Example #1
0
def calibrate_dgs_data(datalist, conf, dkcur, **kwargs):
    """
    This function combines Steps 3 through 6 in Section 2.1.1 of the data
    reduction process for Direct Geometry Spectrometers as specified by the
    document at 
    U{http://neutrons.ornl.gov/asg/projects/SCL/reqspec/DR_Lib_RS.doc}. The
    function takes a list of file names, a L{hlr_utils.Configure} object and
    processes the data accordingly.
    
    @param datalist: A list containing the filenames of the data to be
                     processed.
    @type datalist: C{list} of C{string}s
    
    @param conf: Object that contains the current setup of the driver.
    @type conf: L{hlr_utils.Configure}

    @param dkcur: The object containing the TOF dark current data.
    @type dkcur: C{SOM.SOM}
    
    @param kwargs: A list of keyword arguments that the function accepts:
    
    @keyword inst_geom_dst: File object that contains instrument geometry
                            information.
    @type inst_geom_dst: C{DST.GeomDST}

    @keyword tib_const: A time-independent background constant to subtract
                        from every pixel.
    @type tib_const: L{hlr_utils.DrParameter}
    
    @keyword dataset_type: The practical name of the dataset being processed.
                           The default value is I{data}.
    @type dataset_type: C{string}

    @keyword cwp: A list of chopper phase corrections in units of microseconds.
    @type cwp: C{list} of C{float}s
    
    @keyword timer: Timing object so the function can perform timing estimates.
    @type timer: C{sns_timer.DiffTime}


    @return: Object that has undergone all requested processing steps
    @rtype: C{SOM.SOM}
    """
    import common_lib
    import dr_lib
    import hlr_utils

    # Check keywords
    try:
        tib_const = kwargs["tib_const"]
    except KeyError:
        tib_const = None

    try:
        dataset_type = kwargs["dataset_type"]
    except KeyError:
        dataset_type = "data"

    try:
        t = kwargs["timer"]
    except KeyError:
        t = None

    try:
        i_geom_dst = kwargs["inst_geom_dst"]
    except KeyError:
        i_geom_dst = None

    dataset_cwp = kwargs.get("cwp")

    # Open the appropriate datafiles
    if conf.verbose:
        print "Reading %s file" % dataset_type

    data_paths = conf.data_paths.toPath()
    if conf.no_mon_norm:
        mon_paths = None
    else:
        mon_paths = conf.usmon_path.toPath()

    # Check for mask file since normalization drive doesn't understand option
    try:
        mask_file = conf.mask_file
    except AttributeError:
        mask_file = None

    if t is not None:
        oldtime = t.getOldTime()

    (dp_som0, dm_som0) = dr_lib.add_files_dm(datalist,
                                             Data_Paths=data_paths,
                                             Mon_Paths=mon_paths,
                                             SO_Axis=conf.so_axis,
                                             Signal_ROI=conf.roi_file,
                                             Signal_MASK=mask_file,
                                             dataset_type=dataset_type,
                                             dataset_cwp=dataset_cwp,
                                             Verbose=conf.verbose,
                                             Timer=t)

    if t is not None:
        t.setOldTime(oldtime)
        t.getTime(msg="After reading %s file" % dataset_type)

    # Cut the spectra if necessary
    dp_somA = dr_lib.cut_spectra(dp_som0, conf.tof_cut_min, conf.tof_cut_max)

    del dp_som0

    dp_somB = dr_lib.fix_bin_contents(dp_somA)

    del dp_somA

    if dp_somB.attr_list.instrument.get_name() != "CNCS":

        if conf.verbose:
            print "Cutting spectrum at minimum TOF"

        if t is not None:
            t.getTime(False)

