def __init__( self, name: Union[Code, CodedConcept], value: Union[str, PersonName], relationship_type: Union[str, RelationshipTypeValues, None] = None ) -> None: """ Parameters ---------- name: Union[highdicom.sr.CodedConcept, pydicom.sr.coding.Code] concept name value: Union[str, pydicom.valuerep.PersonName] name of the person relationship_type: Union[highdicom.sr.RelationshipTypeValues, str] type of relationship with parent content item """ # noqa if relationship_type is None: warnings.warn( 'A future release will require that relationship types be ' f'provided for items of type {self.__class__.__name__}.', DeprecationWarning) super(PnameContentItem, self).__init__(ValueTypeValues.PNAME, name, relationship_type) check_person_name(value) self.PersonName = PersonName(value)
def __init__( self, pixel_array: np.ndarray, photometric_interpretation: Union[str, PhotometricInterpretationValues], bits_allocated: int, coordinate_system: Union[str, CoordinateSystemNames], study_instance_uid: str, series_instance_uid: str, series_number: int, sop_instance_uid: str, instance_number: int, manufacturer: str, patient_id: Optional[str] = None, patient_name: Optional[Union[str, PersonName]] = None, patient_birth_date: Optional[str] = None, patient_sex: Optional[str] = None, accession_number: Optional[str] = None, study_id: str = None, study_date: Optional[Union[str, datetime.date]] = None, study_time: Optional[Union[str, datetime.time]] = None, referring_physician_name: Optional[Union[str, PersonName]] = None, pixel_spacing: Optional[Tuple[int, int]] = None, laterality: Optional[Union[str, LateralityValues]] = None, patient_orientation: Optional[ Union[Tuple[str, str], Tuple[PatientOrientationValuesBiped, PatientOrientationValuesBiped, ], Tuple[PatientOrientationValuesQuadruped, PatientOrientationValuesQuadruped, ]]] = None, anatomical_orientation_type: Optional[Union[ str, AnatomicalOrientationTypeValues]] = None, container_identifier: Optional[str] = None, issuer_of_container_identifier: Optional[ IssuerOfIdentifier] = None, specimen_descriptions: Optional[ Sequence[SpecimenDescription]] = None, transfer_syntax_uid: str = ImplicitVRLittleEndian, **kwargs: Any): """ Parameters ---------- pixel_array: numpy.ndarray Array of unsigned integer pixel values representing a single-frame image; either a 2D grayscale image or a 3D color image (RGB color space) photometric_interpretation: Union[str, highdicom.enum.PhotometricInterpretationValues] Interpretation of pixel data; either ``"MONOCHROME1"`` or ``"MONOCHROME2"`` for 2D grayscale images or ``"RGB"`` or ``"YBR_FULL"`` for 3D color images bits_allocated: int Number of bits that should be allocated per pixel value coordinate_system: Union[str, highdicom.enum.CoordinateSystemNames] Subject (``"PATIENT"`` or ``"SLIDE"``) that was the target of imaging study_instance_uid: str Study Instance UID series_instance_uid: str Series Instance UID of the SC image series series_number: Union[int, None] Series Number of the SC image series sop_instance_uid: str SOP instance UID that should be assigned to the SC image instance instance_number: int Number that should be assigned to this SC image instance manufacturer: str Name of the manufacturer of the device that creates the SC image instance (in a research setting this is typically the same as `institution_name`) patient_id: str, optional ID of the patient (medical record number) patient_name: Optional[Union[str, PersonName]], optional Name of the patient patient_birth_date: str, optional Patient's birth date patient_sex: str, optional Patient's sex study_id: str, optional ID of the study accession_number: str, optional Accession number of the study study_date: Union[str, datetime.date], optional Date of study creation study_time: Union[str, datetime.time], optional Time of study creation referring_physician_name: Optional[Union[str, PersonName]], optional Name of the referring physician pixel_spacing: Tuple[int, int], optional Physical spacing in millimeter between pixels along the row and column dimension laterality: Union[str, highdicom.enum.LateralityValues], optional Laterality of the examined body part patient_orientation: Union[Tuple[str, str], Tuple[highdicom.enum.PatientOrientationValuesBiped, highdicom.enum.PatientOrientationValuesBiped], Tuple[highdicom.enum.PatientOrientationValuesQuadruped, highdicom.enum.PatientOrientationValuesQuadruped]], optional Orientation of the patient along the row and column axes of the image (required if `coordinate_system` is ``"PATIENT"``) anatomical_orientation_type: Union[str, highdicom.enum.AnatomicalOrientationTypeValues], optional Type of anatomical orientation of patient relative to image (may be provide if `coordinate_system` is ``"PATIENT"`` and patient is an animal) container_identifier: str, optional Identifier of the container holding the specimen (required if `coordinate_system` is ``"SLIDE"``) issuer_of_container_identifier: highdicom.IssuerOfIdentifier, optional Issuer of `container_identifier` specimen_descriptions: Sequence[highdicom.SpecimenDescriptions], optional Description of each examined specimen (required if `coordinate_system` is ``"SLIDE"``) transfer_syntax_uid: str, optional UID of transfer syntax that should be used for encoding of data elements. The following lossless compressed transfer syntaxes are supported: RLE Lossless (``"1.2.840.10008.1.2.5"``). **kwargs: Any, optional Additional keyword arguments that will be passed to the constructor of `highdicom.base.SOPClass` """ # noqa supported_transfer_syntaxes = { ImplicitVRLittleEndian, ExplicitVRLittleEndian, RLELossless, } if transfer_syntax_uid not in supported_transfer_syntaxes: raise ValueError( f'Transfer syntax "{transfer_syntax_uid}" is not supported') # Check names if patient_name is not None: check_person_name(patient_name) if referring_physician_name is not None: check_person_name(referring_physician_name) super().__init__(study_instance_uid=study_instance_uid, series_instance_uid=series_instance_uid, series_number=series_number, sop_instance_uid=sop_instance_uid, sop_class_uid=SecondaryCaptureImageStorage, instance_number=instance_number, manufacturer=manufacturer, modality='OT', transfer_syntax_uid=transfer_syntax_uid, patient_id=patient_id, patient_name=patient_name, patient_birth_date=patient_birth_date, patient_sex=patient_sex, accession_number=accession_number, study_id=study_id, study_date=study_date, study_time=study_time, referring_physician_name=referring_physician_name, **kwargs) coordinate_system = CoordinateSystemNames(coordinate_system) if coordinate_system == CoordinateSystemNames.PATIENT: if patient_orientation is None: raise TypeError( 'Patient orientation is required if coordinate system ' 'is "PATIENT".') # General Series if laterality is not None: laterality = LateralityValues(laterality) self.Laterality = laterality.value # General Image if anatomical_orientation_type is not None: anatomical_orientation_type = AnatomicalOrientationTypeValues( anatomical_orientation_type) self.AnatomicalOrientationType = \ anatomical_orientation_type.value else: anatomical_orientation_type = \ AnatomicalOrientationTypeValues.BIPED row_orientation, col_orientation = patient_orientation if (anatomical_orientation_type == AnatomicalOrientationTypeValues.BIPED): patient_orientation = ( PatientOrientationValuesBiped(row_orientation).value, PatientOrientationValuesBiped(col_orientation).value, ) else: patient_orientation = ( PatientOrientationValuesQuadruped(row_orientation).value, PatientOrientationValuesQuadruped(col_orientation).value, ) self.PatientOrientation = list(patient_orientation) elif coordinate_system == CoordinateSystemNames.SLIDE: if container_identifier is None: raise TypeError( 'Container identifier is required if coordinate system ' 'is "SLIDE".') if specimen_descriptions is None: raise TypeError( 'Specimen descriptions are required if coordinate system ' 'is "SLIDE".') # Specimen self.ContainerIdentifier = container_identifier self.IssuerOfTheContainerIdentifierSequence: List[Dataset] = [] if issuer_of_container_identifier is not None: self.IssuerOftheContainerIdentifierSequence.append( issuer_of_container_identifier) container_type_item = CodedConcept(*codes.SCT.MicroscopeSlide) self.ContainerTypeCodeSequence = [container_type_item] self.SpecimenDescriptionSequence = specimen_descriptions # SC Equipment self.ConversionType = ConversionTypeValues.DI.value # SC Image now = datetime.datetime.now() self.DateOfSecondaryCapture = DA(now.date()) self.TimeOfSecondaryCapture = TM(now.time()) # Image Pixel self.ImageType = ['DERIVED', 'SECONDARY', 'OTHER'] self.Rows = pixel_array.shape[0] self.Columns = pixel_array.shape[1] allowed_types = [np.bool_, np.uint8, np.uint16] if not any(pixel_array.dtype == t for t in allowed_types): raise TypeError( 'Pixel array must be of type np.bool_, np.uint8 or np.uint16. ' f'Found {pixel_array.dtype}.') wrong_bit_depth_assignment = ( pixel_array.dtype == np.bool_ and bits_allocated != 1, pixel_array.dtype == np.uint8 and bits_allocated != 8, pixel_array.dtype == np.uint16 and bits_allocated not in (12, 16), ) if any(wrong_bit_depth_assignment): raise ValueError('Pixel array has an unexpected bit depth.') if bits_allocated not in (1, 8, 12, 16): raise ValueError('Unexpected number of bits allocated.') if transfer_syntax_uid == RLELossless and bits_allocated % 8 != 0: raise ValueError( 'When using run length encoding, bits allocated must be a ' 'multiple of 8') self.BitsAllocated = bits_allocated self.HighBit = self.BitsAllocated - 1 self.BitsStored = self.BitsAllocated self.PixelRepresentation = 0 photometric_interpretation = PhotometricInterpretationValues( photometric_interpretation) if pixel_array.ndim == 3: accepted_interpretations = { PhotometricInterpretationValues.RGB.value, PhotometricInterpretationValues.YBR_FULL.value, PhotometricInterpretationValues.YBR_FULL_422.value, PhotometricInterpretationValues.YBR_PARTIAL_420.value, } if photometric_interpretation.value not in accepted_interpretations: raise ValueError( 'Pixel array has an unexpected photometric interpretation.' ) if pixel_array.shape[-1] != 3: raise ValueError( 'Pixel array has an unexpected number of color channels.') if bits_allocated != 8: raise ValueError('Color images must