>>>>>>> a7a19c68ba9116d31ce4ce6aa41b78dcd515d250 # specify which agent you want to use, # BonsaiAgent that uses trained Brain or # RandomAgent that randomly selects next action agent = BonsaiAgent() # hopper._env.render() # hopper._env.reset() episode_count = 100 try: for i in range(episode_count): # start a new episode and get the new state hopper.episode_start() state = hopper.get_state() while True: # get the action from the agent (based on the current state) action = agent.act(state) hopper._env.unwrapped.camera_adjust() # do the next step of the simulation and get the new state hopper.episode_step(action) state = hopper.get_state() if hopper.halted(): break hopper.episode_finish("")