.dataStore[i_map] > 0.1, cmap=cm.bone)
        ax_list[i_map].set_title(r'Map for $\{%d %d %d\}$' %
                                 tuple(pd.hkls[:, i_map]))
        ax_list[i_map].set_xlabel(
            r'Azimuth channel, $\eta$; $\Delta\eta=%.3f$' % delta_ome)
        ax_list[i_map].set_ylabel(
            r'Rotation channel, $\omega$; $\Delta\omega=%.3f$' % delta_ome)
        ax_list[i_map].plot(x, y, 'c+')
        ax_list[i_map].xaxis.set_ticks(xtloc)
        ax_list[i_map].xaxis.set_ticklabels(xtlab)
        ax_list[i_map].yaxis.set_ticks(ytloc)
        ax_list[i_map].yaxis.set_ticklabels(ytlab)
        ax_list[i_map].axis('tight')
    plt.show()
    return fig_list, oes
Example #17
0
def check_indexing_plots(cfg_filename, plot_trials=False, plot_from_grains=False):
    cfg = config.open(cfg_filename)[0]    # use first block, like indexing

    working_dir = cfg.working_dir
    analysis_dir = os.path.join(working_dir, cfg.analysis_name)
    
    #instrument parameters
    icfg = get_instrument_parameters(cfg)
    chi = icfg['oscillation_stage']['chi']

    # load maps that were used
    oem = cPickle.load(
        open(cfg.find_orientations.orientation_maps.file, 'r')
        )
    nmaps = len(oem.dataStore)
    omeEdges = np.degrees(oem.omeEdges); nome = len(omeEdges) - 1
    etaEdges = np.degrees(oem.etaEdges); neta = len(etaEdges) - 1
    delta_ome = abs(omeEdges[1]-omeEdges[0])

    full_ome_range = xf.angularDifference(omeEdges[0], omeEdges[-1]) == 0
    full_eta_range = xf.angularDifference(etaEdges[0], etaEdges[-1]) == 0
    
    # grab plane data and figure out IDs of map HKLS
    pd = oem.planeData
    gvids = [pd.hklDataList[i]['hklID'] for i in np.where(pd.exclusions == False)[0].tolist()]

    # load orientations
    quats = np.atleast_2d(np.loadtxt(os.path.join(working_dir, 'accepted_orientations.dat')))
    if plot_trials:
        scored_trials = np.load(os.path.join(working_dir, 'scored_orientations.dat'))
        quats = scored_orientations[:4, scored_orientations[-1, :] >= cfg.find_orientations.clustering.completeness]
        pass
    expMaps = np.tile(2. * np.arccos(quats[:, 0]), (3, 1))*unitVector(quats[:, 1:].T)

    ##########################################
    #      SPECIAL CASE FOR FIT GRAINS       #
    ##########################################
    if plot_from_grains:
        distortion = (GE_41RT, icfg['detector']['distortion']['parameters'])
        #
        grain_table = np.atleast_2d(np.loadtxt(os.path.join(analysis_dir, 'grains.out')))
        ngrains = len(grain_table)
        #
        expMaps = grain_table[:, 3:6]
        tVec_c = grain_table[:, 6:9]
        vInv = grain_table[:, 6:12]
        #
        rMat_d = xf.makeDetectorRotMat(icfg['detector']['transform']['tilt_angles'])
        tVec_d = np.vstack(icfg['detector']['transform']['t_vec_d'])
        #
        chi = icfg['oscillation_stage']['chi']
        tVec_s = np.vstack(icfg['oscillation_stage']['t_vec_s'])
        #
        oes = np.zeros(oem.dataStore.shape)
        for i_grn in range(ngrains):
            spots_table = np.loadtxt(os.path.join(analysis_dir, 'spots_%05d.out' %i_grn))
            idx_m = spots_table[:, 0] >= 0
            for i_map in range(nmaps):
                idx_g = spots_table[:, 1] == gvids[i_map]
                idx = np.logical_and(idx_m, idx_g)
                nrefl = sum(idx)
                
                omes_fit = xf.mapAngle(spots_table[idx, 9], np.radians(cfg.find_orientations.omega.period), units='radians')
                xy_det = spots_table[idx, -3:]
                xy_det[:, 2] = np.zeros(nrefl)
                
                rMat_s_array = xfcapi.makeOscillRotMatArray(chi, omes_fit)
                