be 8-bit.') if pixel_array.dtype != np.uint8: raise TypeError( 'Pixel array must have 8-bit unsigned integer data type ' 'in case of a color image.') self.PhotometricInterpretation = photometric_interpretation.value self.SamplesPerPixel = 3 self.PlanarConfiguration = 0 elif pixel_array.ndim == 2: accepted_interpretations = { PhotometricInterpretationValues.MONOCHROME1.value, PhotometricInterpretationValues.MONOCHROME2.value, } if photometric_interpretation.value not in accepted_interpretations: raise ValueError( 'Pixel array has an unexpected photometric interpretation.' ) self.PhotometricInterpretation = photometric_interpretation.value self.SamplesPerPixel = 1 else: raise ValueError( 'Pixel array has an unexpected number of dimensions.') if pixel_spacing is not None: self.PixelSpacing = pixel_spacing encoded_frame = encode_frame( pixel_array, transfer_syntax_uid=self.file_meta.TransferSyntaxUID, bits_allocated=self.BitsAllocated, bits_stored=self.BitsStored, photometric_interpretation=self.PhotometricInterpretation, pixel_representation=self.PixelRepresentation, planar_configuration=getattr(self, 'PlanarConfiguration', None)) if self.file_meta.TransferSyntaxUID.is_encapsulated: self.PixelData = encapsulate([encoded_frame]) else: self.PixelData = encoded_frame
def test_invalid_person_names(name): with pytest.raises(ValueError): check_person_name(PersonName(name))
def test_invalid_strings(name): with pytest.raises(ValueError): check_person_name(name)
def test_valid_person_names(name): check_person_name(PersonName(name))
def test_valid_strings(name): check_person_name(name)
def __init__( self, source_images: Sequence[Dataset], pixel_array: np.ndarray, segmentation_type: Union[str, SegmentationTypeValues], segment_descriptions: Sequence[SegmentDescription], series_instance_uid: str, series_number: int, sop_instance_uid: str, instance_number: int, manufacturer: str, manufacturer_model_name: str, software_versions: Union[str, Tuple[str]], device_serial_number: str, fractional_type: Optional[Union[ str, SegmentationFractionalTypeValues]] = SegmentationFractionalTypeValues .PROBABILITY, max_fractional_value: int = 255, content_description: Optional[str] = None, content_creator_name: Optional[Union[str, PersonName]] = None, transfer_syntax_uid: Union[str, UID] = ImplicitVRLittleEndian, pixel_measures: Optional[PixelMeasuresSequence] = None, plane_orientation: Optional[PlaneOrientationSequence] = None, plane_positions: Optional[Sequence[PlanePositionSequence]] = None, omit_empty_frames: bool = True, **kwargs: Any) -> None: """ Parameters ---------- source_images: Sequence[pydicom.dataset.Dataset] One or more single- or multi-frame images (or metadata of images) from which the segmentation was derived pixel_array: numpy.ndarray Array of segmentation pixel data of boolean, unsigned integer or floating point data type representing a mask image. The array may be a 2D, 3D or 4D numpy array. If it is a 2D numpy array, it represents the segmentation of a single frame image, such as a planar x-ray or single instance from a CT or MR series. If it is a 3D array, it represents the segmentation of either a series of source images (such as a series of CT or MR images) a single 3D multi-frame image (such as a multi-frame CT/MR image), or a single 2D tiled image (such as a slide microscopy image). If ``pixel_array`` represents the segmentation of a 3D image, the first dimension represents individual 2D planes. Unless the ``plane_positions`` parameter is provided, the frame in ``pixel_array[i, ...]`` should correspond to either ``source_images[i]`` (if ``source_images`` is a list of single frame instances) or source_images[0].pixel_array[i, ...] if ``source_images`` is a single multiframe instance. Similarly, if ``pixel_array`` is a 3D array representing the segmentation of a tiled 2D image, the first dimension represents individual 2D tiles (for one channel and z-stack) and these tiles correspond to the frames in the source image dataset. If ``pixel_array`` is an unsigned integer or boolean array with binary data (containing only the values ``True`` and ``False`` or ``0`` and ``1``) or a floating-point array, it represents a single segment. In the case of a floating-point array, values must be in the range 0.0 to 1.0. Otherwise, if ``pixel_array`` is a 2D or 3D array containing multiple unsigned integer values, each value is treated as a different segment whose segment number is that integer value. This is referred to as a *label map* style segmentation. In this case, all segments from 1 through ``pixel_array.max()`` (inclusive) must be described in `segment_descriptions`, regardless of whether they are present in the image. Note that this is valid for segmentations encoded using the ``"BINARY"`` or ``"FRACTIONAL"`` methods. Note that that a 2D numpy array and a 3D numpy array with a single frame along the first dimension may be used interchangeably as segmentations of a single frame, regardless of their data type. If ``pixel_array`` is a 4D numpy array, the first three dimensions are used in the same way as the 3D case and the fourth dimension represents multiple