def run(args): # create output directory if doesn't exist; warn if output files already exist if not os.path.exists(args.output_directory): os.makedirs(args.output_directory) dir_contents = os.listdir(args.output_directory) if JSON_OUTPUT in dir_contents or COMPONENTS_TSV in dir_contents or SIGNIFICANCE_TSV in dir_contents: print("WARNING: Output directory already contains HotNet results file(s), which will be " "overwritten. (Ctrl-c to cancel).") # load data infmat = scipy.io.loadmat(args.infmat_file)[args.infmat_name] infmat_index = hnio.load_index(args.infmat_index_file) heat, heat_params = hnio.load_heat_json(args.heat_file) # compute similarity matrix and extract connected components M, gene_index = hn.induce_infmat(infmat, infmat_index, sorted(heat.keys()), quiet=False) h = hn.heat_vec(heat, gene_index) sim = hn.similarity_matrix(M, h) G = hn.weighted_graph(sim, gene_index, args.delta) ccs = hn.connected_components(G, args.min_cc_size) # calculate significance if args.permutation_type != "none": if args.permutation_type == "heat": sizes2stats = heat_permutation_significance(args, heat, infmat, infmat_index, G) elif args.permutation_type == "mutations": if heat_params["heat_fn"] != "load_mutation_heat": raise RuntimeError("Heat scores must be based on mutation data to perform\ significance testing based on mutation data permutation.") sizes2stats = mutation_permutation_significance(args, infmat, infmat_index, G, heat_params) else: raise ValueError("Unrecognized permutation type %s" % (args.permutation_type)) #sort ccs list such that genes within components are sorted alphanumerically, and components #are sorted first by length, then alphanumerically by name of the first gene in the component ccs = [sorted(cc) for cc in ccs] ccs.sort(key=lambda comp: comp[0]) ccs.sort(key=len, reverse=True) # write output output_dict = {"parameters": vars(args), "heat_parameters": heat_params, "sizes": hn.component_sizes(ccs), "components": ccs} if args.permutation_type != "none": output_dict["statistics"] = sizes2stats hnio.write_significance_as_tsv(os.path.abspath(args.output_directory) + "/" + SIGNIFICANCE_TSV, sizes2stats) json_out = open(os.path.abspath(args.output_directory) + "/" + JSON_OUTPUT, 'w') json.dump(output_dict, json_out, indent=4) json_out.close() hnio.write_components_as_tsv(os.path.abspath(args.output_directory) + "/" + COMPONENTS_TSV, ccs)
def run(args): output_f = open(args.hotnet_output_json) output_blob = json.load(output_f) output_f.close() heat_parameters = output_blob["heat_parameters"] if heat_parameters["heat_fn"] != "load_mutation_heat": raise ValueError( "Heat scores must have been calculated from mutation data to annotate output." ) components = output_blob["components"] genes = hnio.load_genes(heat_parameters["gene_file"]) samples = hnio.load_samples(heat_parameters["sample_file"]) snvs = hnio.load_snvs(heat_parameters["snv_file"], genes, samples) cnas = hnio.load_cnas(heat_parameters["cna_file"], genes, samples) if not samples: samples = set([snv.sample for snv in snvs] + [cna.sample for cna in cnas]) gene2mutsam = defaultdict(set) for mut in snvs + cnas: gene2mutsam[mut.gene].add(mut.sample) annotated_ccs = list() for component in components: annotated_cc = list() annotated_ccs.append(annotated_cc) cc_mutated_samples = set() for gene in component: cc_mutated_samples.update(gene2mutsam[gene]) annotated_cc.append("%s(%s)" % (gene, len(gene2mutsam[gene]))) annotated_cc.insert( 0, "%s(%s%%)" % (len(cc_mutated_samples), len(cc_mutated_samples) / float(len(samples)) * 100)) output_directory = output_blob["parameters"]["output_directory"] output_file = os.path.abspath(output_directory) + "/" + ANNOTATION_TSV hnio.write_components_as_tsv(output_file, annotated_ccs)
