Example #1
0
 def setUp(self):
     self.a = aobj.hfarray([1, 2, 3], dims=(ds.DiagAxis("f", 3),))
     bdims = (ds.DiagAxis("f", 3), ds.DiagAxis("p", 3),)
     self.b = aobj.hfarray([[1, 2, 3],
                            [10, 20, 30],
                            [100, 200, 300]],
                           dims=bdims)
Example #2
0
 def test_info_deprecation_2(self):
     reset_hftools_warnings()
     self.assertHFToolsDeprecationWarning(aobj.hfarray, 1, info=())
     with warnings.catch_warnings():
         warnings.resetwarnings()
         warnings.simplefilter("ignore", HFToolsDeprecationWarning)
         aobj.hfarray(1, info=())
Example #3
0
 def test_get_bool_1(self):
     a = aobj.DimSweep("a", [1, 2, 3])
     A = aobj.hfarray([10, 20, 30], dims=(a, ))
     ar = aobj.DimSweep("a", [2, 3])
     Ar = aobj.hfarray([20, 30], dims=(ar, ))
     bools = A > 10
     self.assertAllclose(A[bools], Ar)
Example #4
0
def interpolate(newx, y, defaultmode=None):
    mode = getattr(y, "interpolationmode", defaultmode)
    if isinstance(newx, (_hfarray,)):
        if len(newx.dims) != 1:
            raise ValueError("hfarray must have one dimension")
        else:
            newx = newx.dims[0]
    if newx not in y.dims:
        return y
    oldx = y.dims.get_matching_dim(newx)
    olddims = y.dims
    dimidx = olddims.matching_index(newx)
    newdims = olddims[:dimidx] + (newx,) + olddims[dimidx + 1:]
    if mode in [None, "none"]:
        bools = np.array(newx.data)[:, None] == np.array(oldx.data)[None, :]
        boolarray = hfarray(bools.any(axis=0),
                            dims=(oldx,),
                            unit=y.unit,
                            outputformat=y.outputformat)
        if boolarray.sum() != len(newx.data):
            raise ValueError("Missing x-values")
        data = np.array(y, copy=False)[boolarray]
    elif mode in ["linear"]:
        data = interp1d(y.dims[dimidx].data, y, axis=dimidx)(newx.data)
    else:
        raise ValueError("Interpolation mode %r unknown" % mode)
    return hfarray(data, dims=newdims, unit=y.unit,
                   outputformat=y.outputformat)
Example #5
0
def interpolate(newx, y, defaultmode=None):
    mode = getattr(y, "interpolationmode", defaultmode)
    if isinstance(newx, (_hfarray, )):
        if len(newx.dims) != 1:
            raise ValueError("hfarray must have one dimension")
        else:
            newx = newx.dims[0]
    if newx not in y.dims:
        return y
    oldx = y.dims.get_matching_dim(newx)
    olddims = y.dims
    dimidx = olddims.matching_index(newx)
    newdims = olddims[:dimidx] + (newx, ) + olddims[dimidx + 1:]
    if mode in [None, "none"]:
        bools = np.array(newx.data)[:, None] == np.array(oldx.data)[None, :]
        boolarray = hfarray(bools.any(axis=0),
                            dims=(oldx, ),
                            unit=y.unit,
                            outputformat=y.outputformat)
        if boolarray.sum() != len(newx.data):
            raise ValueError("Missing x-values")
        data = np.array(y, copy=False)[boolarray]
    elif mode in ["linear"]:
        data = interp1d(y.dims[dimidx].data, y, axis=dimidx)(newx.data)
    else:
        raise ValueError("Interpolation mode %r unknown" % mode)
    return hfarray(data,
                   dims=newdims,
                   unit=y.unit,
                   outputformat=y.outputformat)
Example #6
0
 def setUp(self):
     adims = (aobj.DimSweep("f", 1), aobj.DimMatrix_i("i", 2), aobj.DimMatrix_j("j", 2))
     self.a = aobj.hfarray([[[1, 2 + 0j], [3, 4]]], dims=adims)
     bdims = (aobj.DimSweep("f", 1), aobj.DimMatrix_i("i", 3), aobj.DimMatrix_j("j", 3))
     self.b = aobj.hfarray([[[1, 2 + 0j, 3], [4, 5, 6], [7, 8, 9]]], dims=bdims)
     self.adims = adims
     self.bdims = bdims
Example #7
0
 def test_2(self):
     ai = aobj.DimSweep("a", [1, 2, 3])
     bi = aobj.DimSweep("b", [1, 2])
     aj = aobj.DimRep("a", [1, 2, 3])
     A = aobj.hfarray(ai)
     B = aobj.hfarray(bi)
     AB = A * B
     AB.replace_dim("a", aobj.DimRep)
     self.assertEqual(AB.dims, (aj, bi))
Example #8
0
 def setUp(self):
     (ai, bi, ci) = (dim.DimSweep("ai", 2), dim.DimRep("bi", 3), dim.DimSweep("ci", 4))
     self.ai = ai
     self.bi = bi
     self.ci = ci
     self.a = aobj.hfarray(ai)
     self.b = aobj.hfarray(bi) * 10
     self.c = aobj.hfarray(ci) * 100
     self.abc = self.a + self.b + self.c
Example #9
0
 def setUp(self):
     adims = (aobj.DimSweep("f", 1), aobj.DimMatrix_i("i", 2),
              aobj.DimMatrix_j("j", 2))
     self.a = aobj.hfarray([[[1, 2 + 0j], [3, 4]]], dims=adims)
     bdims = (aobj.DimSweep("f", 1), aobj.DimMatrix_i("i", 3),
              aobj.DimMatrix_j("j", 3))
     self.b = aobj.hfarray([[[1, 2 + 0j, 3], [4, 5, 6], [7, 8, 9]]],
                           dims=bdims)
     self.adims = adims
     self.bdims = bdims
Example #10
0
    def setUp(self):
        self.I = I = DimSweep("I", [1, 2])
        self.J = J = DimSweep("J", [10, 20, 30])
        self.K = K = DimSweep("K", [100, 200, 300, 400])
        self.i, self.j, self.k = (i, j, k) = list(map(hfarray, (I, J, K)))