        # Calculate minimum TOF for physical neutrons
        if conf.initial_energy is not None:
            initial_wavelength = common_lib.energy_to_wavelength(\
            conf.initial_energy.toValErrTuple())
            initial_velocity = common_lib.wavelength_to_velocity(\
            initial_wavelength)
        else:
            # This should actually calculate it, but don't have a way right now
            pass

        if conf.time_zero_offset is not None:
            time_zero_offset = conf.time_zero_offset.toValErrTuple()
        else:
            # This should actually calculate it, but don't have a way right now
            time_zero_offset = (0.0, 0.0)

        ss_length = dp_somB.attr_list.instrument.get_primary()

        tof_min = (ss_length[0] / initial_velocity[0]) + time_zero_offset[0]

        # Cut all spectra a the minimum TOF
        dp_som1 = dr_lib.cut_spectra(dp_somB, tof_min, None)

        if t is not None:
            t.getTime(msg="After cutting spectrum at minimum TOF ")
    else:
        dp_som1 = dp_somB

    del dp_somB

    if dm_som0 is not None:
        dm_som1 = dr_lib.fix_bin_contents(dm_som0)
    else:
        dm_som1 = dm_som0

    del dm_som0

    # Override geometry if necessary
    if conf.inst_geom is not None:
        i_geom_dst.setGeometry(data_paths, dp_som1)

    if conf.inst_geom is not None and dm_som1 is not None:
        i_geom_dst.setGeometry(mon_paths, dm_som1)

    # Step 3: Integrate the upstream monitor
    if dm_som1 is not None:
        if conf.verbose:
            print "Integrating upstream monitor spectrum"

        if t is not None:
            t.getTime(False)

        if conf.mon_int_range is None:
            start_val = float("inf")
            end_val = float("inf")
        else:
            start_val = conf.mon_int_range[0]
            end_val = conf.mon_int_range[1]

        dm_som2 = dr_lib.integrate_spectra(dm_som1,
                                           start=start_val,
                                           end=end_val,
                                           width=True)
        if t is not None:
            t.getTime(msg="After integrating upstream monitor spectrum ")
    else:
        dm_som2 = dm_som1

    del dm_som1

    tib_norm_const = None

    # Step 4: Divide data set by summed monitor spectrum
    if dm_som2 is not None:
        if conf.verbose:
            print "Normalizing %s by monitor sum" % dataset_type

        if t is not None:
            t.getTime(False)

        dp_som2 = common_lib.div_ncerr(dp_som1, dm_som2, length_one_som=True)

        tib_norm_const = dm_som2[0].y

        if t is not None:
            t.getTime(msg="After normalizing %s by monitor sum" % dataset_type)

    elif conf.pc_norm:
        if conf.verbose:
            print "Normalizing %s by proton charge" % dataset_type

        pc_tag = dataset_type + "-proton_charge"
        pc = dp_som1.attr_list[pc_tag]

        # Scale the proton charge and then set the scale PC back to attributes
        if conf.scale_pc is not None:
            if conf.verbose:
                print "Scaling %s proton charge" % dataset_type

            pc = hlr_utils.scale_proton_charge(pc, conf.scale_pc)
            dp_som1.attr_list[pc_tag] = pc

        tib_norm_const = pc.getValue()

        if t is not None:
            t.getTime(False)

        dp_som2 = common_lib.div_ncerr(dp_som1, (pc.getValue(), 0.0))

        if t is not None:
            t.getTime(msg="After normalizing %s by proton charge" \
                      % dataset_type)

    else:
        dp_som2 = dp_som1

    del dp_som1, dm_som2

    # Step 5: Scale dark current by data set measurement time
    if dkcur is not None:
        if conf.verbose:
            print "Scaling dark current by %s acquisition time" % dataset_type

        if t is not None:
            t.getTime(False)

        dstime_tag = dataset_type + "-duration"
        dstime = dp_som2.attr_list[dstime_tag]

        dkcur1 = common_lib.div_ncerr(dkcur, (dstime.getValue(), 0.0))

        if t is not None:
            t.getTime(msg="After scaling dark current by %s acquisition time" \
                      % dataset_type)
    else:
        dkcur1 = dkcur

