Example #1
0
    def __init__(
        self,
        ppo_model,
        sess,
        info,
        is_continuous,
        use_observations,
        use_states,
        training):

        self.history_dict = ppo_hist.history_keys
        self.is_continuous = is_continuous
        self.is_training = training
        self.model = ppo_model
        self.reset_buffers(info, total=True)
        self.sess = sess
        self.stats = {'cumulative_reward': [],
                      'entropy': [],
                      'episode_length': [],
                      'learning_rate': [],
                      'policy_loss': [],
                      'value_estimate': [],
                      'value_loss': []}

        self.training_buffer = ppo_hist.vectorize_history(ppo_hist.empty_local_history({}))
        self.use_observations = use_observations
        self.use_states = use_states
Example #2
0
    def process_experiences(self, info, time_horizon, gamma, lambd):
        """
        Checks agent histories for processing condition, and processes them as necessary.
        Processing involves calculating value and advantage targets for model updating step.

        gamma:
            Discount factor.
        info:
            Current BrainInfo
        lambd:
            GAE factor.
        time_horizon:
            Max steps for individual agent history before processing.
        """
        for l in range(len(info.agents)):
            if (info.local_done[l]
                    or len(self.history_dict[info.agents[l]]['actions']) >
                    time_horizon):
                if len(self.history_dict[info.agents[l]]['actions']) > 0:
                    if info.local_done[l]:
                        value_next = 0.0
                    else:
                        feed_dict = {self.model.batch_size: len(info.states)}
                        if self.use_observations:
                            feed_dict[self.model.observation_in] = np.vstack(
                                info.observations)
                        if self.use_states:
                            feed_dict[self.model.state_in] = info.states
                        value_next = self.sess.run(self.model.value,
                                                   feed_dict)[l]
                    history = ppo_hist.vectorize_history(
                        self.history_dict[info.agents[l]])
                    history['advantages'] = ppo_hist.get_gae(
                        history['rewards'], history['value_estimates'], gamma,
                        lambd, value_next)
                    history['discounted_returns'] = history[
                        'advantages'] + history['value_estimates']
                    if len(self.training_buffer['actions']) > 0:
                        ppo_hist.append_history(
                            global_buffer=self.training_buffer,
                            local_buffer=history)
                    else:
                        ppo_hist.set_history(
                            global_buffer=self.training_buffer,
                            local_buffer=history)
                    self.history_dict[
                        info.agents[l]] = ppo_hist.empty_local_history(
                            self.history_dict[info.agents[l]])
                    if info.local_done[l]:
                        self.stats['cumulative_reward'].append(
                            history['cumulative_reward'])
                        self.stats['episode_length'].append(
                            history['episode_steps'])
                        history['cumulative_reward'] = 0
                        history['episode_steps'] = 0
Example #3
0
    def reset_buffers(self, brain_info=None, total=False):
        """
        Resets either all training buffers or local training buffers

        brain_info:
            The BrainInfo object containing agent ids.
        total:
            Whether to completely clear buffer.
        """
        if not total:
            for key in self.history_dict:
                self.history_dict[key] = ppo_hist.empty_local_history(self.history_dict[key])
        else:
            self.history_dict = ppo_hist.empty_all_history(agent_info=brain_info)
Example #4
0
    def update_model(self, batch_size, num_epoch):
        """
        Uses training_buffer to update model.

        batch_size:
            Size of each mini-batch update.
        num_epoch:
            How many passes through data to update model for.
        """
        total_v, total_p = 0, 0
        advantages = self.training_buffer['advantages']
        self.training_buffer['advantages'] = (
            advantages - advantages.mean()) / advantages.std()
        for _ in range(num_epoch):
            training_buffer = ppo_hist.shuffle_buffer(self.training_buffer)
            for l in range(len(training_buffer['actions']) // batch_size):
                start = l * batch_size
                end = (l + 1) * batch_size
                feed_dict = {
                    self.model.returns_holder:
                    training_buffer['discounted_returns'][start:end],
                    self.model.advantage:
                    np.vstack(training_buffer['advantages'][start:end]),
                    self.model.old_probs:
                    np.vstack(training_buffer['action_probs'][start:end])
                }
                if self.is_continuous:
                    feed_dict[self.model.epsilon] = np.vstack(
                        training_buffer['epsilons'][start:end])
                else:
                    feed_dict[self.model.action_holder] = np.hstack(
                        training_buffer['actions'][start:end])
                if self.use_states:
                    feed_dict[self.model.state_in] = np.vstack(
                        training_buffer['states'][start:end])
                if self.use_observations:
                    feed_dict[self.model.observation_in] = np.vstack(
                        training_buffer['observations'][start:end])
                v_loss, p_loss, _ = self.sess.run([
                    self.model.value_loss, self.model.policy_loss,
                    self.model.update_batch
                ],
                                                  feed_dict=feed_dict)
                total_v += v_loss
                total_p += p_loss
        self.stats['value_loss'].append(total_v)
        self.stats['policy_loss'].append(total_p)
        self.training_buffer = ppo_hist.vectorize_history(
            ppo_hist.empty_local_history({}))