        self.a = i * j * k
        self.b = hfarray(i * j * k, unit="Hz", outputformat="%.3f")
        cinfo = (DimMatrix_i("i", 2), DimMatrix_j("j", 2))
        self.c = hfarray([[11, 12], [21, 22]], dims=cinfo)
Example #11
0
    def setUp(self):
        self.a = aobj.hfarray([1, 2, 3], dims=(ds.DiagAxis("f", 3),))
        dims = (ds.DiagAxis("f", 3),)
        self.ca = aobj.hfarray([1 + 10j, 2 + 20j, 3 + 30j], dims=dims)
        dims = (ds.DiagAxis("f", 3), ds.DiagAxis("p", 2),)
        self.b = aobj.hfarray([[1, 2],
                               [10, 20],
                               [100, 200]], dims=dims)

        self.d = aobj.hfarray([[1, -2], [2, 1]], dims=ds.CPLX)
Example #12
0
    def setUp(self):
        self.I = I = DimSweep("I", [1, 2])
        self.J = J = DimSweep("J", [10, 20, 30])
        self.K = K = DimSweep("K", [100, 200, 300, 400])
        self.i, self.j, self.k = (i, j, k) = list(map(hfarray, (I, J, K)))

        self.a = i * j * k
        self.b = hfarray(i * j * k, unit="Hz", outputformat="%.3f")
        cinfo = (DimMatrix_i("i", 2), DimMatrix_j("j", 2))
        self.c = hfarray([[11, 12], [21, 22]], dims=cinfo)
Example #13
0
 def setUp(self):
     self.a = aobj.hfarray([1, 2, 3], dims=(ds.DiagAxis("f", 3),))
     dims = (ds.DiagAxis("f", 3), ds.DiagAxis("p", 3),)
     self.b = aobj.hfarray([[1, 2, 3],
                            [10, 20, 30],
                            [100, 200, 300]], dims=dims)
     dims = (ds.DimSweep("f", 2), ds.DimSweep("Vg", 3), ds.DimRep("rep", 4))
     self.c = aobj.hfarray(np.zeros((2, 3, 4)), dims=dims)
     dims = (ds.DimSweep("f", 2), ds.DimSweep("Vg", 3), ds.DimRep("rep", 4),
             ds.DimMatrix_i("i", 5), ds.DimMatrix_j("j", 5),)
     self.d = aobj.hfarray(np.zeros((2, 3, 4, 5, 5)), dims=dims)
Example #14
0
 def setUp(self):
     (ai, bi, ci) = (dim.DimSweep("ai",
                                  2), dim.DimRep("bi",
                                                 3), dim.DimSweep("ci", 4))
     self.ai = ai
     self.bi = bi
     self.ci = ci
     self.a = aobj.hfarray(ai)
     self.b = aobj.hfarray(bi) * 10
     self.c = aobj.hfarray(ci) * 100
     self.abc = self.a + self.b + self.c
Example #15
0
 def test_get_bool_2(self):
     a = aobj.DimSweep("a", [1, 2])
     b = aobj.DimSweep("b", [1, 2, 3])
     c = aobj.DimSweep("c", [1, 2, 3, 4])
     A = aobj.hfarray([1, 2], dims=(a, ))
     B = aobj.hfarray([10, 20, 30], dims=(b, ))
     C = aobj.hfarray([100, 200, 300, 400], dims=(c, ))
     ABC = A + B + C
     self.assertAllclose(ABC[A == 1].squeeze(), 1 + B + C)
     self.assertAllclose(ABC[B == 20].squeeze(), A + 20 + C)
     self.assertAllclose(ABC[C == 300].squeeze(), A + B + 300)
     self.assertRaises(ValueError, C.__getitem__, A == 1)
Example #16
0
 def test_take(self):
     a = aobj.DimSweep("a", [1, 2])
     b = aobj.DimSweep("b", [1, 2, 3])
     c = aobj.DimSweep("c", [1, 2, 3, 4])
     A = aobj.hfarray([1, 2], dims=(a, ))
     B = aobj.hfarray([10, 20, 30], dims=(b, ))
     C = aobj.hfarray([100, 200, 300, 400], dims=(c, ))
     ABC = A + B + C
     anon = aobj.DimAnonymous("anon1", [0, 1, 2])
     self.assertAllclose(ABC.take([0, 1, 2]),
                         aobj.hfarray([111, 211, 311],
                                      dims=(anon, )))