    del dkcur

    # Step 6: Subtract scaled dark current from data set
    if dkcur1 is not None:
        if conf.verbose:
            print "Subtracting %s by scaled dark current" % dataset_type

        if t is not None:
            t.getTime(False)

        dp_som3 = common_lib.sub_ncerr(dp_som2, dkcur1)

        if t is not None:
            t.getTime(msg="After subtracting %s by scaled dark current" \
                      % dataset_type)
    elif tib_const is not None and dkcur1 is None:
        if conf.verbose:
            print "Subtracting TIB constant from %s" % dataset_type

        # Normalize the TIB constant by dividing by the current normalization
        # the duration (if necessary) and the conversion from seconds to
        # microseconds
        tib_c = tib_const.toValErrTuple()

        conv_sec_to_usec = 1.0e-6

        if tib_norm_const is None:
            tib_norm_const = 1
            duration = 1
        else:
            duration_tag = dataset_type + "-duration"
            duration = dp_som2.attr_list[duration_tag].getValue()

        norm_const = (duration * conv_sec_to_usec) / tib_norm_const

        tib_val = tib_c[0] * norm_const
        tib_err2 = tib_c[1] * (norm_const * norm_const)

        if t is not None:
            t.getTime(False)

        dp_som3 = common_lib.sub_ncerr(dp_som2, (tib_val, tib_err2))

        if t is not None:
            t.getTime(msg="After subtracting TIB constant from %s" \
                      % dataset_type)
    elif conf.tib_range is not None and dkcur1 is None:
        if conf.verbose:
            print "Determining TIB constant from %s" % dataset_type

        if t is not None:
            t.getTime(False)

        TIB = dr_lib.determine_time_indep_bkg(dp_som2,
                                              conf.tib_range,
                                              is_range=True)

        if t is not None:
            t.getTime(msg="After determining TIB constant from %s" \
                      % dataset_type)

        if conf.dump_tib:
            file_comment = "TIB TOF Range: [%d, %d]" % (conf.tib_range[0],
                                                        conf.tib_range[1])

            hlr_utils.write_file(conf.output, "text/num-info", TIB,
                                 output_ext="tib",
                                 extra_tag=dataset_type,
                                 verbose=conf.verbose,
                                 data_ext=conf.ext_replacement,
                                 path_replacement=conf.path_replacement,
                                 message="time-independent background "\
                                 +"information",
                                 tag="Average TIB",
                                 units="counts/usec",
                                 comments=[file_comment])

        if conf.verbose:
            print "Subtracting TIB constant from %s" % dataset_type

        if t is not None:
            t.getTime(False)

        dp_som3 = common_lib.sub_ncerr(dp_som2, TIB)

        if t is not None:
            t.getTime(msg="After subtracting TIB constant from %s" \
                      % dataset_type)

        del TIB
    else:
        dp_som3 = dp_som2

    del dp_som2, dkcur1

    if conf.dump_ctof_comb:
        dp_som3_1 = dr_lib.sum_all_spectra(dp_som3)
        hlr_utils.write_file(conf.output,
                             "text/Spec",
                             dp_som3_1,
                             output_ext="ctof",
                             extra_tag=dataset_type,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             verbose=conf.verbose,
                             message="combined calibrated TOF information")

        del dp_som3_1

    return dp_som3
def calibrate_dgs_data(datalist, conf, dkcur, **kwargs):
    """
    This function combines Steps 3 through 6 in Section 2.1.1 of the data
    reduction process for Direct Geometry Spectrometers as specified by the
    document at 
    U{http://neutrons.ornl.gov/asg/projects/SCL/reqspec/DR_Lib_RS.doc}. The
    function takes a list of file names, a L{hlr_utils.Configure} object and
    processes the data accordingly.
    