                # form in-plane vectors for detector points list in DETECTOR FRAME
                P2_d = xy_det.T
                
                # in LAB FRAME
                P2_l = np.dot(rMat_d, P2_d) + tVec_d # point on detector
                P0_l = np.hstack(
                    [tVec_s + np.dot(rMat_s_array[j], tVec_c[i_grn, :].reshape(3, 1)) for j in range(nrefl)]
                ) # origin of CRYSTAL FRAME

                # diffraction unit vector components in LAB FRAME
                dHat_l = unitVector(P2_l - P0_l)
                P2_l = np.dot(rMat_d, xy_det.T) + tVec_d
                
                # angles for reference frame
                dHat_ref_l = unitVector(P2_l)
    
                # append etas and omes
                etas_fit = np.arctan2(dHat_ref_l[1, :], dHat_ref_l[0, :]).flatten()
           
                # find indices, then truncate or wrap
                i_ome = cellIndices(oem.omeEdges, omes_fit)
                if full_ome_range:
                    i_ome[i_ome < 0] = np.mod(i_ome, nome) + 1
                    i_ome[i_ome >= nome] = np.mod(i_ome, nome)
                else:
                    incl = np.logical_or(i_ome >= 0, i_ome < nome)
                    i_ome = i_ome[incl]
                j_eta = cellIndices(oem.etaEdges, etas_fit)
                if full_eta_range:
                    j_eta[j_eta < 0] = np.mod(j_eta, neta) + 1
                    j_eta[j_eta >= neta] = np.mod(j_eta, neta)
                else:
                    incl = np.logical_or(j_eta >= 0, j_eta < neta)
                    j_eta = j_eta[incl]

                #if np.max(i_ome) >= nome or np.min(i_ome) < 0 or np.max(j_eta) >= neta or np.min(j_eta) < 0:
                #    import pdb; pdb.set_trace()
                # add to map
                oes[i_map][i_ome, j_eta] = 1
            pass
        pass
    
    # simulate quaternion points
    if not plot_from_grains:
        oes = simulateOmeEtaMaps(omeEdges, etaEdges, pd,
                                 expMaps,
                                 chi=chi,
                                 etaTol=0.01, omeTol=0.01,
                                 etaRanges=None, omeRanges=None,
                                 bVec=xf.bVec_ref, eVec=xf.eta_ref, vInv=xf.vInv_ref)
    
    # tick labling
    omes = np.degrees(oem.omeEdges)
    etas = np.degrees(oem.etaEdges)
    num_ticks = 7
    xmin = np.amin(etas); xmax = np.amax(etas)
    dx = (xmax - xmin) / (num_ticks - 1.); dx1 = (len(etas) - 1) / (num_ticks - 1.)
    xtlab = ["%.0f" % (xmin + i*dx) for i in range(num_ticks)]
    xtloc = np.array([i*dx1 for i in range(num_ticks)]) - 0.5
    ymin = np.amin(omes); ymax = np.amax(omes)
    dy = (ymax - ymin) / (num_ticks - 1.); dy1 = (len(omes) - 1) / (num_ticks - 1.)
    ytlab = ["%.0f" % (ymin + i*dy) for i in range(num_ticks)]
    ytloc = np.array([i*dy1 for i in range(num_ticks)]) - 0.5
    