Example #17
0
 def test_1(self):
     ai = aobj.DimSweep("a", [1, 2, 3])
     bi = aobj.DimSweep("b", [1, 2])
     A = aobj.hfarray(ai)
     B = aobj.hfarray(bi)
     AB = A * B
     newdim = aobj.DimSweep("c", [1, 2, 3])
     AB.replace_dim(ai, newdim)
     self.assertEqual(AB.dims, (newdim, bi))
     AB = A * B
     AB.replace_dim("a", newdim)
     self.assertEqual(AB.dims, (newdim, bi))
Example #18
0
 def values_from_property(self):
     """Convert numeric properties to values"""
     if self.comments:
         for k, v in self.comments.property.items():
             if hasattr(v, "dtype") or isinstance(v, (int, float)):
                 if (k not in self.vardata) and (k not in self.ivardata):
                     self[k] = hfarray(v)
Example #19
0
 def test_init_6(self):
     fi = aobj.DimSweep("f", [12, 13, 14], unit="m", outputformat="%.3f")
     a = aobj.hfarray(fi, unit="Hz", outputformat="%.5f")
     self.assertEqual(a.unit, "Hz")
     self.assertEqual(a.dims, (fi,))
     self.assertEqual(a.outputformat, "%.5f")
     self.assertAllclose(a, [12, 13, 14])
Example #20
0
 def values_from_property(self):
     """Convert numeric properties to values"""
     if self.comments:
         for k, v in self.comments.property.items():
             if hasattr(v, "dtype") or isinstance(v, (int, float)):
                 if (k not in self.vardata) and (k not in self.ivardata):
                     self[k] = hfarray(v)
Example #21
0
def make_matrix(A):
    a = np.asanyarray(A)
    dims = (
        DimMatrix_i("i", range(a.shape[-2])),
        DimMatrix_j("j", range(a.shape[-1])),
    )
    return hfarray(a, dims=dims)
Example #22
0
 def test_info_deprecation_1(self):
     a = aobj.hfarray(1)
     reset_hftools_warnings()
     self.assertHFToolsDeprecationWarning(lambda x: x.info, a)
     with warnings.catch_warnings():
         warnings.resetwarnings()
         warnings.simplefilter("ignore", HFToolsDeprecationWarning)
         a.info
Example #23
0
 def test_set_info_deprecation_1(self):
     a = aobj.hfarray(1)
     reset_hftools_warnings()
     self.assertHFToolsDeprecationWarning(setattr, a, "info", ())
     with warnings.catch_warnings():
         warnings.resetwarnings()
         warnings.simplefilter("ignore", HFToolsDeprecationWarning)
         a.info = ()
Example #24
0
 def test_info_index_deprecated(self):
     reset_hftools_warnings()
     x = aobj.hfarray([1,2], dims=(aobj.DimSweep("a", 2),))
     self.assertHFToolsDeprecationWarning(x.info_index, "a", aobj.DimSweep)
     with warnings.catch_warnings():
         warnings.resetwarnings()
         warnings.simplefilter("ignore", HFToolsDeprecationWarning)
         x.info_index("a", aobj.DimSweep)
Example #25
0
    def setUp(self):
        self.adims = (aobj.DimSweep("f", 1),
                      aobj.DimMatrix_i("i", 2),
                      aobj.DimMatrix_j("j", 2))
        self.a = aobj.hfarray([[[0, 0j], [0, 0]]], dims=self.adims)
        self.bdims = (aobj.DimSweep("f", 10),
                      aobj.DimMatrix_i("i", 2),
                      aobj.DimMatrix_j("j", 2))
        self.b = aobj.hfarray(np.array([[[1, 2 + 0j], [3, 4]]]) +
                              np.arange(10)[:, newaxis, newaxis],
                              dims=self.bdims)

