def somatic_features_test_JMakara_dataset(model, base_directory): # Load target data with open('../target_features/feat_rat_CA1_JMakara_more_features.json') as f: config_pyr = json.load(f, object_pairs_hook=collections.OrderedDict) observation = config_pyr # Load stimuli file stim_file = pkg_resources.resource_filename("hippounit", "tests/stimuli/somafeat_stim/stim_rat_CA1_PC_JMakara.json") with open(stim_file, 'r') as f: config = json.load(f, object_pairs_hook=collections.OrderedDict) # Instantiate test class test = tests.SomaticFeaturesTest(observation=observation, config=config, force_run=False, show_plot=True, save_all=True, base_directory=base_directory) # test.specify_data_set is added to the name of the subdirectory (somaticfeat), so test runs using different data sets can be saved into different directories test.specify_data_set = 'JMakara_data' # Number of parallel processes test.npool = 10 try: # Run the test score = test.judge(model) # Summarize and print the score achieved by the model on the test using SciUnit's summarize function score.summarize() except Exception as e: print('Model: ' + model.name + ' could not be run') print(e) pass
from quantities import mV, nA import sciunit from hippounit import models from hippounit import tests from hippounit import capabilities import matplotlib.pyplot as plt import json from hippounit import plottools import collections with open('./stimfeat/PC_newfeat_No14112401_15012303-m990803_stimfeat.json' ) as f: config = json.load(f, object_pairs_hook=collections.OrderedDict) observation = config['features'] show_plot = True test = tests.SomaticFeaturesTest(observation, force_run=False, show_plot=show_plot) model = models.Golding() score = test.judge(model) score.summarize() if show_plot: plt.show()