Example #1
0
    def __init__(self, rng, input, n_in, n_hidden, n_out):

        self.hiddenLayer = HiddenLayer(rng=rng,
                                       input=input,
                                       n_in=n_in,
                                       n_out=n_hidden,
                                       activation=T.tanh)

        self.logRegressionLayer = LogisticRegressionLayer(
            input=self.hiddenLayer.output, n_in=n_hidden, n_out=n_out)

        self.L1 = (abs(self.hiddenLayer.W).sum() +
                   abs(self.logRegressionLayer.W).sum())

        self.L2_sqr = ((self.hiddenLayer.W**2).sum() +
                       (self.hiddenLayer.W**2).sum())

        self.negative_log_likelihood = (
            self.logRegressionLayer.negative_log_likelihood)

        self.errorRate = (self.logRegressionLayer.errorRate)

        self.y_pred = (self.logRegressionLayer.y_pred)

        self.params = (self.hiddenLayer.params +
                       self.logRegressionLayer.params)

        self.input = input
Example #2
0
def getHiddenLayers(input, n_in, layer_sizes):
    input_size = n_in
    index = 0
    next_layer_input = input
    layer_list = []
    while index < len(layer_sizes):
        next_layer = HiddenLayer(rng=this_rng, input=next_layer_input, \
                n_in=input_size, n_out=layer_sizes[index])
        layer_list.append(next_layer)
        next_layer_input = next_layer.output
        input_size = layer_sizes[index]
        index += 1
    return layer_list
Example #3
0
    def __init__(self, rng, input, n_batch, n_in, n_featureMaps, n_hidden,
                 n_out):

        #image size is 28 x 28, with 1 feature per pixel

        self.convPoolLayer1 = ConvPoolLayer(rng=rng,
                                            input=input.reshape(
                                                (n_batch, 1, 28, 28)),
                                            image_shape=(n_batch, 1, 28, 28),
                                            filter_shape=(n_featureMaps[0], 1,
                                                          5, 5),
                                            pool_size=(2, 2))

        # image size is 12 x 12, with n_featureMaps[0] features per pixel

        self.convPoolLayer2 = ConvPoolLayer(
            rng=rng,
            input=self.convPoolLayer1.output,
            image_shape=(n_batch, n_featureMaps[0], 12, 12),
            filter_shape=(n_featureMaps[1], n_featureMaps[0], 5, 5),
            pool_size=(2, 2))

        # image size is 4 x 4, with n_featureMaps[1] features per pixel

        self.hiddenLayer = HiddenLayer(
            rng=rng,
            input=self.convPoolLayer2.output.flatten(2),
            n_in=n_featureMaps[1] * 4 * 4,
            n_out=n_hidden)

        self.logRegressionLayer = LogisticRegressionLayer(
            input=self.hiddenLayer.output, n_in=n_hidden, n_out=n_out)

        self.negative_log_likelihood = (
            self.logRegressionLayer.negative_log_likelihood)

        self.errorRate = (self.logRegressionLayer.errorRate)

        self.y_pred = (self.logRegressionLayer.y_pred)

        self.params = (self.convPoolLayer1.params +
                       self.convPoolLayer2.params + self.hiddenLayer.params +
                       self.logRegressionLayer.params)

        self.input = input
Example #4
0
    def build_model(self, input_size, output_size, hidden_layer_info):
        ## Function to build the model ##
        ## Arguments:
        ## input_size : Number of input features
        ## output_size : Number of output classes
        ## hidden_layer_info : array with size of hidden layers

        np.random.seed(42)
        self.input_size = input_size
        self.output_size = output_size

        prev_layer_size = input_size

        for hidden_layer_size in hidden_layer_info:
            self.hidden_layers.append(
                HiddenLayer(prev_layer_size, hidden_layer_size))
            prev_layer_size = hidden_layer_size

        self.output_layer = OutputLayer(prev_layer_size, self.output_size)
Example #5
0
    def __init__(self, input, n_in, n_hidden, n_out):


        # Since we are dealing with a one hidden layer MLP, this will translate
        # into a HiddenLayer with a tanh activation function connected to the
        # LogisticRegression layer; the activation function can be replaced by
        # sigmoid or any other nonlinear function
        self.hiddenLayer = HiddenLayer(rng=rng, input=input,
                                       n_in=n_in, n_out=n_hidden,
                                       activation=T.tanh)