def run(args): output_f = open(args.hotnet_output_json) output_blob = json.load(output_f) output_f.close() heat_parameters = output_blob["heat_parameters"] if heat_parameters["heat_fn"] != "load_mutation_heat": raise ValueError("Heat scores must have been calculated from mutation data to annotate output.") components = output_blob["components"] genes = hnio.load_genes(heat_parameters["gene_file"]) samples = hnio.load_samples(heat_parameters["sample_file"]) snvs = hnio.load_snvs(heat_parameters["snv_file"], genes, samples) cnas = hnio.load_cnas(heat_parameters["cna_file"], genes, samples) if not samples: samples = set([snv.sample for snv in snvs] + [cna.sample for cna in cnas]) gene2mutsam = defaultdict(set) for mut in snvs + cnas: gene2mutsam[mut.gene].add(mut.sample) annotated_ccs = list() for component in components: annotated_cc = list() annotated_ccs.append(annotated_cc) cc_mutated_samples = set() for gene in component: cc_mutated_samples.update(gene2mutsam[gene]) annotated_cc.append("%s(%s)" % (gene, len(gene2mutsam[gene]))) annotated_cc.insert(0, "%s(%s%%)" % (len(cc_mutated_samples), len(cc_mutated_samples) / float(len(samples)) * 100)) output_directory = output_blob["parameters"]["output_directory"] output_file = os.path.abspath(output_directory) + "/" + ANNOTATION_TSV hnio.write_components_as_tsv(output_file, annotated_ccs)
def run_helper(args, infmat_name, get_deltas_fn, extra_delta_args): """Helper shared by simpleRun and simpleRunClassic. """ # create output directory if doesn't exist; warn if it exists and is not empty if not os.path.exists(args.output_directory): os.makedirs(args.output_directory) if len(os.listdir(args.output_directory)) > 0: print("WARNING: Output directory is not empty. Any conflicting files will be overwritten. " "(Ctrl-c to cancel).") infmat = hnio.load_infmat(args.infmat_file, infmat_name) full_index2gene = hnio.load_index(args.infmat_index_file) using_json_heat = os.path.splitext(args.heat_file.lower())[1] == '.json' if using_json_heat: heat = json.load(open(args.heat_file))['heat'] else: heat = hnio.load_heat_tsv(args.heat_file) print "* Loaded heat scores for %s genes" % len(heat) # filter out genes not in the network heat = hnheat.filter_heat_to_network_genes(heat, set(full_index2gene.values())) # genes with score 0 cannot be in output components, but are eligible for heat in permutations heat, addtl_genes = hnheat.filter_heat(heat, None, False, 'There are ## genes with heat score 0') deltas = get_deltas_fn(full_index2gene, heat, args.delta_permutations, args.num_cores, infmat, addtl_genes, *extra_delta_args) sim, index2gene = hn.similarity_matrix(infmat, full_index2gene, heat, True) results_files = [] for delta in deltas: # create output directory delta_out_dir = args.output_directory + "/delta_" + str(delta) if not os.path.isdir(delta_out_dir): os.mkdir(delta_out_dir) # find connected components G = hn.weighted_graph(sim, index2gene, delta, directed=True) ccs = hn.connected_components(G, args.min_cc_size) # calculate significance (using all genes with heat scores) print "* Performing permuted heat statistical significance..." heat_permutations = p.permute_heat(heat, full_index2gene.values(), args.significance_permutations, addtl_genes, args.num_cores) sizes = range(2, 11) print "\t- Using