def example_NN(hf=True):
    p, inputs, s, costs = simple_NN((2, 50, 40, 30, 1))

    xor_dataset = [[], []]
    for i in range(50000):
        x = numpy.random.randint(0, 2, (50, 2))
        t = (x[:, 0:1] ^ x[:, 1:2]).astype(theano.config.floatX)
        x = x.astype(theano.config.floatX)
        xor_dataset[0].append(x)
        xor_dataset[1].append(t)

    training_examples = len(xor_dataset[0]) * 3 / 4
    train = [
        xor_dataset[0][:training_examples], xor_dataset[1][:training_examples]
    ]
    valid = [
        xor_dataset[0][training_examples:], xor_dataset[1][training_examples:]
    ]

    gradient_dataset = SequenceDataset(train,
                                       batch_size=None,
                                       number_batches=10000)
    cg_dataset = SequenceDataset(train, batch_size=None, number_batches=5000)
    valid_dataset = SequenceDataset(valid,
                                    batch_size=None,
                                    number_batches=5000)

    if hf:
        hf_optimizer(p, inputs, s, costs).train(gradient_dataset,
                                                cg_dataset,
                                                initial_lambda=1.0,
                                                preconditioner=True,
                                                validation=valid_dataset)
    else:
        sgd_optimizer(p, inputs, costs, gradient_dataset, lr=1e-3)
def example_RNN(hf=True):
    p, inputs, s, costs, h, ha = simple_RNN(100)

    # memorize the first unit for 100 time-steps with binary noise
    memorization_dataset = [[]]
    for i in range(100000):
        memorization_dataset[0].append(
            numpy.random.randint(2,
                                 size=(100, 1)).astype(theano.config.floatX))

    train = [memorization_dataset[0][:-1000]]
    valid = [memorization_dataset[0][-1000:]]

    gradient_dataset = SequenceDataset(train,
                                       batch_size=None,
                                       number_batches=5000)
    cg_dataset = SequenceDataset(train, batch_size=None, number_batches=1000)
    valid_dataset = SequenceDataset(valid,
                                    batch_size=None,
                                    number_batches=1000)

    if hf:
        hf_optimizer(p, inputs, s, costs, 0.5 * (h + 1),
                     ha).train(gradient_dataset,
                               cg_dataset,
                               initial_lambda=0.5,
                               mu=1.0,
                               preconditioner=False,
                               validation=valid_dataset)
    else:
        sgd_optimizer(p, inputs, costs, gradient_dataset, lr=5e-5)
Example #3
0
def test_real(n_updates=100):
    """ Test RNN with real-valued outputs. """
    n_hidden = 10
    n_in = 5
    n_out = 3
    n_steps = 10
    n_seq = 1000

    np.random.seed(0)
    # simple lag test
    seq = np.random.randn(n_seq, n_steps, n_in)

    targets = np.zeros((n_seq, n_steps, n_out))
    targets[:, 1:, 0] = seq[:, :-1, 3]  # delayed 1
    targets[:, 1:, 1] = seq[:, :-1, 2]  # delayed 1
    targets[:, 2:, 2] = seq[:, :-2, 0]  # delayed 2

    targets += 0.01 * np.random.standard_normal(targets.shape)

    # SequenceDataset wants a list of sequences
    # this allows them to be different lengths, but here they're not
    seq = [i for i in seq]
    targets = [i for i in targets]

    gradient_dataset = SequenceDataset([seq, targets],
                                       batch_size=None,
                                       number_batches=100)
    cg_dataset = SequenceDataset([seq, targets],
                                 batch_size=None,
                                 number_batches=20)

    model = MetaRNN(n_in=n_in,
                    n_hidden=n_hidden,
                    n_out=n_out,
                    activation='tanh')

    opt = hf_optimizer(p=model.rnn.params,
                       inputs=[model.x, model.y],
                       s=model.rnn.y_pred,
                       costs=[model.rnn.loss(model.y)],
                       h=model.rnn.h)

    opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)

    plt.close('all')
    fig = plt.figure()
    ax1 = plt.subplot(211)
    plt.plot(seq[0])
    ax1.set_title('input')
    ax2 = plt.subplot(212)
    true_targets = plt.plot(targets[0])