    @param datalist: A list containing the filenames of the data to be
                     processed.
    @type datalist: C{list} of C{string}s
    
    @param conf: Object that contains the current setup of the driver.
    @type conf: L{hlr_utils.Configure}

    @param dkcur: The object containing the TOF dark current data.
    @type dkcur: C{SOM.SOM}
    
    @param kwargs: A list of keyword arguments that the function accepts:
    
    @keyword inst_geom_dst: File object that contains instrument geometry
                            information.
    @type inst_geom_dst: C{DST.GeomDST}

    @keyword tib_const: A time-independent background constant to subtract
                        from every pixel.
    @type tib_const: L{hlr_utils.DrParameter}
    
    @keyword dataset_type: The practical name of the dataset being processed.
                           The default value is I{data}.
    @type dataset_type: C{string}

    @keyword cwp: A list of chopper phase corrections in units of microseconds.
    @type cwp: C{list} of C{float}s
    
    @keyword timer: Timing object so the function can perform timing estimates.
    @type timer: C{sns_timer.DiffTime}


    @return: Object that has undergone all requested processing steps
    @rtype: C{SOM.SOM}
    """
    import common_lib
    import dr_lib
    import hlr_utils

    # Check keywords
    try:
        tib_const = kwargs["tib_const"]
    except KeyError:
        tib_const = None
    
    try:
        dataset_type = kwargs["dataset_type"]
    except KeyError:
        dataset_type = "data"

    try:
        t = kwargs["timer"]
    except KeyError:
        t = None

    try:
        i_geom_dst = kwargs["inst_geom_dst"]
    except KeyError:
        i_geom_dst = None

    dataset_cwp = kwargs.get("cwp")

    # Open the appropriate datafiles
    if conf.verbose:
        print "Reading %s file" % dataset_type

    data_paths = conf.data_paths.toPath()
    if conf.no_mon_norm:
        mon_paths = None
    else:
        mon_paths = conf.usmon_path.toPath()

    # Check for mask file since normalization drive doesn't understand option
    try:
        mask_file = conf.mask_file
    except AttributeError:
        mask_file = None

    if t is not None:
        oldtime = t.getOldTime()

    (dp_som0, dm_som0) = dr_lib.add_files_dm(datalist, Data_Paths=data_paths,
                                             Mon_Paths=mon_paths,
                                             SO_Axis=conf.so_axis,
                                             Signal_ROI=conf.roi_file,
                                             Signal_MASK=mask_file,
                                             dataset_type=dataset_type,
                                             dataset_cwp=dataset_cwp,
                                             Verbose=conf.verbose, Timer=t)

    if t is not None:
        t.setOldTime(oldtime)
        t.getTime(msg="After reading %s file" % dataset_type)

    # Cut the spectra if necessary
    dp_somA = dr_lib.cut_spectra(dp_som0, conf.tof_cut_min, conf.tof_cut_max)

    del dp_som0

    dp_somB = dr_lib.fix_bin_contents(dp_somA)

    del dp_somA

    if dp_somB.attr_list.instrument.get_name() != "CNCS":

        if conf.verbose:
            print "Cutting spectrum at minimum TOF"
        
        if t is not None:
            t.getTime(False)

        # Calculate minimum TOF for physical neutrons
        if conf.initial_energy is not None:
            initial_wavelength = common_lib.energy_to_wavelength(\
            conf.initial_energy.toValErrTuple())
            initial_velocity = common_lib.wavelength_to_velocity(\
            initial_wavelength)
        else:
            # This should actually calculate it, but don't have a way right now
            pass

        if conf.time_zero_offset is not None:
            time_zero_offset = conf.time_zero_offset.toValErrTuple()
        else:
            # This should actually calculate it, but don't have a way right now
            time_zero_offset = (0.0, 0.0)

        ss_length = dp_somB.attr_list.instrument.get_primary()
        
        tof_min = (ss_length[0] / initial_velocity[0]) + time_zero_offset[0]