        self.c, = aobj.make_same_dims_list([random_value_array(4, 5)])
        self.cdims = self.c.dims
        self.ddims = self.bdims
        self.d = aobj.hfarray(np.array([[[1, 2], [3, 4]]]) +
                              np.arange(10)[:, newaxis, newaxis],
                              dims=self.ddims)

        self.i1 = i1 = aobj.DimSweep("i1", 1)
        self.i2 = i2 = aobj.DimSweep("i2", 1)
        self.i3 = i3 = aobj.DimSweep("i3", 1)
        self.i4 = i4 = aobj.DimSweep("i4", 1)
        self.i5 = i5 = aobj.DimSweep("i5", 1)
        self.fi = fi = aobj.DimSweep("f", 2),
        self.gi = gi = aobj.DimSweep("g", 3),

        self.e = aobj.hfarray(np.zeros((1, 2, 3)), dims=(i1, fi, gi))
        self.f = aobj.hfarray(np.zeros((2, 3, 1)), dims=(fi, gi, i1))
        self.g = aobj.hfarray(np.zeros((1, 2, 3, 1)), dims=(i2, fi, gi, i1))
        dims = (i2, fi, i3, gi, i1)
        self.h = aobj.hfarray(np.zeros((1, 2, 1, 3, 1)), dims=dims)
        dims = (i4, i5)
Example #26
0
 def remove_rep(self, newdimname="AllReps"):
     out = DataBlock()
     out.comments = self.comments
     dims = [x for x in self.ivardata.values() if isinstance(x, DimRep)]
     fullshape = tuple(x.data.shape[0] for x in dims)
     newdim = DimRep(newdimname, np.arange(np.multiply.reduce(fullshape)))
     for idx, dim in enumerate(dims):
         data = zeros(fullshape, dtype=dims[idx].data.dtype)
         a = hfarray(data, dims=dims)
         sliceidx = ((None,) * idx + (slice(None),) +
                     (None,) * (len(fullshape) - 1 - idx))
         a[...] = dim.data[sliceidx]
         a = np.array(a, copy=False)
         a.shape = (newdim.data.shape[0],)
         out[dim.name] = hfarray(a, dims=(newdim,))
     for x in self.vardata:
         out[x] = remove_rep(self[x], newdimname)
     return out
Example #27
0
 def remove_rep(self, newdimname="AllReps"):
     out = DataBlock()
     out.comments = self.comments
     dims = [x for x in self.ivardata.values() if isinstance(x, DimRep)]
     fullshape = tuple(x.data.shape[0] for x in dims)
     newdim = DimRep(newdimname, np.arange(np.multiply.reduce(fullshape)))
     for idx, dim in enumerate(dims):
         data = zeros(fullshape, dtype=dims[idx].data.dtype)
         a = hfarray(data, dims=dims)
         sliceidx = ((None, ) * idx + (slice(None), ) + (None, ) *
                     (len(fullshape) - 1 - idx))
         a[...] = dim.data[sliceidx]
         a = np.array(a, copy=False)
         a.shape = (newdim.data.shape[0], )
         out[dim.name] = hfarray(a, dims=(newdim, ))
     for x in self.vardata:
         out[x] = remove_rep(self[x], newdimname)
     return out
Example #28
0
 def test_t_3(self):
     a = aobj.DimSweep("freq", [1, 2, 3])
     i = aobj.DimMatrix_i("i", 2)
     j = aobj.DimMatrix_j("j", 2)
     A = aobj.hfarray(np.zeros((3, 2,), dtype=np.complex128), dims=(a, j,))
     A[:, 0] = [11, 110, 1100]
     A[:, 1] = [22, 220, 2200]
     At = A.t
     self.assertAllclose(A, At)
Example #29
0
    def filter(self, boolarray):
        if boolarray.squeeze().ndim > 1:
            raise ValueError("filter can only use array with one dimension")
        if boolarray.dtype != np.dtype(bool):
            if boolarray.dims[0].name not in self.ivardata:
                out = self.copy()
                msg = "Filter warning: DataBlock does not contain dimension %r"
                msg = msg % boolarray.dims[0]
                warn(msg)
                return out
            localdim = self.ivardata[boolarray.dims[0].name]
            intersection = set(localdim.data).intersection(boolarray)
            barray = boolarray.astype(bool)
            barray[...] = False
            for f in intersection:
                barray[boolarray == f] = True
            boolarray = barray