no. of components >= k (k \\in", print "[%s, %s]) as statistic" % (min(sizes), max(sizes)) sizes2counts = stats.calculate_permuted_cc_counts(infmat, full_index2gene, heat_permutations, delta, sizes, True, args.num_cores) real_counts = stats.num_components_min_size(G, sizes) size2real_counts = dict(zip(sizes, real_counts)) sizes2stats = stats.compute_statistics(size2real_counts, sizes2counts, args.significance_permutations) # sort ccs list such that genes within components are sorted alphanumerically, and components # are sorted first by length, then alphanumerically by name of the first gene in the component ccs = [sorted(cc) for cc in ccs] ccs.sort(key=lambda comp: comp[0]) ccs.sort(key=len, reverse=True) # write output if not using_json_heat: heat_dict = {"heat": heat, "parameters": {"heat_file": args.heat_file}} heat_out = open(os.path.abspath(delta_out_dir) + "/" + HEAT_JSON, 'w') json.dump(heat_dict, heat_out, indent=4) heat_out.close() args.heat_file = os.path.abspath(delta_out_dir) + "/" + HEAT_JSON args.delta = delta # include delta in parameters section of output JSON output_dict = {"parameters": vars(args), "sizes": hn.component_sizes(ccs), "components": ccs, "statistics": sizes2stats} hnio.write_significance_as_tsv(os.path.abspath(delta_out_dir) + "/" + SIGNIFICANCE_TSV, sizes2stats) json_out = open(os.path.abspath(delta_out_dir) + "/" + JSON_OUTPUT, 'w') json.dump(output_dict, json_out, indent=4) json_out.close() results_files.append( os.path.abspath(delta_out_dir) + "/" + JSON_OUTPUT ) hnio.write_components_as_tsv(os.path.abspath(delta_out_dir) + "/" + COMPONENTS_TSV, ccs) # create the hierarchy if necessary if args.output_hierarchy: from bin import createDendrogram as CD hierarchy_out_dir = '{}/hierarchy/'.format(args.output_directory) if not os.path.isdir(hierarchy_out_dir): os.mkdir(hierarchy_out_dir) params = vars(args) CD.createDendrogram( sim, index2gene.values(), hierarchy_out_dir, params, verbose=False) hierarchyFile = '{}/viz_files/{}'.format(str(hn.__file__).rsplit('/', 1)[0], HIERARCHY_WEB_FILE) shutil.copy(hierarchyFile, '{}/index.html'.format(hierarchy_out_dir)) # write visualization output if edge file given if args.edge_file: from bin import makeResultsWebsite as MRW viz_args = [ "-r" ] + results_files viz_args += ["-ef", args.edge_file, "-o", args.output_directory + "/viz" ] if args.network_name: viz_args += [ "-nn", args.network_name ] if args.display_score_file: viz_args += [ "-dsf", args.display_score_file ] if args.display_name_file: viz_args += [ "-dnf", args.display_name_file ] MRW.run( MRW.get_parser().parse_args(viz_args) )
def run_helper(args, infmat_name, get_deltas_fn, extra_delta_args): """Helper shared by simpleRun and simpleRunClassic. """ # create output directory if doesn't exist; warn if it exists and is not empty if not os.path.exists(args.output_directory): os.makedirs(args.output_directory) if len(os.listdir(args.output_directory)) > 0: print("WARNING: Output directory is not empty. Any conflicting files will be overwritten. " "(Ctrl-c to cancel).") infmat = scipy.io.loadmat(args.infmat_file)[infmat_name] full_index2gene = hnio.load_index(args.infmat_index_file) using_json_heat = os.path.splitext(args.heat_file.lower())[1] == '.json' if using_json_heat: heat = json.load(open(args.heat_file))['heat'] else: heat = hnio.load_heat_tsv(args.heat_file) print "* Loaded heat scores for %s genes" % len(heat) # filter out genes not in the network heat = hnheat.filter_heat_to_network_genes(heat, set(full_index2gene.values())) # genes