        # The logistic regression layer gets as input the hidden units
        # of the hidden layer
        self.logRegressionLayer = LogisticRegression(
            input=self.hiddenLayer.output,
            n_in=n_hidden,
            n_out=n_out)

        # L1 norm ; one regularization option is to enforce L1 norm to
        # be small
        self.L1 = abs(self.hiddenLayer.W).sum() \
                + abs(self.logRegressionLayer.W).sum()

        # square of L2 norm ; one regularization option is to enforce
        # square of L2 norm to be small
        self.L2_sqr = (self.hiddenLayer.W ** 2).sum() \
                    + (self.logRegressionLayer.W ** 2).sum()

        # negative log likelihood of the MLP is given by the negative
        # log likelihood of the output of the model, computed in the
        # logistic regression layer
        self.negative_log_likelihood = self.logRegressionLayer.negative_log_likelihood
        # same holds for the function computing the number of errors
        self.errors = self.logRegressionLayer.errors

        # the parameters of the model are the parameters of the two layer it is
        # made out of
        self.params = self.hiddenLayer.params + self.logRegressionLayer.params
        
        self.predict_class = self.logRegressionLayer.y_pred
        
        self.predict_proba = self.logRegressionLayer.p_y_given_x
Example #6
0
    def __init__(self,
                 numpy_rng,
                 theano_rng=None,
                 n_ins=100,
                 hidden_layers_sizes=[50, 30],
                 corruption_levels=[0.1, 0.1]):

        self.encoder = []
        self.dA_layers = []
        self.params = []
        self.n_layers = len(hidden_layers_sizes)
        self.decoder = []

        assert self.n_layers > 0
        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2**30))

        self.x = T.matrix('x')

        "*************** Encoder **************************"
        for i in range(self.n_layers):

            if i == 0:
                input_size = n_ins
                layer_input = self.x
            else:
                input_size = hidden_layers_sizes[i - 1]
                layer_input = self.encoder[-1].output
            act_function = T.tanh

            encoder_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=act_function)
            self.encoder.append(encoder_layer)
            self.params.extend(encoder_layer.params)

            "**************************************************"
            """Construct a dAE that shared weights with this layer"""
            dA_layer = dA(
                numpy_rng=numpy_rng,
                theano_rng=theano_rng,
                #input = layer_input,
                n_visible=input_size,
                n_hidden=hidden_layers_sizes[i],
                W=encoder_layer.W,
                bhid=encoder_layer.b)

            self.dA_layers.append(dA_layer)

        "*************** Decoder *****************************"
        i = self.n_layers - 1
        while (i >= 0):
            input_size = hidden_layers_sizes[i]
            if (i > 0):
                output_size = hidden_layers_sizes[i - 1]
            else:
                output_size = n_ins

            if (i == self.n_layers - 1):
                layer_input = self.encoder[-1].output
            else:
                layer_input = self.decoder[-1].output

            decoder_layer = HiddenLayer(
                rng=numpy_rng,
                input=layer_input,
                n_in=input_size,
                n_out=output_size,
                activation=T.tanh,
                W=self.encoder[i].W.T,
                b=self.dA_layers[i].b_prime)  #this is bvis of dA
            self.decoder.append(decoder_layer)
            self.params.append(decoder_layer.b)
            i = i - 1

        "******************* End To End Cost function ************************"
        y = self.decoder[-1].output
        self.recon = (((self.x - y)**2).mean(1)).mean()
        self.end2end_cost = self.recon
Example #7
0
def build_model(datasets, batch_size, rng, learning_rate):

    x = T.matrix('x')
    y = T.ivector('y')
    index = T.lscalar()

    #reshape the image as input to the first conv pool layer
    #MNIST images are 28x28
    layer0_input = x.reshape((batch_size, 1, 32, 32))

    layer0_conv = ConvolutionLayer(rng=rng,
                                   input=layer0_input,
                                   input_shape=(batch_size, 1, 32, 32),
                                   filter_shape=(6, 1, 5, 5))

    layer0_subsample = SubsampleLayer(rng=rng,
                                      input=layer0_conv.output,
                                      input_shape=(batch_size, 6, 28, 28),
                                      pool_size=(2, 2))

    #the custom convolution layer: C4 in lecun
    layer1_conv = CustomConvLayer(rng=rng,
                                  input=layer0_subsample.output,
                                  input_shape=(batch_size, 6, 14, 14),
                                  filter_shape=(16, 6, 5, 5))

    layer1_subsample = SubsampleLayer(rng=rng,
                                      input=layer1_conv.output,
                                      input_shape=(batch_size, 16, 10, 10),
                                      pool_size=(2, 2))

    layer2_conv = ConvolutionLayer(rng=rng,
                                   input=layer1_subsample.output,
                                   input_shape=(batch_size, 16, 5, 5),
                                   filter_shape=(120, 16, 5, 5))