        out = DataBlock()
        out.blockname = self.blockname
        out.comments = self.comments
        out.xname = self.xname

        olddim = boolarray.dims[0]
        newdim = olddim.__class__(olddim, data=olddim.data[boolarray])

        for v in self.vardata.keys():
            data = self.vardata[v].view()
            try:
                i = data.dims_index(boolarray.dims[0])
            except IndexError:  # This variable does not sweep in boolarray dim
                out[v] = data
                continue
            newinfo = list(data.dims)
            reorder = list(range(data.ndim))
            del newinfo[i]
            del reorder[i]
            reorder = tuple([i] + reorder)
            newinfo = tuple([newdim] + newinfo)
            data = data.transpose(*reorder)
            utdata = hfarray(array(data)[boolarray],
                             dims=newinfo,
                             unit=data.unit,
                             outputformat=data.outputformat)
            dimorder = [x.name for x in self.vardata[v].dims]
            utdata = utdata.reorder_dimensions(*dimorder)
            out[v] = utdata
        out.xname = self.xname
        return out
Example #30
0
    def hyper(self, dimnames, replacedim, indexed=False, all=True):
        if isinstance(replacedim, string_types):
            replacedim = self.ivardata[replacedim]
        out = DataBlock()
        out.blockname = self.blockname
        dims = []
        sortdata = []
        for x in dimnames:
            if indexed:
                newname = "%s_index" % x
            else:
                newname = x
            dims.append(
                DimSweep(newname,
                         stable_uniq(self[x]),
                         unit=self[x].unit,
                         outputformat=self[x].outputformat))
            sortdata.append(self[x])
        dims = tuple(dims)
        dims_shape = tuple(len(x.data) for x in dims)

        sortdata.append(range(len(sortdata[0])))

        sortorder = sorted(zip(*sortdata))
        sortorderidx = [x[-1] for x in sortorder]

        for dim in dims:
            out.ivardata[dim.name] = dim

        for k, v in self.vardata.items():
            if replacedim not in v.dims:
                if all:
                    out[k] = v
                1 + 0  # coverage.py bug necessary to get coverage for
                # continue on next line
                continue
            if k in out.ivardata:
                continue
            i = v.dims_index(replacedim)
            v = hfarray(v.take(sortorderidx, axis=i), copy=False, order="C")
            new_shape = v.shape[:i] + dims_shape + v.shape[i + 1:]
            v.shape = new_shape
            v.dims = v.dims[:i] + dims + v.dims[i + 1:]
            out[k] = v