    # Plot the three kernel density estimates
    n_maps = len(oem.iHKLList)
    
    fig_list =[plt.figure(num=i+1) for i in range(n_maps)]
    ax_list = [fig_list[i].gca() for i in range(n_maps)]
    for i_map in range(n_maps):
        y, x = np.where(oes[i_map] > 0)
        ax_list[i_map].hold(True)
        ax_list[i_map].imshow(oem.dataStore[i_map] > 0.1, cmap=cm.bone)
        ax_list[i_map].set_title(r'Map for $\{%d %d %d\}$' %tuple(pd.hkls[:, i_map]))
        ax_list[i_map].set_xlabel(r'Azimuth channel, $\eta$; $\Delta\eta=%.3f$' %delta_ome)
        ax_list[i_map].set_ylabel(r'Rotation channel, $\omega$; $\Delta\omega=%.3f$' %delta_ome)
        ax_list[i_map].plot(x, y, 'c+')
        ax_list[i_map].xaxis.set_ticks(xtloc)
        ax_list[i_map].xaxis.set_ticklabels(xtlab)
        ax_list[i_map].yaxis.set_ticks(ytloc)
        ax_list[i_map].yaxis.set_ticklabels(ytlab)
        ax_list[i_map].axis('tight')
    plt.show()
    return fig_list, oes
Example #18
0
def objFuncSX(pFit,
              pFull,
              pFlag,
              dFunc,
              dFlag,
              xyo_det,
              hkls_idx,
              bMat,
              vInv,
              bVec,
              eVec,
              omePeriod,
              simOnly=False,
              return_value_flag=return_value_flag):
    """
    """
    npts = len(xyo_det)

    refineFlag = np.array(np.hstack([pFlag, dFlag]), dtype=bool)
    print refineFlag

    # pFull[refineFlag] = pFit/scl[refineFlag]
    pFull[refineFlag] = pFit

    if dFunc is not None:
        dParams = pFull[-len(dFlag):]
        xys = dFunc(xyo_det[:, :2], dParams)
    else:
        xys = xyo_det[:, :2]

    # detector quantities
    wavelength = pFull[0]

    rMat_d = xf.makeDetectorRotMat(pFull[1:4])
    tVec_d = pFull[4:7].reshape(3, 1)

    # sample quantities
    chi = pFull[7]
    tVec_s = pFull[8:11].reshape(3, 1)

    # crystal quantities
    rMat_c = xf.makeRotMatOfExpMap(pFull[11:14])
    tVec_c = pFull[14:17].reshape(3, 1)

    # stretch tensor comp matrix from MV notation in SAMPLE frame
    vMat_s = mutil.vecMVToSymm(vInv)

    # g-vectors:
    #   1. calculate full g-vector components in CRYSTAL frame from B
    #   2. rotate into SAMPLE frame and apply stretch
    #   3. rotate back into CRYSTAL frame and normalize to unit magnitude
    # IDEA: make a function for this sequence of operations with option for
    # choosing ouput frame (i.e. CRYSTAL vs SAMPLE vs LAB)
    gVec_c = np.dot(bMat, hkls_idx)
    gVec_s = np.dot(vMat_s, np.dot(rMat_c, gVec_c))
    gHat_c = mutil.unitVector(np.dot(rMat_c.T, gVec_s))

    match_omes, calc_omes = matchOmegas(xyo_det,
                                        hkls_idx,
                                        chi,
                                        rMat_c,
                                        bMat,
                                        wavelength,
                                        vInv=vInv,
                                        beamVec=bVec,
                                        etaVec=eVec,
                                        omePeriod=omePeriod)

    calc_xy = np.zeros((npts, 2))
    for i in range(npts):
        rMat_s = xfcapi.makeOscillRotMat([chi, calc_omes[i]])
        calc_xy[i, :] = xfcapi.gvecToDetectorXY(gHat_c[:, i],
                                                rMat_d,
                                                rMat_s,
                                                rMat_c,
                                                tVec_d,
                                                tVec_s,
                                                tVec_c,
                                                beamVec=bVec).flatten()
        pass
    if np.any(np.isnan(calc_xy)):
        raise RuntimeError("infeasible pFull: may want to scale" +
                           "back finite difference step size")