    guess = model.predict(seq[0])
    guessed_targets = plt.plot(guess, linestyle='--')
    for i, x in enumerate(guessed_targets):
        x.set_color(true_targets[i].get_color())
    ax2.set_title('solid: true output, dashed: model output')
Example #4
0
def test_real(n_updates=100):
    """ Test RNN with real-valued outputs. """
    train, valid, test = process_data.load_data()
    tseq, ttargets = train
    vseq, vtargets = valid
    test_seq, test_targets = test
    length = len(tseq)

    n_hidden = 6
    n_in = 48
    n_out = 12
    n_steps = 1
    n_seq = length

    seq = [[i] for i in tseq]
    targets = [[i] for i in ttargets]

    gradient_dataset = SequenceDataset([seq, targets], batch_size=None, number_batches=100)
    cg_dataset = SequenceDataset([seq, targets], batch_size=None,
                                 number_batches=20)

    model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
                    learning_rate=0.001, learning_rate_decay=0.999,
                    n_epochs=500, activation='relu')

    opt = hf_optimizer(p=model.rnn.params, inputs=[model.x, model.y],
                       s=model.rnn.y_pred,
                       costs=[model.rnn.loss(model.y)], h=model.rnn.h)

    opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)

    test_seq = [[i] for i in test_seq]
    test_targets = [[i] for i in test_targets]
    plt.close("all")
    for idx in xrange(len(test_seq)):
        guess = model.predict(test_seq[idx])
        plot_predictions(test_seq[idx][0], test_targets[idx][0], guess[0])
Example #5
0
def test_binary(multiple_out=False, n_updates=250):
    """ Test RNN with binary outputs. """
    n_hidden = 10
    n_in = 5
    if multiple_out:
        n_out = 2
    else:
        n_out = 1
    n_steps = 10
    n_seq = 100

    np.random.seed(0)
    # simple lag test
    seq = np.random.randn(n_seq, n_steps, n_in)
    targets = np.zeros((n_seq, n_steps, n_out), dtype='int32')

    # whether lag 1 (dim 3) is greater than lag 2 (dim 0)
    targets[:, 2:, 0] = np.cast[np.int32](seq[:, 1:-1, 3] > seq[:, :-2, 0])

    if multiple_out:
        # whether product of lag 1 (dim 4) and lag 1 (dim 2)
        # is less than lag 2 (dim 0)
        targets[:, 2:, 1] = np.cast[np.int32](
            (seq[:, 1:-1, 4] * seq[:, 1:-1, 2]) > seq[:, :-2, 0])

    # SequenceDataset wants a list of sequences
    # this allows them to be different lengths, but here they're not
    seq = [i for i in seq]
    targets = [i for i in targets]

    gradient_dataset = SequenceDataset([seq, targets], batch_size=None,
                                       number_batches=500)
    cg_dataset = SequenceDataset([seq, targets], batch_size=None,
                                 number_batches=100)

    model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
                    activation='tanh', output_type='binary')

    # optimizes negative log likelihood
    # but also reports zero-one error
    opt = hf_optimizer(p=model.rnn.params, inputs=[model.x, model.y],
                       s=model.rnn.y_pred,
                       costs=[model.rnn.loss(model.y),
                              model.rnn.errors(model.y)], h=model.rnn.h)

    # using settings of initial_lambda and mu given in Nicolas' RNN example
    # seem to do a little worse than the default
    opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)

    seqs = xrange(10)

    plt.close('all')
    for seq_num in seqs:
        fig = plt.figure()
        ax1 = plt.subplot(211)
        plt.plot(seq[seq_num])
        ax1.set_title('input')
        ax2 = plt.subplot(212)
        true_targets = plt.step(xrange(n_steps), targets[seq_num], marker='o')

        guess = model.predict_proba(seq[seq_num])
        guessed_targets = plt.step(xrange(n_steps), guess)
        plt.setp(guessed_targets, linestyle='--', marker='d')
        for i, x in enumerate(guessed_targets):
            x.set_color(true_targets[i].get_color())
        ax2.set_ylim((-0.1, 1.1))
        ax2.set_title('solid: true output, dashed: model output (prob)')
Example #6
0
def test_softmax(n_updates=250):
    """ Test RNN with softmax outputs. """
    n_hidden = 10
    n_in = 5
    n_steps = 10
    n_seq = 100
    n_classes = 3
    n_out = n_classes  # restricted to single softmax per time step

    np.random.seed(0)
    # simple lag test
    seq = np.random.randn(n_seq, n_steps, n_in)
    targets = np.zeros((n_seq, n_steps), dtype='int32')