        for k, v in self.ivardata.items():
            if k not in out and k != replacedim.name:
                out[k] = v
        return out
Example #31
0
    def filter(self, boolarray):
        if boolarray.squeeze().ndim > 1:
            raise ValueError("filter can only use array with one dimension")
        if boolarray.dtype != np.dtype(bool):
            if boolarray.dims[0].name not in self.ivardata:
                out = self.copy()
                msg = "Filter warning: DataBlock does not contain dimension %r"
                msg = msg % boolarray.dims[0]
                warn(msg)
                return out
            localdim = self.ivardata[boolarray.dims[0].name]
            intersection = set(localdim.data).intersection(boolarray)
            barray = boolarray.astype(bool)
            barray[...] = False
            for f in intersection:
                barray[boolarray == f] = True
            boolarray = barray

        out = DataBlock()
        out.blockname = self.blockname
        out.comments = self.comments
        out.xname = self.xname

        olddim = boolarray.dims[0]
        newdim = olddim.__class__(olddim, data=olddim.data[boolarray])

        for v in self.vardata.keys():
            data = self.vardata[v].view()
            try:
                i = data.dims_index(boolarray.dims[0])
            except IndexError:  # This variable does not sweep in boolarray dim
                out[v] = data
                continue
            newinfo = list(data.dims)
            reorder = list(range(data.ndim))
            del newinfo[i]
            del reorder[i]
            reorder = tuple([i] + reorder)
            newinfo = tuple([newdim] + newinfo)
            data = data.transpose(*reorder)
            utdata = hfarray(array(data)[boolarray], dims=newinfo,
                             unit=data.unit,
                             outputformat=data.outputformat)
            dimorder = [x.name for x in self.vardata[v].dims]
            utdata = utdata.reorder_dimensions(*dimorder)
            out[v] = utdata
        out.xname = self.xname
        return out
Example #32
0
    def hyper(self, dimnames, replacedim, indexed=False, all=True):
        if isinstance(replacedim, string_types):
            replacedim = self.ivardata[replacedim]
        out = DataBlock()
        out.blockname = self.blockname
        dims = []
        sortdata = []
        for x in dimnames:
            if indexed:
                newname = "%s_index" % x
            else:
                newname = x
            dims.append(DimSweep(newname, stable_uniq(self[x]),
                                 unit=self[x].unit,
                                 outputformat=self[x].outputformat))
            sortdata.append(self[x])
        dims = tuple(dims)
        dims_shape = tuple(len(x.data) for x in dims)

        sortdata.append(range(len(sortdata[0])))

        sortorder = sorted(zip(*sortdata))
        sortorderidx = [x[-1] for x in sortorder]

        for dim in dims:
            out.ivardata[dim.name] = dim

        for k, v in self.vardata.items():
            if replacedim not in v.dims:
                if all:
                    out[k] = v
                1 + 0  # coverage.py bug necessary to get coverage for
                       # continue on next line
                continue
            if k in out.ivardata:
                continue
            i = v.dims_index(replacedim)
            v = hfarray(v.take(sortorderidx, axis=i), copy=False, order="C")
            new_shape = v.shape[:i] + dims_shape + v.shape[i + 1:]
            v.shape = new_shape
            v.dims = v.dims[:i] + dims + v.dims[i + 1:]
            out[k] = v

        for k, v in self.ivardata.items():
            if k not in out and k != replacedim.name:
                out[k] = v
        return out
Example #33
0
 def __getitem__(self, key):
     try:
         return hfarray(self.ivardata[key])
     except KeyError:
         try:
             return self.vardata[key]
         except KeyError:
             pass
     mname, elem = is_matrix_name(key)
     if mname:
         data = self.vardata[mname]
         if ismatrix(data):
             idx = (Ellipsis, ) + elem
             return data[idx]
         else:
             msg = "No matrix with name %r is available"
             msg = msg % mname
             raise KeyError(msg)
     else:
         raise KeyError("No data named %r is available" % (key, ))
Example #34
0
 def __getitem__(self, key):
     try:
         return hfarray(self.ivardata[key])
     except KeyError:
         try:
             return self.vardata[key]
         except KeyError:
             pass
     mname, elem = is_matrix_name(key)
     if mname:
         data = self.vardata[mname]
         if ismatrix(data):
             idx = (Ellipsis,) + elem
             return data[idx]
         else:
             msg = "No matrix with name %r is available"
             msg = msg % mname
             raise KeyError(msg)
     else:
         raise KeyError("No data named %r is available" % (key,))
Example #35
0
    def sort(self, dim):
        dim = hfarray(dim, copy=False).squeeze()
        if dim.ndim > 1:
            msg = "sort can only get sort direction from array with"\
                  " one dimension"
            raise ValueError(msg)
        else:
            dimname = dim.dims[0].name