    # return values
    if simOnly:
        # return simulated values
        retval = np.hstack([calc_xy, calc_omes.reshape(npts, 1)])
    else:
        # return residual vector
        # IDEA: try angles instead of xys?
        diff_vecs_xy = calc_xy - xys[:, :2]
        diff_ome = xf.angularDifference(calc_omes, xyo_det[:, 2])
        retval = np.hstack([diff_vecs_xy, diff_ome.reshape(npts, 1)]).flatten()
        if return_value_flag == 1:
            # return scalar sum of squared residuals
            retval = sum(abs(retval))
        elif return_value_flag == 2:
            # return DOF-normalized chisq
            # TODO: check this calculation
            denom = npts - len(pFit) - 1.
            if denom != 0:
                nu_fac = 1. / denom
            else:
                nu_fac = 1.
            nu_fac = 1 / (npts - len(pFit) - 1.)
            retval = nu_fac * sum(retval**2)
    return retval
Example #19
0
def objFuncSX(pFit, pFull, pFlag, dFunc, dFlag,
              xyo_det, hkls_idx, bMat, vInv,
              bVec, eVec, omePeriod,
              simOnly=False, return_value_flag=return_value_flag):
    """
    """
    npts = len(xyo_det)

    refineFlag = np.array(np.hstack([pFlag, dFlag]), dtype=bool)
    print refineFlag

    # pFull[refineFlag] = pFit/scl[refineFlag]
    pFull[refineFlag] = pFit

    if dFunc is not None:
        dParams = pFull[-len(dFlag):]
        xys = dFunc(xyo_det[:, :2], dParams)
    else:
        xys = xyo_det[:, :2]

    # detector quantities
    wavelength = pFull[0]

    rMat_d = xf.makeDetectorRotMat(pFull[1:4])
    tVec_d = pFull[4:7].reshape(3, 1)

    # sample quantities
    chi = pFull[7]
    tVec_s = pFull[8:11].reshape(3, 1)

    # crystal quantities
    rMat_c = xf.makeRotMatOfExpMap(pFull[11:14])
    tVec_c = pFull[14:17].reshape(3, 1)

    # stretch tensor comp matrix from MV notation in SAMPLE frame
    vMat_s = mutil.vecMVToSymm(vInv)

    # g-vectors:
    #   1. calculate full g-vector components in CRYSTAL frame from B
    #   2. rotate into SAMPLE frame and apply stretch
    #   3. rotate back into CRYSTAL frame and normalize to unit magnitude
    # IDEA: make a function for this sequence of operations with option for
    # choosing ouput frame (i.e. CRYSTAL vs SAMPLE vs LAB)
    gVec_c = np.dot(bMat, hkls_idx)
    gVec_s = np.dot(vMat_s, np.dot(rMat_c, gVec_c))
    gHat_c = mutil.unitVector(np.dot(rMat_c.T, gVec_s))

    match_omes, calc_omes = matchOmegas(
            xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength,
            vInv=vInv, beamVec=bVec, etaVec=eVec, omePeriod=omePeriod)

    calc_xy = np.zeros((npts, 2))
    for i in range(npts):
        rMat_s = xfcapi.makeOscillRotMat([chi, calc_omes[i]])
        calc_xy[i, :] = xfcapi.gvecToDetectorXY(gHat_c[:, i],
                                                rMat_d, rMat_s, rMat_c,
                                                tVec_d, tVec_s, tVec_c,
                                                beamVec=bVec).flatten()
        pass
    if np.any(np.isnan(calc_xy)):
        raise RuntimeError(
            "infeasible pFull: may want to scale" +
            "back finite difference step size")

    # return values
    if simOnly:
        # return simulated values
        retval = np.hstack([calc_xy, calc_omes.reshape(npts, 1)])
    else:
        # return residual vector
        # IDEA: try angles instead of xys?
        diff_vecs_xy = calc_xy - xys[:, :2]
        diff_ome = xf.angularDifference(calc_omes, xyo_det[:, 2])
        retval = np.hstack([diff_vecs_xy,
                            diff_ome.reshape(npts, 1)
                            ]).flatten()
        if return_value_flag == 1:
            # return scalar sum of squared residuals
            retval = sum(abs(retval))
        elif return_value_flag == 2:
            # return DOF-normalized chisq
            # TODO: check this calculation
            denom = npts - len(pFit) - 1.
            if denom != 0:
                nu_fac = 1. / denom
            else:
                nu_fac = 1.
            nu_fac = 1 / (npts - len(pFit) - 1.)
            retval = nu_fac * sum(retval**2)
    return retval
import sys, os, time
import numpy as np

from hexrd.xrd import transforms as xf
from hexrd.xrd import transforms_CAPI as xfcapi