    thresh = 0.5
    # if lag 1 (dim 3) is greater than lag 2 (dim 0) + thresh
    # class 1
    # if lag 1 (dim 3) is less than lag 2 (dim 0) - thresh
    # class 2
    # if lag 2(dim0) - thresh <= lag 1 (dim 3) <= lag2(dim0) + thresh
    # class 0
    targets[:, 2:][seq[:, 1:-1, 3] > seq[:, :-2, 0] + thresh] = 1
    targets[:, 2:][seq[:, 1:-1, 3] < seq[:, :-2, 0] - thresh] = 2
    #targets[:, 2:, 0] = np.cast[np.int](seq[:, 1:-1, 3] > seq[:, :-2, 0])

    # SequenceDataset wants a list of sequences
    # this allows them to be different lengths, but here they're not
    seq = [i for i in seq]
    targets = [i for i in targets]

    gradient_dataset = SequenceDataset([seq, targets], batch_size=None,
                                       number_batches=500)
    cg_dataset = SequenceDataset([seq, targets], batch_size=None,
                                 number_batches=100)

    model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
                    activation='tanh', output_type='softmax',
                    use_symbolic_softmax=True)

    # optimizes negative log likelihood
    # but also reports zero-one error
    opt = hf_optimizer(p=model.rnn.params, inputs=[model.x, model.y],
                       s=model.rnn.y_pred,
                       costs=[model.rnn.loss(model.y),
                              model.rnn.errors(model.y)], h=model.rnn.h)

    # using settings of initial_lambda and mu given in Nicolas' RNN example
    # seem to do a little worse than the default
    opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)

    seqs = xrange(10)

    plt.close('all')
    for seq_num in seqs:
        fig = plt.figure()
        ax1 = plt.subplot(211)
        plt.plot(seq[seq_num])
        ax1.set_title('input')

        ax2 = plt.subplot(212)
        # blue line will represent true classes
        true_targets = plt.step(xrange(n_steps), targets[seq_num], marker='o')

        # show probabilities (in b/w) output by model
        guess = model.predict_proba(seq[seq_num])
        guessed_probs = plt.imshow(guess.T, interpolation='nearest',
                                   cmap='gray')
        ax2.set_title('blue: true class, grayscale: probs assigned by model')
Example #7
0
thresh = 0.5
# if lag 1 (dim 3) is greater than lag 2 (dim 0) + thresh
# class 1
# if lag 1 (dim 3) is less than lag 2 (dim 0) - thresh
# class 2
# if lag 2(dim0) - thresh <= lag 1 (dim 3) <= lag2(dim0) + thresh
# class 0
targets[:, 2:][seq[:, 1:-1, 3] > seq[:, :-2, 0] + thresh] = 1
targets[:, 2:][seq[:, 1:-1, 3] < seq[:, :-2, 0] - thresh] = 2
#targets[:, 2:, 0] = np.cast[np.int](seq[:, 1:-1, 3] > seq[:, :-2, 0])

'''
print("Convert to SequenceDataset ...")

gradient_dataset = SequenceDataset([x_seq_list, y_seq_list], batch_size=None, number_batches=100)
cg_dataset = SequenceDataset([x_seq_list, y_seq_list], batch_size=None, number_batches=50)

model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, n_epochs=n_epochs,
                activation='tanh', output_type='softmax',
                use_symbolic_softmax=True, L2_reg=0.0001)

# optimizes negative log likelihood
# but also reports zero-one error
opt = hf_optimizer(p=model.rnn.params, inputs=[model.x, model.y],
                   s=model.rnn.y_pred, n_in=n_in,
                   costs=[model.rnn.loss(model.y),
                          model.rnn.errors(model.y)], h=model.rnn.h)

print("Training ...")
opt.train(gradient_dataset, cg_dataset, initial_lambda=1.0, num_updates=n_updates, save_progress='save_param')
                a1 = a1 + 4
                a2 = a2 + 4
            seqs = seq.astype(floatX)
            targets = target.astype(floatX)
            test_seqs = test_seq.astype(floatX)
            test_targets = test_target.astype(floatX)