        if dimname not in self.ivardata:
            msg = "Sort warning: DataBlock does not contain dimension %r"
            msg = msg % dimname
            warn(msg)
            out = self.copy()
            return out

        sortorder = dim.argsort()

        out = DataBlock()
        out.blockname = self.blockname
        out.comments = self.comments
        out.xname = self.xname

        for v in self.vardata.keys()[:]:
            data = self.vardata[v].view()
            try:
                i = data.dims_index(dimname)
                out[v] = data.take(sortorder, i)
            except IndexError:  # This variable does not contain sort direction
                out[v] = data
                continue

        olddim = self.ivardata[dimname]
        out.xname = self.xname
        data = self[dimname][sortorder]
        out.replace_dim(olddim, olddim.__class__(olddim, data=data))
        return out
Example #36
0
    def sort(self, dim):
        dim = hfarray(dim, copy=False).squeeze()
        if dim.ndim > 1:
            msg = "sort can only get sort direction from array with"\
                  " one dimension"
            raise ValueError(msg)
        else:
            dimname = dim.dims[0].name

        if dimname not in self.ivardata:
            msg = "Sort warning: DataBlock does not contain dimension %r"
            msg = msg % dimname
            warn(msg)
            out = self.copy()
            return out

        sortorder = dim.argsort()

        out = DataBlock()
        out.blockname = self.blockname
        out.comments = self.comments
        out.xname = self.xname

        for v in self.vardata.keys()[:]:
            data = self.vardata[v].view()
            try:
                i = data.dims_index(dimname)
                out[v] = data.take(sortorder, i)
            except IndexError:  # This variable does not contain sort direction
                out[v] = data
                continue

        olddim = self.ivardata[dimname]
        out.xname = self.xname
        data = self[dimname][sortorder]
        out.replace_dim(olddim, olddim.__class__(olddim, data=data))
        return out
Example #37
0
 def accessor(x):
     """Matrix accessor function for zero indexed element (%d,%d)"""
     return hfarray(x, copy=False)[..., i, j]
Example #38
0
def unit_matrix(size=2, cls=SArray):
    i = DimMatrix_i("i", range(size))
    j = DimMatrix_j("j", range(size))
    m = hfarray(np.identity(size, dtype=np.complex128), dims=(i, j))
    return SArray(m)
Example #39
0
 def test_b_5(self):
     b = hfarray([1, 2, 3], unit="Hz", outputformat="%.3f")
     res = b[0]
     self.assertEqual(res, 1)
     self.assertFalse(hasattr(res, "unit"))
     self.assertFalse(hasattr(res, "outputformat"))
Example #40
0
 def normal(loc=0, scale=1, dims=None):
     size = [x.data.shape[0] for x in dims]
     return hfarray(rnd.normal(loc, scale, size), dims=dims)
Example #41
0
 def complex_normal(loc=0, scale=1, dims=None):
     size = [x.data.shape[0] for x in dims]
     result = np.empty(size, np.complex128)
     result[:].real = rnd.normal(loc, scale, size)
     result[:].imag = rnd.normal(loc, scale, size)
     return hfarray(result, dims=dims)
Example #42
0
def unit_matrix(size=2, cls=SArray):
    i = DimMatrix_i("i", range(size))
    j = DimMatrix_j("j", range(size))
    m = hfarray(np.identity(size, dtype=np.complex128), dims=(i, j))
    return SArray(m)
Example #43
0
def unit_smatrix(size=2, cls=SArray):
    i = DimMatrix_i("i", range(size))
    j = DimMatrix_j("j", range(size))
    m = hfarray(np.zeros((size, size), dtype=np.complex128), dims=(i, j))
    m[0, 1] = m[1, 0] = 1
    return SArray(m)
Example #44
0
def unit_smatrix(size=2, cls=SArray):
    i = DimMatrix_i("i", range(size))
    j = DimMatrix_j("j", range(size))
    m = hfarray(np.zeros((size, size), dtype=np.complex128), dims=(i, j))
    m[0, 1] = m[1, 0] = 1
    return SArray(m)
Example #45
0
 def accessor(x):
     """Matrix accessor function for zero indexed element (%d,%d)"""
     return hfarray(x, copy=False)[..., i, j]