Example #1
0
def test_log_likelihood_constant():
    pi = np.array([1.0, 0.0, 0.0])

    a = np.array([
        [1.0, 0.0, 0.0],
        [0.5, 0.5, 0.0],
        [0.0, 0.5, 0.5]
    ])

    chain = mc.MarkovChain(pi, a)

    b = np.array([
        [1.0, 0.0, 0.0, 0.0, 0.0],
        [0.1, 0.1, 0.2, 0.3, 0.3],
        [0.0, 0.0, 0.0, 0.5, 0.5]
    ])

    model = dhmm.DiscreteHiddenMM(chain, b)

    sequence = np.random.choice(model.num_outputs, size=10)

    for i in range(100):
        likelihood = model.likelihood(sequence)
        log_likelihood = model.log_likelihood(sequence)

        assert np.allclose(np.log(likelihood), log_likelihood)
Example #2
0
def test_fit_single():
    pi = np.array([0.3, 0.4, 0.3])

    a = np.array([
        [0.1, 0.1, 0.8],
        [0.5, 0.5, 0.0],
        [0.0, 0.5, 0.5]
    ])

    chain = mc.MarkovChain(pi, a)

    b = np.array([
        [0.2, 0.2, 0.2, 0.2, 0.2],
        [0.1, 0.1, 0.2, 0.3, 0.3],
        [0.0, 0.0, 0.0, 0.5, 0.5]
    ])

    model = dhmm.DiscreteHiddenMM(chain, b)

    sequence = np.array([0, 1, 2, 3, 4])

    model2 = model.fit_single(sequence)

    old_likelihood = model.likelihood(sequence)
    new_likelihood = model2.likelihood(sequence)

    assert new_likelihood >= old_likelihood
Example #3
0
def test_fit_single_random_long():
    pi = np.array([0.3, 0.4, 0.3])

    a = np.array([
        [0.1, 0.1, 0.8],
        [0.5, 0.5, 0.0],
        [0.0, 0.5, 0.5]
    ])

    chain = mc.MarkovChain(pi, a)

    b = np.array([
        [0.2, 0.2, 0.2, 0.2, 0.2],
        [0.1, 0.1, 0.2, 0.3, 0.3],
        [0.0, 0.0, 0.0, 0.5, 0.5]
    ])

    model = dhmm.DiscreteHiddenMM(chain, b)

    sequence = np.random.choice(model.num_outputs, size=10000)

    model2 = model.fit_single(sequence)

    old_likelihood = model.likelihood(sequence)
    new_likelihood = model2.likelihood(sequence)

    assert new_likelihood >= old_likelihood
Example #4
0
def test_likelihood_summation():
    pi = np.array([0.1, 0.9])

    a = np.array([
        [0.1, 0.9],
        [0.5, 0.5]
    ])

    chain = mc.MarkovChain(pi, a)

    b = np.array([
        [0.2, 0.2, 0.2, 0.2, 0.2],
        [0.1, 0.1, 0.2, 0.3, 0.3]
    ])

    model = dhmm.DiscreteHiddenMM(chain, b)

    summation = 0.0

    for i in range(5):
        for j in range(5):
            for k in range(5):
                for z in range(5):
                    observations = [i, j, k, z]

                    likelihood = model.likelihood(np.array(observations, dtype=int))

                    assert likelihood >= 0.0

                    summation += likelihood

    assert np.abs(summation - 1.0) < cnst.EPSILON
Example #5
0
def test_successful_creation():
    pi = np.array([0.1, 0.9])

    a = np.array([
        [0.1, 0.9],
        [0.5, 0.5]
    ])

    chain = mc.MarkovChain(pi, a)

    b = np.array([
        [0.2, 0.2, 0.2, 0.2, 0.2],
        [0.1, 0.1, 0.2, 0.3, 0.3]
    ])

    dhmm.DiscreteHiddenMM(chain, b)
Example #6
0
def test_distribution_negative():
    pi = np.array([0.1, 0.9])

    a = np.array([
        [0.1, 0.9],
        [0.5, 0.5]
    ])

    chain = mc.MarkovChain(pi, a)