            [n_seq, n_steps, n_in] = seq.shape

            n_hidden = 2 * n_in
            n_out = 24

            seqs = [i for i in seqs]
            targets = [i for i in target]
            gradient_dataset = SequenceDataset([seqs, targets],
                                               batch_size=None,
                                               number_batches=80)
            cg_dataset = SequenceDataset([seqs, targets],
                                         batch_size=None,
                                         number_batches=20)

            model = MetaRNN(n_in=n_in,
                            n_mul=n_hidden,
                            n_out=n_out,
                            activation='tanh')

            opt = hf_optimizer(p=model.rnn.params,
                               inputs=[model.x, model.y],
                               s=model.rnn.y_pred,
                               costs=[model.rnn.loss(model.y)],
                               h=model.rnn.h)
Example #9
0
def RNN_Evaluation(sample,
                   lable,
                   n_hidden=10,
                   activation_func='tanh',
                   n_updates=20,
                   k_fold=5):
    X = sample
    y = lable
    kf = KFold(n_splits=k_fold, shuffle=True)
    split_num = kf.get_n_splits(X)
    k = 1
    G1, G2, S, Total = 0, 0, 0, 0
    (AUC, p, r, f1) = (0, 0, 0, 0)
    for train_index, test_index in kf.split(X):
        # print("TRAIN:", train_index, "TEST:", test_index)
        X_train, X_test = X[train_index], X[test_index]
        y_train, y_test = y[train_index], y[test_index]

        n_in = 20
        n_classes = 3
        n_out = n_classes  # restricted to single softmax per time step

        np.random.seed(0)

        train_sample = [i for i in X_train]
        train_lable = [i for i in y_train]

        gradient_dataset = SequenceDataset([train_sample, train_lable],
                                           batch_size=None,
                                           number_batches=500)
        cg_dataset = SequenceDataset([train_sample, train_lable],
                                     batch_size=None,
                                     number_batches=100)

        model = MetaRNN(n_in=n_in,
                        n_hidden=n_hidden,
                        n_out=n_out,
                        activation=activation_func,
                        output_type='softmax',
                        use_symbolic_softmax=True)

        opt = hf_optimizer(
            p=model.rnn.params,
            inputs=[model.x, model.y],
            s=model.rnn.y_pred,
            costs=[model.rnn.loss(model.y),
                   model.rnn.errors(model.y)],
            h=model.rnn.h)

        opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)
        y_test_vector = np.zeros((X_test.shape[0], 3), dtype='int64')
        for count in range(0, X_test.shape[0]):
            if (y_test[count][0] == 0):
                y_test_vector[count][0] = 1
            elif (y_test[count][0] == 1):
                y_test_vector[count][1] = 1
            else:
                y_test_vector[count][2] = 1

        (AUC_k, p_k, r_k, f1_k) = evaluation.evaluate(model, X_test,
                                                      y_test_vector, 0.8)
        print("%s / %s Iteration:AUC: %s, Prec: %s, Rec: %s, F1: %s" %
              (k, k_fold, AUC_k, p_k, r_k, f1_k))
        AUC = AUC + AUC_k
        p = p + p_k
        r = r + r_k
        f1 = f1 + f1_k
        print("Average: AUC: %s, Prec: %s, Rec: %s, F1: %s" %
              (AUC / k, p / k, r / k, f1 / k))
        k += 1
    AUC = AUC / k_fold
    p = p / k_fold
    r = r / k_fold
    f1 = f1 / k_fold
    return AUC, p, r, f1
Example #10
0
def RNN_k_fold_croos_validation(sample, lable, n_updates=20):
    X = sample
    y = lable
    kf = KFold(n_splits=5, shuffle=True)
    split_num = kf.get_n_splits(X)
    k = 1
    G1, G2, S, Total = 0, 0, 0, 0
    for train_index, test_index in kf.split(X):
        # print("TRAIN:", train_index, "TEST:", test_index)
        X_train, X_test = X[train_index], X[test_index]
        y_train, y_test = y[train_index], y[test_index]
        n_hidden = 10
        n_in = 40
        n_classes = 3
        n_out = n_classes  # restricted to single softmax per time step

        np.random.seed(0)

        train_sample = [i for i in X_train]
        train_lable = [i for i in y_train]

        gradient_dataset = SequenceDataset([train_sample, train_lable],
                                           batch_size=None,
                                           number_batches=500)
        cg_dataset = SequenceDataset([train_sample, train_lable],
                                     batch_size=None,
                                     number_batches=100)