segments. In this case ``pixel_array[:, :, :, i]`` represents segment number ``i + 1`` (since numpy indexing is 0-based but segment numbering is 1-based), and all segments from 1 through ``pixel_array.shape[-1] + 1`` must be described in ``segment_descriptions``. Furthermore, a 4D array with unsigned integer data type must contain only binary data (``True`` and ``False`` or ``0`` and ``1``). In other words, a 4D array is incompatible with the *label map* style encoding of the segmentation. Where there are multiple segments that are mutually exclusive (do not overlap) and binary, they may be passed using either a *label map* style array or a 4D array. A 4D array is required if either there are multiple segments and they are not mutually exclusive (i.e. they overlap) or there are multiple segments and the segmentation is fractional. Note that if the segmentation of a single source image with multiple stacked segments is required, it is necessary to include the singleton first dimension in order to give a 4D array. For ``"FRACTIONAL"`` segmentations, values either encode the probability of a given pixel belonging to a segment (if `fractional_type` is ``"PROBABILITY"``) or the extent to which a segment occupies the pixel (if `fractional_type` is ``"OCCUPANCY"``). segmentation_type: Union[str, highdicom.seg.SegmentationTypeValues] Type of segmentation, either ``"BINARY"`` or ``"FRACTIONAL"`` segment_descriptions: Sequence[highdicom.seg.SegmentDescription] Description of each segment encoded in `pixel_array`. In the case of pixel arrays with multiple integer values, the segment description with the corresponding segment number is used to describe each segment. series_instance_uid: str UID of the series series_number: Union[int, None] Number of the series within the study sop_instance_uid: str UID that should be assigned to the instance instance_number: int Number that should be assigned to the instance manufacturer: str Name of the manufacturer of the device (developer of the software) that creates the instance manufacturer_model_name: str Name of the device model (name of the software library or application) that creates the instance software_versions: Union[str, Tuple[str]] Version(s) of the software that creates the instance device_serial_number: str Manufacturer's serial number of the device fractional_type: Union[str, highdicom.seg.SegmentationFractionalTypeValues], optional Type of fractional segmentation that indicates how pixel data should be interpreted max_fractional_value: int, optional Maximum value that indicates probability or occupancy of 1 that a pixel represents a given segment content_description: str, optional Description of the segmentation content_creator_name: Optional[Union[str, PersonName]], optional Name of the creator of the segmentation transfer_syntax_uid: str, optional UID of transfer syntax that should be used for encoding of data elements. The following lossless compressed transfer syntaxes are supported for encapsulated format encoding in case of FRACTIONAL segmentation type: RLE Lossless (``"1.2.840.10008.1.2.5"``) and JPEG 2000 Lossless (``"1.2.840.10008.1.2.4.90"``). pixel_measures: PixelMeasures, optional Physical spacing of image pixels in `pixel_array`. If ``None``, it will be assumed that the segmentation image has the same pixel measures as the source image(s). plane_orientation: highdicom.PlaneOrientationSequence, optional Orientation of planes in `pixel_array` relative to axes of three-dimensional patient or slide coordinate space. If ``None``, it will be assumed that the segmentation image as the same plane orientation as the source image(s). plane_positions: Sequence[highdicom.PlanePositionSequence], optional Position of each plane in `pixel_array` in the three-dimensional patient or slide coordinate space. If ``None``, it will be assumed that the segmentation image has the same plane position as the source image(s). However, this will only work when the first dimension of `pixel_array` matches the number of frames in `source_images` (in case of multi-frame source images) or the number of `source_images` (in case of single-frame source images). omit_empty_frames: bool If True (default), frames with no non-zero pixels are omitted from the segmentation image. If False, all frames are included. **kwargs: Any, optional Additional keyword arguments that will be passed to the constructor of `highdicom.base.SOPClass` Raises ------ ValueError When * Length of `source_images` is zero. * Items of `source_images` are not all part of the same study and series. * Items of `source_images` have different number of rows and columns. * Length of `plane_positions` does not match number of segments encoded in `pixel_array`. * Length of `plane_positions` does not match number of 2D planes in `pixel_array` (size of first array dimension). Note ---- The assumption is made that segments in `pixel_array` are defined in the same frame of reference as `source_images`. """ # noqa if len(source_images) == 0: raise ValueError('At least one source image is required.') uniqueness_criteria = set(( image.StudyInstanceUID, image.SeriesInstanceUID, image.Rows, image.Columns, ) for