        # Cut all spectra a the minimum TOF
        dp_som1 = dr_lib.cut_spectra(dp_somB, tof_min, None)

        if t is not None:
            t.getTime(msg="After cutting spectrum at minimum TOF ")
    else:
        dp_som1 = dp_somB

    del dp_somB

    if dm_som0 is not None:
        dm_som1 = dr_lib.fix_bin_contents(dm_som0)
    else:
        dm_som1 = dm_som0

    del dm_som0    

    # Override geometry if necessary
    if conf.inst_geom is not None:
        i_geom_dst.setGeometry(data_paths, dp_som1)

    if conf.inst_geom is not None and dm_som1 is not None:
        i_geom_dst.setGeometry(mon_paths, dm_som1)
    
    # Step 3: Integrate the upstream monitor
    if dm_som1 is not None:
        if conf.verbose:
            print "Integrating upstream monitor spectrum"

        if t is not None:
            t.getTime(False)
        
        if conf.mon_int_range is None:
            start_val = float("inf")
            end_val = float("inf")
        else:
            start_val = conf.mon_int_range[0]
            end_val = conf.mon_int_range[1]
        
        dm_som2 = dr_lib.integrate_spectra(dm_som1, start=start_val,
                                           end=end_val,
                                           width=True)
        if t is not None:
            t.getTime(msg="After integrating upstream monitor spectrum ")
    else:
        dm_som2 = dm_som1

    del dm_som1

    tib_norm_const = None
    
    # Step 4: Divide data set by summed monitor spectrum
    if dm_som2 is not None:
        if conf.verbose:
            print "Normalizing %s by monitor sum" % dataset_type

        if t is not None:
            t.getTime(False)

        dp_som2 = common_lib.div_ncerr(dp_som1, dm_som2, length_one_som=True)

        tib_norm_const = dm_som2[0].y

        if t is not None:
            t.getTime(msg="After normalizing %s by monitor sum" % dataset_type)

    elif conf.pc_norm:
        if conf.verbose:
            print "Normalizing %s by proton charge" % dataset_type

        pc_tag = dataset_type+"-proton_charge"
        pc = dp_som1.attr_list[pc_tag]

        # Scale the proton charge and then set the scale PC back to attributes
        if conf.scale_pc is not None:
            if conf.verbose:
                print "Scaling %s proton charge" % dataset_type

            pc = hlr_utils.scale_proton_charge(pc, conf.scale_pc)
            dp_som1.attr_list[pc_tag] = pc

        tib_norm_const = pc.getValue()

        if t is not None:
            t.getTime(False)

        dp_som2 = common_lib.div_ncerr(dp_som1, (pc.getValue(), 0.0))

        if t is not None:
            t.getTime(msg="After normalizing %s by proton charge" \
                      % dataset_type)

    else:
        dp_som2 = dp_som1

    del dp_som1, dm_som2

    # Step 5: Scale dark current by data set measurement time
    if dkcur is not None:
        if conf.verbose:
            print "Scaling dark current by %s acquisition time" % dataset_type

        if t is not None:
            t.getTime(False)

        dstime_tag = dataset_type+"-duration"
        dstime = dp_som2.attr_list[dstime_tag]

        dkcur1 = common_lib.div_ncerr(dkcur, (dstime.getValue(), 0.0))

        if t is not None:
            t.getTime(msg="After scaling dark current by %s acquisition time" \
                      % dataset_type)        
    else:
        dkcur1 = dkcur

    del dkcur

    # Step 6: Subtract scaled dark current from data set
    if dkcur1 is not None:
        if conf.verbose:
            print "Subtracting %s by scaled dark current" % dataset_type

        if t is not None:
            t.getTime(False)

        dp_som3 = common_lib.sub_ncerr(dp_som2, dkcur1)

        if t is not None:
            t.getTime(msg="After subtracting %s by scaled dark current" \
                      % dataset_type)
    elif tib_const is not None and dkcur1 is None:
        if conf.verbose:
            print "Subtracting TIB constant from %s" % dataset_type