# input parameters
bVec_ref = xf.bVec_ref

tilt_angles = (  0.0011546340766314521,
                -0.0040527538387122993,
                 -0.0026221336905160211 )
rMat_d = xf.makeDetectorRotMat( tilt_angles ) 
tVec_d = np.array( [ [   -1.44904 ],
                     [   -3.235616],
                     [-1050.74026 ] ] )

chi    = -0.0011591608938627839
tVec_s = np.array([ [-0.15354144],
                    [ 0.        ],
                    [-0.23294777] ] )

rMat_c = xf.makeRotMatOfExpMap(np.array( [ [ 0.66931818],
                                           [-0.98578066],
                                           [ 0.73593251] ] ) )
tVec_c = np.array( [ [ 0.07547626],
                     [ 0.08827523],
                     [-0.02131205] ] )

rMat_s = xf.makeOscillRotMat([chi, 0.])
from timeit import default_timer as timer
import sys, os, time
import numpy as np

from hexrd.xrd import transforms as xf
from hexrd.xrd import transforms_CAPI as xfcapi
from hexrd.xrd import pycfuncs_transforms as pycfuncs 

import numba.cuda

# input parameters
bVec_ref = xf.bVec_ref

rMat_d = xf.makeDetectorRotMat( ( 0.0011546340766314521,
                                 -0.0040527538387122993,
                                 -0.0026221336905160211 ) ) 
tVec_d = np.array( [ [   -1.44904 ],
                     [   -3.235616],
                     [-1050.74026 ] ] )

chi    = -0.0011591608938627839
tVec_s = np.array([ [-0.15354144],
                    [ 0.        ],
                    [-0.23294777] ] )

rMat_c = xf.makeRotMatOfExpMap(np.array( [ [ 0.66931818],
                                           [-0.98578066],
                                           [ 0.73593251] ] ) )
tVec_c = np.array( [ [ 0.07547626],
                     [ 0.08827523],
                     [-0.02131205] ] )
Example #22
0
epsf = 2.2e-16

vec = np.array([[
    random.uniform(-np.pi, np.pi),
    random.uniform(-np.pi, np.pi),
    random.uniform(-np.pi, np.pi)
]])
vHat1 = xf.unitVector(vec.T)
vHat2 = xfcapi.unitRowVector(vec)
print "unitVector results match:             ", np.linalg.norm(
    vHat1.T - vHat2) / np.linalg.norm(vHat1) < epsf

tAng = np.array(
    [0.0011546340766314521, -0.0040527538387122993, -0.0026221336905160211])
rMat1 = xf.makeDetectorRotMat(tAng)
rMat2 = xfcapi.makeDetectorRotMat(tAng)
print "makeDetectorRotMat results match:     ", np.linalg.norm(
    rMat1 - rMat2) / np.linalg.norm(rMat1) < epsf

oAng = np.array([-0.0011591608938627839, 0.0011546340766314521])
rMat1 = xf.makeOscillRotMat(oAng)
rMat2 = xfcapi.makeOscillRotMat(oAng)
print "makeOscillRotMat results match:       ", np.linalg.norm(
    rMat1 - rMat2) / np.linalg.norm(rMat1) < epsf

eMap = np.array([0.66931818, -0.98578066, 0.73593251])
rMat1 = xf.makeRotMatOfExpMap(eMap)
rMat2 = xfcapi.makeRotMatOfExpMap(eMap)
print "makeRotMatOfExpMap results match:     ", np.linalg.norm(
    rMat1 - rMat2) / np.linalg.norm(rMat1) < epsf