def __init__(self, n, m, d=1, A=None, means=None, covars=None, w=None, pi=None, min_std=0.01, init_type='uniform', precision=numpy.double, verbose=False): GMHMM.__init__(self, n, m, d, A, means, covars, w, pi, min_std, init_type, precision, verbose)
def __init__(self, n, m, d=1, A=None, means=None, covars=None, w=None, pi=None, min_std=0.01, init_type='uniform', precision=numpy.double, verbose=False): print( "Warning: weighted EMs may not converge to local optima, since the log-likelihood function may decrease." ) print() GMHMM.__init__(self, n, m, d, A, means, covars, w, pi, min_std, init_type, precision, verbose) #@UndefinedVariable Linear.__init__(self)