image in source_images) if len(uniqueness_criteria) > 1: raise ValueError( 'Source images must all be part of the same series and must ' 'have the same image dimensions (number of rows/columns).') src_img = source_images[0] is_multiframe = hasattr(src_img, 'NumberOfFrames') if is_multiframe and len(source_images) > 1: raise ValueError( 'Only one source image should be provided in case images ' 'are multi-frame images.') supported_transfer_syntaxes = { ImplicitVRLittleEndian, ExplicitVRLittleEndian, JPEG2000Lossless, RLELossless, } if transfer_syntax_uid not in supported_transfer_syntaxes: raise ValueError('Transfer syntax "{}" is not supported'.format( transfer_syntax_uid)) if pixel_array.ndim == 2: pixel_array = pixel_array[np.newaxis, ...] super().__init__(study_instance_uid=src_img.StudyInstanceUID, series_instance_uid=series_instance_uid, series_number=series_number, sop_instance_uid=sop_instance_uid, instance_number=instance_number, sop_class_uid='1.2.840.10008.5.1.4.1.1.66.4', manufacturer=manufacturer, modality='SEG', transfer_syntax_uid=transfer_syntax_uid, patient_id=src_img.PatientID, patient_name=src_img.PatientName, patient_birth_date=src_img.PatientBirthDate, patient_sex=src_img.PatientSex, accession_number=src_img.AccessionNumber, study_id=src_img.StudyID, study_date=src_img.StudyDate, study_time=src_img.StudyTime, referring_physician_name=getattr( src_img, 'ReferringPhysicianName', None), **kwargs) # Using Container Type Code Sequence attribute would be more elegant, # but unfortunately it is a type 2 attribute. if (hasattr(src_img, 'ImageOrientationSlide') or hasattr(src_img, 'ImageCenterPointCoordinatesSequence')): self._coordinate_system = CoordinateSystemNames.SLIDE else: self._coordinate_system = CoordinateSystemNames.PATIENT # Frame of Reference self.FrameOfReferenceUID = src_img.FrameOfReferenceUID self.PositionReferenceIndicator = getattr( src_img, 'PositionReferenceIndicator', None) # (Enhanced) General Equipment self.DeviceSerialNumber = device_serial_number self.ManufacturerModelName = manufacturer_model_name self.SoftwareVersions = software_versions # General Reference self.SourceImageSequence: List[Dataset] = [] referenced_series: Dict[str, List[Dataset]] = defaultdict(list) for s_img in source_images: ref = Dataset() ref.ReferencedSOPClassUID = s_img.SOPClassUID ref.ReferencedSOPInstanceUID = s_img.SOPInstanceUID self.SourceImageSequence.append(ref) referenced_series[s_img.SeriesInstanceUID].append(ref) # Common Instance Reference self.ReferencedSeriesSequence: List[Dataset] = [] for series_instance_uid, referenced_images in referenced_series.items( ): ref = Dataset() ref.SeriesInstanceUID = series_instance_uid ref.ReferencedInstanceSequence = referenced_images self.ReferencedSeriesSequence.append(ref) # Image Pixel self.Rows = pixel_array.shape[1] self.Columns = pixel_array.shape[2] # Segmentation Image self.ImageType = ['DERIVED', 'PRIMARY'] self.SamplesPerPixel = 1 self.PhotometricInterpretation = 'MONOCHROME2' self.PixelRepresentation = 0 self.ContentLabel = 'ISO_IR 192' # UTF-8 self.ContentDescription = content_description if content_creator_name is not None: check_person_name(content_creator_name) self.ContentCreatorName = content_creator_name segmentation_type = SegmentationTypeValues(segmentation_type) self.SegmentationType = segmentation_type.value if self.SegmentationType == SegmentationTypeValues.BINARY.value: self.BitsAllocated = 1 self.HighBit = 0 if self.file_meta.TransferSyntaxUID.is_encapsulated: raise ValueError( 'The chosen transfer syntax ' f'{self.file_meta.TransferSyntaxUID} ' 'is not compatible with the BINARY segmentation type') elif self.SegmentationType == SegmentationTypeValues.FRACTIONAL.value: self.BitsAllocated = 8 self.HighBit = 7 segmentation_fractional_type = SegmentationFractionalTypeValues( fractional_type) self.SegmentationFractionalType = segmentation_fractional_type.value if max_fractional_value > 2**8: raise ValueError( 'Maximum fractional value must not exceed image bit depth.' ) self.MaximumFractionalValue = max_fractional_value else: raise ValueError( 'Unknown segmentation type "{}"'.format(segmentation_type)) self.BitsStored = self.BitsAllocated self.LossyImageCompression = getattr(src_img, 'LossyImageCompression', '00') if self.LossyImageCompression == '01': self.LossyImageCompressionRatio = \ src_img.LossyImageCompressionRatio self.LossyImageCompressionMethod = \ src_img.LossyImageCompressionMethod self.SegmentSequence: List[Dataset] = [] # Multi-Frame Functional Groups and Multi-Frame Dimensions shared_func_groups = Dataset() if pixel_measures is None: if is_multiframe: src_shared_fg = src_img.SharedFunctionalGroupsSequence[0] pixel_measures = src_shared_fg.PixelMeasuresSequence else: pixel_measures = PixelMeasuresSequence( pixel_spacing=src_img.PixelSpacing, slice_thickness=src_img.SliceThickness, spacing_between_slices=src_img.get('SpacingBetweenSlices', None)) # TODO: ensure derived segmentation image and original image have # same physical dimensions # seg_row_dim = self.Rows * pixel_measures[0].PixelSpacing[0] # seg_col_dim = self.Columns * pixel_measures[0].PixelSpacing[1] # src_row_dim = src_img.Rows if is_multiframe: if self._coordinate_system == CoordinateSystemNames.SLIDE: source_plane_orientation = PlaneOrientationSequence( coordinate_system=self._coordinate_system, image_orientation=src_img.ImageOrientationSlide) else: src_sfg = src_img.SharedFunctionalGroupsSequence[0] source_plane_orientation = src_sfg.PlaneOrientationSequence else: source_plane_orientation = PlaneOrientationSequence( coordinate_system=self._coordinate_system, image_orientation=src_img.ImageOrientationPatient) if plane_orientation is None: plane_orientation = source_plane_orientation self.DimensionIndexSequence = DimensionIndexSequence( coordinate_system=self._coordinate_system) dimension_organization = Dataset() dimension_organization.DimensionOrganizationUID = \ self.DimensionIndexSequence[0].DimensionOrganizationUID self.DimensionOrganizationSequence = [dimension_organization] if is_multiframe: source_plane_positions = \ self.DimensionIndexSequence.get_plane_positions_of_image( source_images[0] ) else: source_plane_positions = \ self.DimensionIndexSequence.get_plane_positions_of_series( source_images ) shared_func_groups.PixelMeasuresSequence = pixel_measures shared_func_groups.PlaneOrientationSequence = plane_orientation self.SharedFunctionalGroupsSequence = [shared_func_groups] # NOTE: Information about individual frames will be updated below self.NumberOfFrames = 0 self.PerFrameFunctionalGroupsSequence: List[Dataset] = [] if pixel_array.ndim == 2: pixel_array = pixel_array[np.newaxis, ...] if pixel_array.ndim not in [3, 4]: raise ValueError('Pixel array must be a 2D, 3D, or 4D array.') if pixel_array.shape[1:3] != (self.Rows, self.Columns): raise ValueError( 'Pixel array representing segments has the wrong number of ' 'rows and columns.') # Check segment numbers described_segment_numbers = np.array( [int(item.SegmentNumber) for item in segment_descriptions]) self._check_segment_numbers(described_segment_numbers) # Checks on pixels and overlap pixel_array, segments_overlap = self._check_pixel_array( pixel_array, described_segment_numbers, segmentation_type) self.SegmentsOverlap = segments_overlap.value if plane_positions is None: if pixel_array.shape[0] != len(source_plane_positions): raise ValueError( 'Number of frames in pixel array does not match number ' 'of source image frames.') plane_positions = source_plane_positions else: if pixel_array.shape[0] != len(plane_positions): raise ValueError( 'Number of pixel array planes does not match number of ' 'provided plane positions.') are_spatial_locations_preserved = ( all(plane_positions[i] == source_plane_positions[i] for i in range(len(plane_positions))) and plane_orientation == source_plane_orientation) # Remove empty slices if omit_empty_frames: pixel_array, plane_positions, source_image_indices = \ self._omit_empty_frames(pixel_array, plane_positions) else: source_image_indices = list(range(pixel_array.shape[0])) plane_position_values, plane_sort_index = \ self.DimensionIndexSequence.get_index_values(plane_positions) # Get unique values of attributes in the Plane Position Sequence or # Plane Position Slide Sequence, which define the position of the plane # with respect to the three dimensional patient or slide coordinate # system, respectively. These can subsequently be used to look up the # relative position of a plane relative to the indexed dimension. dimension_position_values = [ np.unique(plane_position_values[:, index], axis=0) for index in range(plane_position_values.shape[1]) ] is_encaps = self.file_meta.TransferSyntaxUID.is_encapsulated if is_encaps: # In the case of encapsulated transfer syntaxes, we will accumulate # a list of encoded frames to encapsulate at the end full_frames_list = [] else: # In the case of non-encapsulated (uncompressed) transfer syntaxes # we will accumulate a 1D array of pixels from all frames for # bitpacking at the end full_pixel_array = np.array([], np.bool_) for i, segment_number in enumerate(described_segment_numbers): # Pixel array for just this segment if pixel_array.dtype in (np.float_, np.float32, np.float64): # Floating-point numbers must be mapped to 8-bit integers in # the range [0, max_fractional_value]. if pixel_array.ndim == 4: segment_array = pixel_array[:, :, :, segment_number - 1] else: segment_array = pixel_array planes = np.around(segment_array * float(self.MaximumFractionalValue)) planes = planes.astype(np.uint8) elif pixel_array.dtype in (np.uint8, np.uint16): # Note that integer arrays with segments stacked down the last # dimension will already have been converted to bool, leaving # only "label maps" here, which must be converted to binary # masks. planes = np.zeros(pixel_array.shape, dtype=np.bool_) planes[pixel_array == segment_number] = True elif pixel_array.dtype == np.bool_: if pixel_array.ndim == 4: planes = pixel_array[:, :, :, segment_number - 1] else: planes = pixel_array else: raise TypeError('Pixel array has an invalid data type.') contained_plane_index = [] for j in plane_sort_index: # Index of this frame in the original list of source indices source_image_index = source_image_indices[j] # Even though completely empty slices were removed earlier, # there may still be slices in which this specific segment is # absent. Such frames should be removed if omit_empty_frames and np.sum(planes[j]) == 0: logger.info('skip empty plane {} of segment #{}'.format( j, segment_number)) continue contained_plane_index.append(j) logger.info('add plane #{} for segment #{}'.format( j, segment_number)) pffp_item = Dataset() frame_content_item = Dataset() frame_content_item.DimensionIndexValues = [segment_number] # Look up the position of the plane relative to the indexed # dimension. try: if self._coordinate_system == CoordinateSystemNames.SLIDE: index_values = [ np.where((dimension_position_values[idx] == pos))[0][0] + 1 for idx, pos in enumerate(plane_position_values[j]) ] else: # In case of the patient coordinate system, the # value of the attribute the Dimension Index Sequence # points to (Image Position Patient) has a value # multiplicity greater than one. index_values = [ np.where((dimension_position_values[idx] == pos).all(axis=1))[0][0] + 1 for idx, pos in enumerate(plane_position_values[j]) ] except IndexError as error: raise IndexError( 'Could not determine position of plane #{} in ' 'three dimensional coordinate system based on ' 'dimension index values: {}'.format(j, error)) frame_content_item.DimensionIndexValues.extend(index_values) pffp_item.FrameContentSequence = [frame_content_item] if self._coordinate_system == CoordinateSystemNames.SLIDE: pffp_item.PlanePositionSlideSequence = plane_positions[j] else: pffp_item.PlanePositionSequence = plane_positions[j] # Determining the source images that map to the frame is not # always trivial. Since DerivationImageSequence is a type 2 # attribute, we leave its value empty. pffp_item.DerivationImageSequence = [] if are_spatial_locations_preserved: derivation_image_item = Dataset() derivation_code = codes.cid7203.Segmentation derivation_image_item.DerivationCodeSequence = [ CodedConcept(derivation_code.value, derivation_code.scheme_designator, derivation_code.meaning, derivation_code.scheme_version), ] derivation_src_img_item = Dataset() if hasattr(source_images[0], 'NumberOfFrames'): # A single multi-frame source image src_img_item = self.SourceImageSequence[0] # Frame numbers are one-based derivation_src_img_item.ReferencedFrameNumber = ( source_image_index + 1) else: # Multiple single-frame source images src_img_item = self.SourceImageSequence[ source_image_index] derivation_src_img_item.ReferencedSOPClassUID = \ src_img_item.ReferencedSOPClassUID derivation_src_img_item.ReferencedSOPInstanceUID = \ src_img_item.ReferencedSOPInstanceUID purpose_code = \ codes.cid7202.SourceImageForImageProcessingOperation derivation_src_img_item.PurposeOfReferenceCodeSequence = [ CodedConcept(purpose_code.value, purpose_code.scheme_designator, purpose_code.meaning, purpose_code.scheme_version), ] derivation_src_img_item.SpatialLocationsPreserved = 'YES' derivation_image_item.SourceImageSequence = [ derivation_src_img_item, ] pffp_item.DerivationImageSequence.append( derivation_image_item) else: logger.warning('spatial locations not preserved') identification = Dataset() identification.ReferencedSegmentNumber = segment_number pffp_item.SegmentIdentificationSequence = [ identification, ] self.PerFrameFunctionalGroupsSequence.append(pffp_item) self.NumberOfFrames += 1 if is_encaps: # Encode this frame and add to the list for encapsulation # at the end for f in contained_plane_index: full_frames_list.append(self._encode_pixels(planes[f])) else: # Concatenate the 1D array for re-encoding at the end full_pixel_array = np.concatenate([ full_pixel_array, planes[contained_plane_index].flatten() ]) self.SegmentSequence.append(segment_descriptions[i]) if is_encaps: # Encapsulate all pre-compressed frames self.PixelData = encapsulate(full_frames_list) else: # Encode the whole pixel array at once # This allows for correct bit-packing in cases where # number of pixels per frame is not a multiple of 8 self.PixelData = self._encode_pixels(full_pixel_array) # Add a null trailing byte if required if len(self.PixelData) % 2 == 1: self.PixelData += b'0' self.copy_specimen_information(src_img) self.copy_patient_and_study_information(src_img)
def __init__(self, evidence: Sequence[Dataset], content: Dataset, series_instance_uid: str, series_number: int, sop_instance_uid: str, sop_class_uid: str, instance_number: int, manufacturer: Optional[str] = None, is_complete: bool = False, is_final: bool = False, is_verified: bool = False, institution_name: Optional[str] = None, institutional_department_name: Optional[str] = None, verifying_observer_name: Optional[Union[str, PersonName]] = None, verifying_organization: Optional[str] = None, performed_procedure_codes: Optional[Sequence[Union[ Code, CodedConcept]]] = None, requested_procedures: Optional[Sequence[Dataset]] = None, previous_versions: Optional[Sequence[Dataset]] = None, record_evidence: bool = True, **kwargs: Any) -> None: """ Parameters ---------- evidence: Sequence[pydicom.dataset.Dataset] Instances that are referenced in the content tree and from which the created