        model = MetaRNN(n_in=n_in,
                        n_hidden=n_hidden,
                        n_out=n_out,
                        activation='tanh',
                        output_type='softmax',
                        use_symbolic_softmax=True)

        opt = hf_optimizer(
            p=model.rnn.params,
            inputs=[model.x, model.y],
            s=model.rnn.y_pred,
            costs=[model.rnn.loss(model.y),
                   model.rnn.errors(model.y)],
            h=model.rnn.h)

        opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)
        right, first, second, third = 0, 0, 0, 0
        first_sum, second_sum, third_sum = 0, 0, 0
        for count in range(0, X_test.shape[0]):
            guess = model.predict_proba(X_test[count])
            tmp_list = np.ndarray.tolist(guess.T)
            # print test_sample.shape
            if (y_test[count][0] == 0):
                first_sum += 1
                if (tmp_list.index(max(tmp_list)) == y_test[count][0]):
                    print True
                    first += 1
                    right += 1
                else:
                    print k, False
            elif (y_test[count][0] == 1):
                second_sum += 1
                if (tmp_list.index(max(tmp_list)) == y_test[count][0]):
                    print True
                    second += 1
                    right += 1
                else:
                    print False
            else:
                third_sum += 1
                if (tmp_list.index(max(tmp_list)) == y_test[count][0]):
                    print True
                    third += 1
                    right += 1
                else:
                    print False

        print "...................................................................................................."
        print k, "interation"
        print "...................................................................................................."
        G1 = G1 + 1.0 * first / first_sum
        S = S + 1.0 * second / second_sum
        G2 = G2 + 1.0 * third / third_sum
        Total = Total + 1.0 * right / X_test.shape[0]
        print "class G1:", G1 / k
        print "class S:", S / k
        print "class G2:", G2 / k
        print "class total:", Total / k
        k += 1

    print "...................................................................................................."
    print "Final Result:"
    print "...................................................................................................."
    print "class G1:", G1 / split_num
    print "class S:", S / split_num
    print "class G2:", G2 / split_num
    print "class total:", Total / split_num
Example #11
0
def RNN_leave_one_cross_validation(seq, targets, n_updates=250, n_seq=182):
    """ Test RNN with softmax outputs. """
    length = len(seq)
    right, first, second, third = 0, 0, 0, 0
    false_list = []
    for k in range(0, length):
        n_hidden = 10
        n_in = 40
        n_classes = 3
        n_out = n_classes  # restricted to single softmax per time step

        np.random.seed(0)

        train_sample = copy.deepcopy(seq)
        train_lable = copy.deepcopy(targets)

        test_sample = seq[k]

        train_sample = np.delete(train_sample, k, 0)
        train_lable = np.delete(train_lable, k, 0)

        train_sample = [i for i in train_sample]
        train_lable = [i for i in train_lable]

        gradient_dataset = SequenceDataset([train_sample, train_lable],
                                           batch_size=None,
                                           number_batches=500)
        cg_dataset = SequenceDataset([train_sample, train_lable],
                                     batch_size=None,
                                     number_batches=100)

        model = MetaRNN(n_in=n_in,
                        n_hidden=n_hidden,
                        n_out=n_out,
                        activation='tanh',
                        output_type='softmax',
                        use_symbolic_softmax=True)

        opt = hf_optimizer(
            p=model.rnn.params,
            inputs=[model.x, model.y],
            s=model.rnn.y_pred,
            costs=[model.rnn.loss(model.y),
                   model.rnn.errors(model.y)],
            h=model.rnn.h)

        opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)

        guess = model.predict_proba(test_sample)
        tmp_list = np.ndarray.tolist(guess.T)
        # print tmp_list
        if (targets[k][0] == 0):
            if (tmp_list.index(max(tmp_list)) == targets[k][0]):
                print k, True
                first += 1
                right += 1
            else:
                print k, False
                false_list.append(k)
        elif (targets[k][0] == 1):
            if (tmp_list.index(max(tmp_list)) == targets[k][0]):
                print k, True
                second += 1
                right += 1
            else:
                print k, False
                false_list.append(k)
        else:
            if (tmp_list.index(max(tmp_list)) == targets[k][0]):
                print k, True
                third += 1
                right += 1
            else:
                print k, False
                false_list.append(k)

    print "class G1:", 1.0 * first / 59
    print "class S:", 1.0 * second / 58
    print "class G2:", 1.0 * third / 65
    print "class total:", 1.0 * right / length
    print false_list