Example #1
0
 def _reestimate(self, stats):
     new_model = _BaseHMM._reestimate(self, stats)
     new_model['LFMparams'] = self._reestimateLFMparams(stats['gammas'])
     if self.verbose:
         print "CURRENT MODEL PARAMETERS"
         print "PI"
         print repr(new_model['pi'])
         print "A"
         print repr(new_model['A'])
         print "EMISSION PARAMS: "
         print repr(new_model['LFMparams'])
     return new_model
Example #2
0
 def _reestimate(self,stats,observations):
     '''
     Required extension of _reestimate. 
     Adds a re-estimation of the model parameter 'B'.
     '''
     # re-estimate A, pi
     new_model = _BaseHMM._reestimate(self,stats,observations) #@UndefinedVariable
     
     # re-estimate the discrete probability of the observable symbols
     B_new = self._reestimateB(observations,stats['gamma'])
     
     new_model['B'] = B_new
     
     return new_model
Example #3
0
    def _reestimate(self, stats, observations):
        '''
        Required extension of _reestimate. 
        Adds a re-estimation of the model parameter 'B'.
        '''
        # re-estimate A, pi
        new_model = _BaseHMM._reestimate(self, stats,
                                         observations)  #@UndefinedVariable

        # re-estimate the discrete probability of the observable symbols
        B_new = self._reestimateB(observations, stats['gamma'])

        new_model['B'] = B_new

        return new_model
Example #4
0
 def _reestimate(self,stats,observations):
     '''
     Required extension of _reestimate. 
     Adds a re-estimation of the mixture parameters 'w', 'means', 'covars'.
     '''        
     # re-estimate A, pi
     new_model = _BaseHMM._reestimate(self,stats,observations) #@UndefinedVariable
     
     # re-estimate the continuous probability parameters of the mixtures
     w_new, means_new, covars_new = self._reestimateMixtures(observations,stats['gamma_mix'])
     
     new_model['w'] = w_new
     new_model['means'] = means_new
     new_model['covars'] = covars_new
     
     return new_model
Example #5
0
 def _reestimate(self,stats,observations):
     '''
     Required extension of _reestimate. 
     Adds a re-estimation of the mixture parameters 'w', 'means', 'covars'.
     '''        
     # re-estimate A, pi
     new_model = _BaseHMM._reestimate(self,stats,observations) #@UndefinedVariable
     
     # re-estimate the continuous probability parameters of the mixtures
     w_new, means_new, covars_new = self._reestimateMixtures(observations,stats['gamma_mix'])
     
     new_model['w'] = w_new
     new_model['means'] = means_new
     new_model['covars'] = covars_new
     
     return new_model
Example #6
0
 def _reestimate(self, stats):
     new_model = _BaseHMM._reestimate(self, stats)
     new_model['ICMparams'] = self._reestimateICMparams(stats['gammas'])
     return new_model