        # Normalize the TIB constant by dividing by the current normalization
        # the duration (if necessary) and the conversion from seconds to
        # microseconds
        tib_c = tib_const.toValErrTuple()

        conv_sec_to_usec = 1.0e-6

        if tib_norm_const is None:
            tib_norm_const = 1
            duration = 1
        else:
            duration_tag = dataset_type+"-duration"
            duration = dp_som2.attr_list[duration_tag].getValue()

        norm_const = (duration * conv_sec_to_usec) / tib_norm_const

        tib_val = tib_c[0] * norm_const
        tib_err2 = tib_c[1] * (norm_const * norm_const)

        if t is not None:
            t.getTime(False)
  
        dp_som3 = common_lib.sub_ncerr(dp_som2, (tib_val, tib_err2))

        if t is not None:
            t.getTime(msg="After subtracting TIB constant from %s" \
                      % dataset_type)
    elif conf.tib_range is not None and dkcur1 is None:
        if conf.verbose:
            print "Determining TIB constant from %s" % dataset_type

        if t is not None:
            t.getTime(False)

        TIB = dr_lib.determine_time_indep_bkg(dp_som2, conf.tib_range,
                                              is_range=True)

        if t is not None:
            t.getTime(msg="After determining TIB constant from %s" \
                      % dataset_type)

        if conf.dump_tib:
            file_comment = "TIB TOF Range: [%d, %d]" % (conf.tib_range[0],
                                                        conf.tib_range[1])
        
            hlr_utils.write_file(conf.output, "text/num-info", TIB,
                                 output_ext="tib",
                                 extra_tag=dataset_type,
                                 verbose=conf.verbose,
                                 data_ext=conf.ext_replacement,
                                 path_replacement=conf.path_replacement,
                                 message="time-independent background "\
                                 +"information",
                                 tag="Average TIB",
                                 units="counts/usec",
                                 comments=[file_comment])
            
        if conf.verbose:
            print "Subtracting TIB constant from %s" % dataset_type

        if t is not None:
            t.getTime(False)

        dp_som3 = common_lib.sub_ncerr(dp_som2, TIB)

        if t is not None:
            t.getTime(msg="After subtracting TIB constant from %s" \
                      % dataset_type)

        del TIB
    else:
        dp_som3 = dp_som2

    del dp_som2, dkcur1

    if conf.dump_ctof_comb:
        dp_som3_1 = dr_lib.sum_all_spectra(dp_som3)
        hlr_utils.write_file(conf.output, "text/Spec", dp_som3_1,
                             output_ext="ctof",
                             extra_tag=dataset_type,
                             data_ext=conf.ext_replacement,    
                             path_replacement=conf.path_replacement,
                             verbose=conf.verbose,
                             message="combined calibrated TOF information")
        
        del dp_som3_1
    
    return dp_som3
Example #3
0
def process_ref_data(datalist,
                     conf,
                     signal_roi_file,
                     bkg_roi_file=None,
                     no_bkg=False,
                     **kwargs):
    """
    This function combines Steps 1 through 6 in section 2.4.5 of the data
    reduction process for Reflectometers (without Monitors) as specified by
    the document at
    U{http://neutrons.ornl.gov/asg/projects/SCL/reqspec/DR_Lib_RS.doc}. The
    function takes a list of file names, a L{hlr_utils.Configure} object,
    signal and background region-of-interest (ROI) files and an optional flag
    about background subtraction and processes the data accordingly.
    