with score 0 cannot be in output components, but are eligible for heat in permutations heat, addtl_genes = hnheat.filter_heat(heat, None, False, 'There are ## genes with heat score 0') deltas = get_deltas_fn(full_index2gene, heat, args.delta_permutations, args.num_cores, infmat, addtl_genes, *extra_delta_args) sim, index2gene = hn.similarity_matrix(infmat, full_index2gene, heat, True) results_files = [] for delta in deltas: # create output directory delta_out_dir = args.output_directory + "/delta_" + str(delta) if not os.path.isdir(delta_out_dir): os.mkdir(delta_out_dir) # find connected components G = hn.weighted_graph(sim, index2gene, delta, directed=True) ccs = hn.connected_components(G, args.min_cc_size) # calculate significance (using all genes with heat scores) print "* Performing permuted heat statistical significance..." heat_permutations = p.permute_heat(heat, full_index2gene.values(), args.significance_permutations, addtl_genes, args.num_cores) sizes = range(2, 11) print "\t- Using no. of components >= k (k \\in", print "[%s, %s]) as statistic" % (min(sizes), max(sizes)) sizes2counts = stats.calculate_permuted_cc_counts(infmat, full_index2gene, heat_permutations, delta, sizes, True, args.num_cores) real_counts = stats.num_components_min_size(G, sizes) size2real_counts = dict(zip(sizes, real_counts)) sizes2stats = stats.compute_statistics(size2real_counts, sizes2counts, args.significance_permutations) # sort ccs list such that genes within components are sorted alphanumerically, and components # are sorted first by length, then alphanumerically by name of the first gene in the component ccs = [sorted(cc) for cc in ccs] ccs.sort(key=lambda comp: comp[0]) ccs.sort(key=len, reverse=True) # write output if not using_json_heat: heat_dict = {"heat": heat, "parameters": {"heat_file": args.heat_file}} heat_out = open(os.path.abspath(delta_out_dir) + "/" + HEAT_JSON, 'w') json.dump(heat_dict, heat_out, indent=4) heat_out.close() args.heat_file = os.path.abspath(delta_out_dir) + "/" + HEAT_JSON args.delta = delta # include delta in parameters section of output JSON output_dict = {"parameters": vars(args), "sizes": hn.component_sizes(ccs), "components": ccs, "statistics": sizes2stats} hnio.write_significance_as_tsv(os.path.abspath(delta_out_dir) + "/" + SIGNIFICANCE_TSV, sizes2stats) json_out = open(os.path.abspath(delta_out_dir) + "/" + JSON_OUTPUT, 'w') json.dump(output_dict, json_out, indent=4) json_out.close() results_files.append( os.path.abspath(delta_out_dir) + "/" + JSON_OUTPUT ) hnio.write_components_as_tsv(os.path.abspath(delta_out_dir) + "/" + COMPONENTS_TSV, ccs) # write visualization output if edge file given if args.edge_file: from bin import makeResultsWebsite as MRW viz_args = [ "-r" ] + results_files viz_args += ["-ef", args.edge_file, "-o", args.output_directory + "/viz" ] if args.network_name: viz_args += [ "-nn", args.network_name ] if args.display_score_file: viz_args += [ "-dsf", args.display_score_file ] MRW.run( MRW.get_parser().parse_args(viz_args) )
