Example #1
0
 def __init__(self,
              n,
              m,
              d=1,
              A=None,
              means=None,
              covars=None,
              w=None,
              pi=None,
              min_std=0.01,
              init_type='uniform',
              precision=numpy.double,
              verbose=False):
     GMHMM.__init__(self, n, m, d, A, means, covars, w, pi, min_std,
                    init_type, precision, verbose)
Example #2
0
    def __init__(self,
                 n,
                 m,
                 d=1,
                 A=None,
                 means=None,
                 covars=None,
                 w=None,
                 pi=None,
                 min_std=0.01,
                 init_type='uniform',
                 precision=numpy.double,
                 verbose=False):
        print(
            "Warning: weighted EMs may not converge to local optima, since the log-likelihood function may decrease."
        )
        print()

        GMHMM.__init__(self, n, m, d, A, means, covars, w, pi, min_std,
                       init_type, precision, verbose)  #@UndefinedVariable
        Linear.__init__(self)