    @param datalist: The filenames of the data to be processed
    @type datalist: C{list} of C{string}s
    
    @param conf: Object that contains the current setup of the driver
    @type conf: L{hlr_utils.Configure}
    
    @param signal_roi_file: The file containing the list of pixel IDs for the
                            signal region of interest.
    @type signal_roi_file: C{string}

    @param bkg_roi_file: The file containing the list of pixel IDs for the
                         (possible) background region of interest.
    @type bkg_roi_file: C{string}    
    
    @param no_bkg: (OPTIONAL) Flag which determines if the background will be
                              calculated and subtracted.
    @type no_bkg: C{boolean}
    
    @param kwargs: A list of keyword arguments that the function accepts:
    
    @keyword inst_geom_dst: Object that contains the instrument geometry
                            information.
    @type inst_geom_dst: C{DST.getInstance()}
    
    @keyword dataset_type: The practical name of the dataset being processed.
                           The default value is I{data}.
    @type dataset_type: C{string}

    @keyword tof_cuts: Time-of-flight bins to remove (zero) from the data
    @type tof_cuts: C{list} of C{string}s

    @keyword no_tof_cuts: Flag to stop application of the TOF cuts
    @type no_tof_cuts: C{boolean}
    
    @keyword timer:  Timing object so the function can perform timing
                     estimates.
    @type timer: C{sns_timer.DiffTime}


    @return: Object that has undergone all requested processing steps
    @rtype: C{SOM.SOM}
    """
    import common_lib
    import dr_lib
    import hlr_utils

    # Check keywords
    try:
        dataset_type = kwargs["dataset_type"]
    except KeyError:
        dataset_type = "data"

    if dataset_type != "data" and dataset_type != "norm":
        raise RuntimeError("Please use data or norm to specify the dataset "\
                           +"type. Do not understand how to handle %s." \
                           % dataset_type)

    try:
        t = kwargs["timer"]
    except KeyError:
        t = None

    try:
        i_geom_dst = kwargs["inst_geom_dst"]
    except KeyError:
        i_geom_dst = None

    try:
        tof_cuts = kwargs["tof_cuts"]
    except KeyError:
        tof_cuts = None

    no_tof_cuts = kwargs.get("no_tof_cuts", False)

    so_axis = "time_of_flight"

    # Step 0: Open data files and select signal (and possible background) ROIs
    if conf.verbose:
        print "Reading %s file" % dataset_type

    if len(conf.norm_data_paths) and dataset_type == "norm":
        data_path = conf.norm_data_paths.toPath()
    else:
        data_path = conf.data_paths.toPath()

    (d_som1, b_som1) = dr_lib.add_files_bg(datalist,
                                           Data_Paths=data_path,
                                           SO_Axis=so_axis,
                                           dataset_type=dataset_type,
                                           Signal_ROI=signal_roi_file,
                                           Bkg_ROI=bkg_roi_file,
                                           Verbose=conf.verbose,
                                           Timer=t)

    if t is not None:
        t.getTime(msg="After reading %s " % dataset_type)

    if i_geom_dst is not None:
        i_geom_dst.setGeometry(conf.data_paths.toPath(), d_som1)

    # Calculate delta t over t
    if conf.verbose:
        print "Calculating delta t over t"

    dtot = dr_lib.calc_deltat_over_t(d_som1[0].axis[0].val)

    # Calculate delta theta over theta
    if conf.verbose:
        print "Calculating delta theta over theta"

    dr_lib.calc_delta_theta_over_theta(d_som1, dataset_type)

    # Step 1: Sum all spectra along the low resolution direction

    # Set sorting
    (y_sort, cent_pixel) = hlr_utils.get_ref_integration_direction(
        conf.int_dir, conf.inst, d_som1.attr_list.instrument)
    if dataset_type == "data":
        d_som1.attr_list["ref_sort"] = y_sort

    d_som1A = dr_lib.sum_all_spectra(d_som1,
                                     y_sort=y_sort,
                                     stripe=True,
                                     pixel_fix=cent_pixel)

    del d_som1

    if b_som1 is not None:
        b_som1A = dr_lib.sum_all_spectra(b_som1,
                                         y_sort=y_sort,
                                         stripe=True,
                                         pixel_fix=cent_pixel)
        del b_som1
    else:
        b_som1A = b_som1