def run(args): # create output directory if doesn't exist; warn if it exists and is not empty if not os.path.exists(args.output_directory): os.makedirs(args.output_directory) if len(os.listdir(args.output_directory)) > 0: print("WARNING: Output directory is not empty. Any conflicting files will be overwritten. ") print("(Ctrl-c to cancel).") infmat = scipy.io.loadmat(args.infmat_file)[INFMAT_NAME] infmat_index = hnio.load_index(args.infmat_index_file) heat = hnio.load_heat_tsv(args.heat_file) # filter out genes with heat score less than min_heat_score heat, addtl_genes, args.min_heat_score = hnheat.filter_heat(heat, args.min_heat_score) # find delta that maximizes # CCs of size >= MIN_SIZE for each permuted data set deltas = ft.get_deltas_for_heat(infmat, infmat_index, heat, addtl_genes, args.num_permutations, args.parallel) #find the multiple of the median delta s.t. the size of the largest CC in the real data #is <= MAX_CC_SIZE medianDelta = np.median(deltas[MIN_CC_SIZE]) M, gene_index = hn.induce_infmat(infmat, infmat_index, sorted(heat.keys()), quiet=False) h = hn.heat_vec(heat, gene_index) sim = hn.similarity_matrix(M, h) for i in range(1, 11): G = hn.weighted_graph(sim, gene_index, i*medianDelta) max_cc_size = max([len(cc) for cc in hn.connected_components(G)]) if max_cc_size <= MAX_CC_SIZE: break # load interaction network edges and determine location of static HTML files for visualization edges = hnio.load_ppi_edges(args.edge_file) if args.edge_file else None index_file = '%s/viz_files/%s' % (os.path.realpath(__file__).rsplit('/', 1)[0], VIZ_INDEX) subnetworks_file = '%s/viz_files/%s' % (os.path.realpath(__file__).rsplit('/', 1)[0], VIZ_SUBNETWORKS) gene2index = dict([(gene, index) for index, gene in list(infmat_index.items())]) #and run HotNet with that multiple and the next 4 multiples run_deltas = [i*medianDelta for i in range(i, i+5)] for delta in run_deltas: # create output directory delta_out_dir = args.output_directory + "/delta_" + str(delta) if not os.path.isdir(delta_out_dir): os.mkdir(delta_out_dir) # find connected components G = hn.weighted_graph(sim, gene_index, delta) ccs = hn.connected_components(G, args.min_cc_size) # calculate significance (using all genes with heat scores) print("* Performing permuted heat statistical significance...") heat_permutations = p.permute_heat(heat, args.num_permutations, addtl_genes, args.parallel) sizes = list(range(2, 11)) print("\t- Using no. of components >= k (k \\in") print("[%s, %s]) as statistic" % (min(sizes), max(sizes))) sizes2counts = stats.calculate_permuted_cc_counts(infmat, infmat_index, heat_permutations, delta, sizes, args.parallel) real_counts = stats.num_components_min_size(G, sizes) size2real_counts = dict(list(zip(sizes, real_counts))) sizes2stats = stats.compute_statistics(size2real_counts, sizes2counts, args.num_permutations) # sort ccs list such that genes within components are sorted alphanumerically, and components # are sorted first by length, then alphanumerically by name of the first gene in the component ccs = [sorted(cc) for cc in ccs] ccs.sort(key=lambda comp: comp[0]) ccs.sort(key=len, reverse=True) # write output heat_dict = {"heat": heat, "parameters": {"heat_file": args.heat_file}} heat_out = open(os.path.abspath(delta_out_dir) + "/" + HEAT_JSON, 'w') json.dump(heat_dict, heat_out, indent=4) heat_out.close() args.heat_file = os.path.abspath(delta_out_dir) + "/" + HEAT_JSON args.delta = delta output_dict = {"parameters": vars(args), "sizes": hn.component_sizes(ccs), "components": ccs, "statistics": sizes2stats} hnio.write_significance_as_tsv(os.path.abspath(delta_out_dir) + "/" + SIGNIFICANCE_TSV, sizes2stats) json_out = open(os.path.abspath(delta_out_dir) + "/" + JSON_OUTPUT, 'w') json.dump(output_dict, json_out, indent=4) json_out.close() hnio.write_components_as_tsv(os.path.abspath(delta_out_dir) + "/" + COMPONENTS_TSV, ccs) # write visualization output if edge file given if args.edge_file: viz_data = {"delta": delta, 'subnetworks': list()} for cc in ccs: viz_data['subnetworks'].append(viz.get_component_json(cc, heat, edges, gene2index, args.network_name)) delta_viz_dir = '%s/viz/delta%s' % (args.output_directory, delta) if not os.path.isdir(delta_viz_dir): os.makedirs(delta_viz_dir) viz_out = open('%s/subnetworks.json' % delta_viz_dir, 'w') json.dump(viz_data, viz_out, indent=4) viz_out.close() shutil.copy(subnetworks_file, delta_viz_dir) if args.edge_file: viz.write_index_file(index_file, '%s/viz/%s' % (args.output_directory, VIZ_INDEX), run_deltas)