    b = np.array([
        [0.2, 0.2, 0.2, 0.6, -0.2],
        [0.1, 0.1, 0.2, 0.3, 0.3],
    ])

    dhmm.DiscreteHiddenMM(chain, b)
Example #7
0
def test_distribution_does_not_sum_up():
    pi = np.array([0.1, 0.9])

    a = np.array([
        [0.1, 0.9],
        [0.5, 0.5]
    ])

    chain = mc.MarkovChain(pi, a)

    b = np.array([
        [0.2, 0.2, 0.2, 0.2, 0.2],
        [0.1, 0.1, 0.2, 0.3, 0.5]
    ])

    dhmm.DiscreteHiddenMM(chain, b)
Example #8
0
def test_dimension_mismatch():
    pi = np.array([0.1, 0.9])

    a = np.array([
        [0.1, 0.9],
        [0.5, 0.5]
    ])

    chain = mc.MarkovChain(pi, a)

    b = np.array([
        [0.2, 0.2, 0.2, 0.2, 0.2],
        [0.1, 0.1, 0.2, 0.3, 0.3],
        [0.1, 0.1, 0.2, 0.3, 0.3]
    ])

    dhmm.DiscreteHiddenMM(chain, b)
Example #9
0
def test_solve_for_state_constant_chain():
    pi = np.array([0.0, 0.0, 1.0])

    a = np.array([
        [1.0, 0.0, 0.0],
        [0.5, 0.5, 0.0],
        [0.0, 0.5, 0.5]
    ])

    chain = mc.MarkovChain(pi, a)

    b = np.array([
        [0.2, 0.2, 0.2, 0.2, 0.2],
        [0.1, 0.1, 0.2, 0.3, 0.3],
        [0.0, 0.0, 0.0, 0.5, 0.5]
    ])

    model = dhmm.DiscreteHiddenMM(chain, b)

    model.solve_for_states(np.array([0, 1, 2, 3, 4]))
Example #10
0
def test_solve_for_state_list():
    pi = np.array([1.0, 0.0, 0.0])

    a = np.array([
        [1.0, 0.0, 0.0],
        [0.5, 0.5, 0.0],
        [0.0, 0.5, 0.5]
    ])

    chain = mc.MarkovChain(pi, a)

    b = np.array([
        [0.2, 0.2, 0.2, 0.2, 0.2],
        [0.1, 0.1, 0.2, 0.3, 0.3],
        [0.0, 0.0, 0.0, 0.5, 0.5]
    ])

    model = dhmm.DiscreteHiddenMM(chain, b)

    assert np.allclose(model.solve_for_states(np.array([0, 1, 2, 3, 4])), 0)
Example #11
0
def test_generation_1():
    pi = np.array([0.1, 0.9])

    a = np.array([
        [0.1, 0.9],
        [0.5, 0.5]
    ])

    chain = mc.MarkovChain(pi, a)

    b = np.array([
        [0.2, 0.2, 0.2, 0.2, 0.2],
        [0.1, 0.1, 0.2, 0.3, 0.3]
    ])

    model = dhmm.DiscreteHiddenMM(chain, b)

    result = model.generate(100)

    assert result.shape[0] == 100
    assert result.shape[1] == 2
Example #12
0
def test_likelihood_basic():
    pi = np.array([0.1, 0.9])

    a = np.array([
        [0.1, 0.9],
        [0.5, 0.5]
    ])

    chain = mc.MarkovChain(pi, a)

    b = np.array([
        [0.2, 0.2, 0.2, 0.2, 0.2],
        [0.1, 0.1, 0.2, 0.3, 0.3]
    ])

    model = dhmm.DiscreteHiddenMM(chain, b)

    assert np.abs(model.likelihood(np.array([0], dtype=int)) - 0.11) < cnst.EPSILON
    assert np.abs(model.likelihood(np.array([1], dtype=int)) - 0.11) < cnst.EPSILON
    assert np.abs(model.likelihood(np.array([2], dtype=int)) - 0.20) < cnst.EPSILON
    assert np.abs(model.likelihood(np.array([3], dtype=int)) - 0.29) < cnst.EPSILON
    assert np.abs(model.likelihood(np.array([4], dtype=int)) - 0.29) < cnst.EPSILON