    #flatten the output of the convpool layer for input to the MLP layer
    layer3_input = layer2_conv.output.flatten(2)

    layer3 = HiddenLayer(rng,
                         input=layer3_input,
                         n_in=120,
                         n_out=84,
                         activation=T.tanh)

    #TODO: Change to RBF
    layer4 = LogisticRegression(input=layer3.output, n_in=84, n_out=10)

    cost = layer4.negative_log_likelihood(y)

    params = layer4.params + layer3.params + \
             layer2_conv.params + \
             layer1_conv.params + layer1_subsample.params + \
             layer0_conv.params + layer0_subsample.params

    gradients = T.grad(cost, params)

    updates = [(param_i, param_i - learning_rate * grad_i)
               for param_i, grad_i in zip(params, gradients)]

    train_set_x, train_set_y = datasets[0]
    test_set_x, test_set_y = datasets[1]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_y[index * batch_size:(index + 1) * batch_size]
        })

    test_model = theano.function(
        [index],
        layer4.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        })

    train_pred = theano.function(
        [index],
        layer4.y_pred,
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
        })

    test_pred = theano.function([index],
                                layer4.y_pred,
                                givens={
                                    x:
                                    test_set_x[index * batch_size:(index + 1) *
                                               batch_size],
                                })

    return (train_model, train_pred, test_model, test_pred)
Example #8
0
    def __init__(self,
                 numpy_rng,
                 n_ins,
                 n_outs,
                 hidden_layers_sizes,
                 corruption_levels=[0.1, 0.1],
                 theano_rng=None):
        """ This class is made to support a variable number of layers.
        :type numpy_rng: numpy.random.RandomState
        :param numpy_rng: numpy random number generator used to draw initial
                    weights
        :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
        :param theano_rng: Theano random generator; if None is given one is
                           generated based on a seed drawn from `rng`
        :type n_ins: int
        :param n_ins: dimension of the input to the sdA
        :type n_layers_sizes: list of ints
        :param n_layers_sizes: intermediate layers size, must contain
                               at least one value
        :type n_outs: int
        :param n_outs: dimension of the output of the network
        :type corruption_levels: list of float
        :param corruption_levels: amount of corruption to use for each
                                  layer
        """

        self.sigmoid_layers = []
        self.dA_layers = []
        self.params = []
        self.n_layers = len(hidden_layers_sizes)
        self.n_ins = n_ins
        self.n_outs = n_outs

        # allocate symbolic variables for the data
        self.x = T.matrix('x')
        self.y = T.ivector('y')

        assert self.n_layers > 0

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2**30))

        for i in xrange(self.n_layers):
            # construct the sigmoidal layer

            # the size of the input is either the number of hidden units of
            # the layer below or the input size if we are on the first layer
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layers_sizes[i - 1]

            # the input to this layer is either the activation of the hidden
            # layer below or the input of the SdA if you are on the first
            # layer
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].output

            sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=T.nnet.sigmoid)
            # add the layer to our list of layers
            self.sigmoid_layers.append(sigmoid_layer)
            self.params.append(sigmoid_layer.theta)

            # Construct a denoising autoencoder that shared weights with this layer
            dA_layer = dA(numpy_rng=numpy_rng,
                          theano_rng=theano_rng,
                          input=layer_input,
                          n_visible=input_size,
                          n_hidden=hidden_layers_sizes[i],
                          theta=sigmoid_layer.theta)

            self.dA_layers.append(dA_layer)

        sda_input = T.matrix('sda_input')
        self.da_layers_output_size = hidden_layers_sizes[-1]
        self.get_da_output = theano.function(
            inputs=[sda_input],
            outputs=self.sigmoid_layers[-1].output.reshape(
                (-1, self.da_layers_output_size)),
            givens={self.x: sda_input})

        self.logLayer = LogisticRegression(
            rng=numpy.random.RandomState(),
            input=self.sigmoid_layers[-1].output,
            n_in=hidden_layers_sizes[-1],
            n_out=n_outs)
        #self.params.extend(self.logLayer.params)
        self.finetune_cost = self.logLayer.negative_log_likelihood(self.y)
        self.errors = self.logLayer.errors(self.y)