def run(args): # create output directory if doesn't exist; warn if output files already exist if not os.path.exists(args.output_directory): os.makedirs(args.output_directory) dir_contents = os.listdir(args.output_directory) if JSON_OUTPUT in dir_contents or COMPONENTS_TSV in dir_contents or SIGNIFICANCE_TSV in dir_contents: print( "WARNING: Output directory already contains HotNet results file(s), which will be " "overwritten. (Ctrl-c to cancel).") # load data infmat = scipy.io.loadmat(args.infmat_file)[args.infmat_name] infmat_index = hnio.load_index(args.infmat_index_file) heat, heat_params = hnio.load_heat_json(args.heat_file) # compute similarity matrix and extract connected components M, gene_index = hn.induce_infmat(infmat, infmat_index, sorted(heat.keys()), quiet=False) h = hn.heat_vec(heat, gene_index) sim = hn.similarity_matrix(M, h) G = hn.weighted_graph(sim, gene_index, args.delta) ccs = hn.connected_components(G, args.min_cc_size) # calculate significance if args.permutation_type != "none": if args.permutation_type == "heat": sizes2stats = heat_permutation_significance( args, heat, infmat, infmat_index, G) elif args.permutation_type == "mutations": if heat_params["heat_fn"] != "load_mutation_heat": raise RuntimeError( "Heat scores must be based on mutation data to perform\ significance testing based on mutation data permutation." ) sizes2stats = mutation_permutation_significance( args, infmat, infmat_index, G, heat_params) else: raise ValueError("Unrecognized permutation type %s" % (args.permutation_type)) #sort ccs list such that genes within components are sorted alphanumerically, and components #are sorted first by length, then alphanumerically by name of the first gene in the component ccs = [sorted(cc) for cc in ccs] ccs.sort(key=lambda comp: comp[0]) ccs.sort(key=len, reverse=True) # write output output_dict = { "parameters": vars(args), "heat_parameters": heat_params, "sizes": hn.component_sizes(ccs), "components": ccs } if args.permutation_type != "none": output_dict["statistics"] = sizes2stats hnio.write_significance_as_tsv( os.path.abspath(args.output_directory) + "/" + SIGNIFICANCE_TSV, sizes2stats) json_out = open( os.path.abspath(args.output_directory) + "/" + JSON_OUTPUT, 'w') json.dump(output_dict, json_out, indent=4) json_out.close() hnio.write_components_as_tsv( os.path.abspath(args.output_directory) + "/" + COMPONENTS_TSV, ccs)
def run(args): # create output directory if doesn't exist; warn if it exists and is not empty if not os.path.exists(args.output_directory): os.makedirs(args.output_directory) if len(os.listdir(args.output_directory)) > 0: print("WARNING: Output directory is not empty. Any conflicting files will be overwritten. " "(Ctrl-c to cancel).") infmat = scipy.io.loadmat(args.infmat_file)[INFMAT_NAME] infmat_index = hnio.load_index(args.infmat_index_file) heat = hnio.load_heat_tsv(args.heat_file) #filter out genes with heat score less than min_heat_score heat, addtl_genes, args.min_heat_score = hnheat.filter_heat(heat, args.min_heat_score) #find delta that maximizes # CCs of size >= MIN_SIZE for each permuted data set deltas = ft.get_deltas_for_heat(infmat, infmat_index, heat, addtl_genes, args.num_permutations, args.parallel) #find the multiple of the median delta s.t. the size of the largest CC in the real data #is <= MAX_CC_SIZE medianDelta = np.median(deltas[MIN_CC_SIZE]) M, gene_index = hn.induce_infmat(infmat, infmat_index, sorted(heat.keys()), quiet=False) h = hn.heat_vec(heat, gene_index) sim = hn.similarity_matrix(M, h) for i in range(1, 11): G = hn.weighted_graph(sim, gene_index, i*medianDelta) max_cc_size = max([len(cc) for cc in hn.connected_components(G)]) if max_cc_size <= MAX_CC_SIZE: break #and run HotNet with that multiple and the next 4 multiples run_deltas = [i*medianDelta for i in range(i, i+5)] for delta in run_deltas: #create output directory delta_out_dir = args.output_directory + "/delta_" + str(delta) if not os.path.isdir(delta_out_dir): os.mkdir(delta_out_dir) #find connected components G = hn.weighted_graph(sim, gene_index, delta) ccs = hn.connected_components(G, args.min_cc_size) # calculate significance (using all genes with heat scores) print "* Performing permuted heat statistical significance..." heat_permutations = p.permute_heat(heat, args.num_permutations, addtl_genes, args.parallel) sizes = range(2, 11) print "\t- Using no. of components >= k (k \\in", print "[%s, %s]) as statistic" % (min(sizes), max(sizes)) sizes2counts = stats.calculate_permuted_cc_counts(infmat, infmat_index, heat_permutations, delta, sizes, args.parallel) real_counts = stats.num_components_min_size(G, sizes) size2real_counts = dict(zip(sizes, real_counts)) sizes2stats = stats.compute_statistics(size2real_counts, sizes2counts, args.num_permutations) #sort ccs list such that genes within components are sorted alphanumerically, and components #are sorted first by length, then alphanumerically by name of the first gene in the component ccs = [sorted(cc) for cc in ccs] ccs.sort(key=lambda comp: comp[0]) ccs.sort(key=len, reverse=True) # write output output_dict = {"parameters": vars(args), "sizes": hn.component_sizes(ccs), "components": ccs, "statistics": sizes2stats} hnio.write_significance_as_tsv(os.path.abspath(delta_out_dir) + "/" + SIGNIFICANCE_TSV, sizes2stats) json_out = open(os.path.abspath(delta_out_dir) + "/" + JSON_OUTPUT, 'w') json.dump(output_dict, json_out, indent=4) json_out.close() hnio.write_components_as_tsv(os.path.abspath(delta_out_dir) + "/" + COMPONENTS_TSV, ccs)
def run(args): # create output directory if doesn't exist; warn if it exists and is not empty if not os.path.exists(args.output_directory): os.makedirs(args.output_directory) if len(os.listdir(args.output_directory)) > 0: print("WARNING: Output directory is not empty. Any conflicting files will be overwritten. " "(Ctrl-c to cancel).") infmat = scipy.io.loadmat(args.infmat_file)[INFMAT_NAME] infmat_index = hnio.load_index(args.infmat_index_file) heat = hnio.load_heat_tsv(args.heat_file) # filter out genes with heat score less than min_heat_score heat, addtl_genes, args.min_heat_score = hnheat.filter_heat(heat, args.min_heat_score) # find delta that maximizes # CCs of size >= MIN_SIZE for each permuted data set deltas = ft.get_deltas_for_heat(infmat, infmat_index, heat, addtl_genes, args.num_permutations, args.parallel) #find the multiple of the median delta s.t. the size of the largest CC in the real data #is <= MAX_CC_SIZE medianDelta = np.median(deltas[MIN_CC_SIZE]) M, gene_index = hn.induce_infmat(infmat, infmat_index, sorted(heat.keys()), quiet=False) h = hn.heat_vec(heat, gene_index) sim = hn.similarity_matrix(M, h) for i in range(1, 11): G = hn.weighted_graph(sim, gene_index, i*medianDelta) max_cc_size = max([len(cc) for cc in hn.connected_components(G)]) if max_cc_size <= MAX_CC_SIZE: break # load interaction network edges and determine location of static HTML files for visualization edges = hnio.load_ppi_edges(args.edge_file) if args.edge_file else None index_file = '%s/viz_files/%s' % (os.path.realpath(__file__).rsplit('/', 1)[0], VIZ_INDEX) subnetworks_file = '%s/viz_files/%s' % (os.path.realpath(__file__).rsplit('/', 1)[0], VIZ_SUBNETWORKS) gene2index = dict([(gene, index) for index, gene in infmat_index.iteritems()]) #and run HotNet with that multiple and the next 4 multiples run_deltas = [i*medianDelta for i in range(i, i+5)] for delta in run_deltas: # create output directory delta_out_dir = args.output_directory + "/delta_" + str(delta) if not os.path.isdir(delta_out_dir): os.mkdir(delta_out_dir) # find connected components G = hn.weighted_graph(sim, gene_index, delta) ccs = hn.connected_components(G, args.min_cc_size) # calculate significance (using all genes with heat scores) print "* Performing permuted heat statistical significance..." heat_permutations = p.permute_heat(heat, args.num_permutations, addtl_genes, args.parallel) sizes = range(2, 11) print "\t- Using no. of components >= k (k \\in", print "[%s, %s]) as statistic" % (min(sizes), max(sizes)) sizes2counts = stats.calculate_permuted_cc_counts(infmat, infmat_index, heat_permutations, delta, sizes, args.parallel) real_counts = stats.num_components_min_size(G, sizes) size2real_counts = dict(zip(sizes, real_counts)) sizes2stats = stats.compute_statistics(size2real_counts, sizes2counts, args.num_permutations) # sort ccs list such that genes within components are sorted alphanumerically, and components # are sorted first by length, then alphanumerically by name of the first gene in the component ccs = [sorted(cc) for cc in ccs] ccs.sort(key=lambda comp: comp[0]) ccs.sort(key=len, reverse=True) # write output heat_dict = {"heat": heat, "parameters": {"heat_file": args.heat_file}} heat_out = open(os.path.abspath(delta_out_dir) + "/" + HEAT_JSON, 'w') json.dump(heat_dict, heat_out, indent=4) heat_out.close() args.heat_file = os.path.abspath(delta_out_dir) + "/" + HEAT_JSON args.delta = delta output_dict = {"parameters": vars(args), "sizes": hn.component_sizes(ccs), "components": ccs, "statistics": sizes2stats} hnio.write_significance_as_tsv(os.path.abspath(delta_out_dir) + "/" + SIGNIFICANCE_TSV, sizes2stats) json_out = open(os.path.abspath(delta_out_dir) + "/" + JSON_OUTPUT, 'w') json.dump(output_dict, json_out, indent=4) json_out.close() hnio.write_components_as_tsv(os.path.abspath(delta_out_dir) + "/" + COMPONENTS_TSV, ccs) # write visualization output if edge file given if args.edge_file: viz_data = {"delta": delta, 'subnetworks': list()} for cc in ccs: viz_data['subnetworks'].append(viz.get_component_json(cc, heat, edges, gene2index, args.network_name)) delta_viz_dir = '%s/viz/delta%s' % (args.output_directory, delta) if not os.path.isdir(delta_viz_dir): os.makedirs(delta_viz_dir) viz_out = open('%s/subnetworks.json' % delta_viz_dir, 'w') json.dump(viz_data, viz_out, indent=4) viz_out.close() shutil.copy(subnetworks_file, delta_viz_dir) if args.edge_file: viz.write_index_file(index_file, '%s/viz/%s' % (args.output_directory, VIZ_INDEX), run_deltas)