SR document instance should inherit patient and study information content: pydicom.dataset.Dataset Root container content items that should be included in the SR document series_instance_uid: str Series Instance UID of the SR document series series_number: Union[int, None] Series Number of the SR document series sop_instance_uid: str SOP Instance UID that should be assigned to the SR document instance sop_class_uid: str SOP Class UID for the SR document type instance_number: int Number that should be assigned to this SR document instance manufacturer: str, optional Name of the manufacturer of the device that creates the SR document instance (in a research setting this is typically the same as `institution_name`) is_complete: bool, optional Whether the content is complete (default: ``False``) is_final: bool, optional Whether the report is the definitive means of communicating the findings (default: ``False``) is_verified: bool, optional Whether the report has been verified by an observer accountable for its content (default: ``False``) institution_name: str, optional Name of the institution of the person or device that creates the SR document instance institutional_department_name: str, optional Name of the department of the person or device that creates the SR document instance verifying_observer_name: Union[str, pydicom.valuerep.PersonName, None], optional Name of the person that verified the SR document (required if `is_verified`) verifying_organization: str, optional Name of the organization that verified the SR document (required if `is_verified`) performed_procedure_codes: List[highdicom.sr.CodedConcept], optional Codes of the performed procedures that resulted in the SR document requested_procedures: List[pydicom.dataset.Dataset], optional Requested procedures that are being fullfilled by creation of the SR document previous_versions: List[pydicom.dataset.Dataset], optional Instances representing previous versions of the SR document record_evidence: bool, optional Whether provided `evidence` should be recorded (i.e. included in Pertinent Other Evidence Sequence) even if not referenced by content items in the document tree (default: ``True``) **kwargs: Any, optional Additional keyword arguments that will be passed to the constructor of `highdicom.base.SOPClass` Raises ------ ValueError When no `evidence` is provided """ # noqa: E501 if len(evidence) == 0: raise ValueError('No evidence was provided.') super().__init__(study_instance_uid=evidence[0].StudyInstanceUID, series_instance_uid=series_instance_uid, series_number=series_number, sop_instance_uid=sop_instance_uid, sop_class_uid=sop_class_uid, instance_number=instance_number, manufacturer=manufacturer, modality='SR', transfer_syntax_uid=None, patient_id=evidence[0].PatientID, patient_name=evidence[0].PatientName, patient_birth_date=evidence[0].PatientBirthDate, patient_sex=evidence[0].PatientSex, accession_number=evidence[0].AccessionNumber, study_id=evidence[0].StudyID, study_date=evidence[0].StudyDate, study_time=evidence[0].StudyTime, referring_physician_name=getattr( evidence[0], 'ReferringPhysicianName', None), **kwargs) if institution_name is not None: self.InstitutionName = institution_name if institutional_department_name is not None: self.InstitutionalDepartmentName = institutional_department_name now = datetime.datetime.now() if is_complete: self.CompletionFlag = 'COMPLETE' else: self.CompletionFlag = 'PARTIAL' if is_verified: if verifying_observer_name is None: raise ValueError( 'Verifying Observer Name must be specified if SR document ' 'has been verified.') if verifying_organization is None: raise ValueError( 'Verifying Organization must be specified if SR document ' 'has been verified.') self.VerificationFlag = 'VERIFIED' observer_item = Dataset() check_person_name(verifying_observer_name) observer_item.VerifyingObserverName = verifying_observer_name observer_item.VerifyingOrganization = verifying_organization observer_item.VerificationDateTime = DT(now) # Type 2 attribute - we will leave empty observer_item.VerifyingObserverIdentificationCodeSequence = [] self.VerifyingObserverSequence = [observer_item] else: self.VerificationFlag = 'UNVERIFIED' if is_final: self.PreliminaryFlag = 'FINAL' else: self.PreliminaryFlag = 'PRELIMINARY' # Add content to dataset for tag, value in content.items(): self[tag] = value ref_items, unref_items = self._collect_evidence(evidence, content) if len(ref_items) > 0: self.CurrentRequestedProcedureEvidenceSequence = ref_items if len(unref_items) > 0 and record_evidence: self.PertinentOtherEvidenceSequence = unref_items if requested_procedures is not None: self.ReferencedRequestSequence = requested_procedures if previous_versions is not None: pre_items = self._collect_predecessors(previous_versions) self.PredecessorDocumentsSequence = pre_items if performed_procedure_codes is not None: self.PerformedProcedureCodeSequence = performed_procedure_codes else: self.PerformedProcedureCodeSequence = [] # TODO: unclear how this would work self.ReferencedPerformedProcedureStepSequence: List[Dataset] = [] self.copy_patient_and_study_information(evidence[0])