    # Set the TOF cuts
    if no_tof_cuts:
        tof_cut_min = None
        tof_cut_max = None
    else:
        tof_cut_min = conf.tof_cut_min
        tof_cut_max = conf.tof_cut_max

    # Cut the spectra if necessary
    d_som2 = dr_lib.cut_spectra(d_som1A, tof_cut_min, tof_cut_max)

    del d_som1A

    if b_som1A is not None:
        b_som2 = dr_lib.cut_spectra(b_som1A, tof_cut_min, tof_cut_max)
        del b_som1A
    else:
        b_som2 = b_som1A

    # Fix TOF cuts to make them list of integers
    try:
        tof_cuts = [int(x) for x in tof_cuts]
    # This will trigger if tof_cuts is None
    except TypeError:
        pass

    d_som3 = dr_lib.zero_bins(d_som2, tof_cuts)

    del d_som2

    if b_som2 is not None:
        b_som3 = dr_lib.zero_bins(b_som2, tof_cuts)

        del b_som2
    else:
        b_som3 = b_som2

    if conf.dump_specular:
        if no_tof_cuts:
            d_som3_1 = dr_lib.cut_spectra(d_som3, conf.tof_cut_min,
                                          conf.tof_cut_max)
        else:
            d_som3_1 = d_som3
        hlr_utils.write_file(conf.output,
                             "text/Spec",
                             d_som3_1,
                             output_ext="sdc",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message="specular TOF information")
        del d_som3_1

    # Steps 2-4: Determine background spectrum
    if conf.verbose and not no_bkg:
        print "Determining %s background" % dataset_type

    if dataset_type == "data":
        peak_excl = conf.data_peak_excl
    elif dataset_type == "norm":
        peak_excl = conf.norm_peak_excl

    if b_som3 is not None:
        B = dr_lib.calculate_ref_background(b_som3,
                                            no_bkg,
                                            conf.inst,
                                            None,
                                            aobj=d_som3)
    else:
        B = dr_lib.calculate_ref_background(d_som3, no_bkg, conf.inst,
                                            peak_excl)

    if t is not None:
        t.getTime(msg="After background determination")

    if not no_bkg and conf.dump_bkg:
        if no_tof_cuts:
            B_1 = dr_lib.cut_spectra(B, conf.tof_cut_min, conf.tof_cut_max)
        else:
            B_1 = B
        hlr_utils.write_file(conf.output,
                             "text/Spec",
                             B_1,
                             output_ext="bkg",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message="background TOF information")
        del B_1

    # Step 5: Subtract background spectrum from data spectra
    if not no_bkg:
        d_som4 = dr_lib.subtract_bkg_from_data(d_som3,
                                               B,
                                               verbose=conf.verbose,
                                               timer=t,
                                               dataset1="data",
                                               dataset2="background")
    else:
        d_som4 = d_som3

    del d_som3

    if not no_bkg and conf.dump_sub:
        if no_tof_cuts:
            d_som4_1 = dr_lib.cut_spectra(d_som4, conf.tof_cut_min,
                                          conf.tof_cut_max)
        else:
            d_som4_1 = d_som4
        hlr_utils.write_file(conf.output,
                             "text/Spec",
                             d_som4_1,
                             output_ext="sub",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message="subtracted TOF information")
        del d_som4_1

    dtot_int = dr_lib.integrate_axis_py(dtot, avg=True)
    param_key = dataset_type + "-dt_over_t"
    d_som4.attr_list[param_key] = dtot_int[0]

    if conf.store_dtot:
        d_som4.attr_list["extra_som"] = dtot

    # Step 6: Scale by proton charge
    pc = d_som4.attr_list[dataset_type + "-proton_charge"]
    pc_new = hlr_utils.scale_proton_charge(pc, "C")
    d_som5 = common_lib.div_ncerr(d_som4, (pc_new.getValue(), 0.0))

    del d_som4

    return d_som5