Example #1
0
    def test_send_notifications_without_assignments(self,
                                                    mock_get_worker_client,
                                                    mock_get_coordinator_info,
                                                    mock_host_assignments):
        """Tests that notifications are still sent correctly even if host assignments cannot be generated."""
        slots = [{
            'host-1': 8,
            'host-2': 4
        }, {
            'host-1': 8,
            'host-2': 4
        }, {
            'host-2': 4
        }, {
            'host-2': 4
        }, {
            'host-2': 4,
            'host-3': 12
        }]
        discovery = mock.Mock()
        discovery.find_available_hosts_and_slots.side_effect = sequence(slots)

        driver = ElasticDriver(mock.Mock(), discovery, min_np=8, max_np=12)
        driver.wait_for_available_slots(min_np=16)
        driver.stop()

        # On the second call, we should see the number of slots dip below the minimum, but we still want to ensure
        # we notify workers every time there is a change, so in total we should observe 3 calls.
        assert mock_get_worker_client.call_count == 3
        assert mock_get_coordinator_info.call_count == 3
Example #2
0
    def test_rank_and_size(self):
        """Tests two hosts, two slots each in standard happy path."""
        slots = {'host-1': 2, 'host-2': 2}
        discovery = FixedHosts(slots)

        driver = ElasticDriver(mock.Mock(), discovery, min_np=2, max_np=4)
        driver.wait_for_available_slots(min_np=2)

        rank_results = {}

        def exec_command(slot_info, events):
            driver.record_ready(slot_info.hostname, slot_info.local_rank)
            updated_slot_info = driver.get_slot_info(slot_info.hostname,
                                                     slot_info.local_rank)
            rank_results[slot_info.rank] = (slot_info, updated_slot_info)
            return 0, time.time()

        driver.start(np=2, create_worker_fn=exec_command)
        res = driver.get_results().worker_results
        driver.stop()

        assert len(res) == 4
        for name, (exit_code, timestamp) in res.items():
            assert exit_code == 0, name

        assert len(rank_results) == 4
        for rank, (slot_info, updated_slot_info) in rank_results.items():
            assert slot_info.to_response_string(
            ) == updated_slot_info.to_response_string(), rank
Example #3
0
    def test_shutdown_on_success(self):
        """Tests that shutdown event is triggered when one worker succeeds but the others are still working."""
        slots = {'host-1': 2, 'host-2': 2}
        discovery = FixedHosts(slots)

        driver = ElasticDriver(mock.Mock(), discovery, min_np=2, max_np=4)
        driver.wait_for_available_slots(min_np=2)

        def exec_command(slot_info, events):
            if slot_info.rank == 0:
                return 0, time.time()

            driver.record_ready(slot_info.hostname, slot_info.local_rank)
            wait_for_one(events)
            return 1, time.time()

        driver.start(np=2, create_worker_fn=exec_command)
        res = driver.get_results().worker_results
        driver.stop()

        assert len(res) == 4

        exit_code_sum = 0
        for name, (exit_code, timestamp) in res.items():
            exit_code_sum += exit_code
        assert exit_code_sum == 3
Example #4
0
    def test_wait_for_min_hosts(self):
        """Tests that driver blocks until the min number of hosts and slots are available."""
        slots = [{
            'host-1': 4
        }, {
            'host-1': 4,
            'host-2': 8
        }, {
            'host-1': 4,
            'host-2': 8,
            'host-3': 4
        }]
        mock_discovery = mock.Mock()
        mock_discovery.find_available_hosts_and_slots.side_effect = sequence(
            slots)

        driver = ElasticDriver(mock.Mock(),
                               mock_discovery,
                               min_np=2,
                               max_np=12)
        driver.wait_for_available_slots(min_np=2, min_hosts=2)

        # Even though we only needed 2 slots, because we also needed 2 hosts, we will at least 12 slots total
        assert driver._host_manager.current_hosts.count_available_slots() >= 12
        driver.stop()
Example #5
0
    def test_wait_for_available_slots(self, mock_get_worker_client,
                                      mock_get_coordinator_info):
        """Tests that driver blocks until the min number of slots are available."""
        slots = [{
            'host-1': 4
        }, {
            'host-1': 4,
            'host-2': 8
        }, {
            'host-1': 4,
            'host-2': 8,
            'host-3': 4
        }]
        mock_discovery = mock.Mock()
        mock_discovery.find_available_hosts_and_slots.side_effect = sequence(
            slots)

        driver = ElasticDriver(mock.Mock(),
                               mock_discovery,
                               min_np=8,
                               max_np=20)
        driver.wait_for_available_slots(min_np=16)
        assert driver._host_manager.current_hosts.count_available_slots() >= 16
        driver.stop()

        # Notify coordinator 2 times, as the first time we are below min_np and the existing host assignments
        # are empty
        assert mock_get_worker_client.call_count == 2
        assert mock_get_coordinator_info.call_count == 2
Example #6
0
    def test_rank_and_size_with_host_failure(self):
        """Tests two hosts, two slots each with second host failing before rendezvous completes."""
        slots = {'host-1': 2, 'host-2': 2}
        discovery = FixedHosts(slots)

        driver = ElasticDriver(mock.Mock(), discovery, min_num_proc=2, max_num_proc=4)
        driver.wait_for_available_slots(min_num_proc=2)

        rank_results = {}

        def exec_command(slot_info, events):
            if slot_info.hostname == 'host-2':
                return 1, time.time()

            driver.record_ready(slot_info.hostname, slot_info.local_rank)
            updated_slot_info = driver.get_slot_info(slot_info.hostname, slot_info.local_rank)
            rank_results[slot_info.rank] = (slot_info, updated_slot_info)
            return 0, time.time()

        driver.start(num_proc=2, create_worker_fn=exec_command)
        res = driver.get_results().worker_results
        driver.stop()

        assert len(res) == 2
        for name, (exit_code, timestamp) in res.items():
            assert exit_code == 0, name

        assert len(rank_results) == 2
        for rank, (slot_info, updated_slot_info) in rank_results.items():
            assert updated_slot_info.size == 2, rank
            assert updated_slot_info.rank == slot_info.rank % 2, rank
            assert updated_slot_info.local_size == slot_info.local_size, rank
            assert updated_slot_info.local_rank == slot_info.local_rank, rank
            assert updated_slot_info.cross_size == 1, rank
            assert updated_slot_info.cross_rank == 0, rank
Example #7
0
def launch_gloo_elastic(command, exec_command, settings, env,
                        get_common_interfaces, rendezvous):
    # Make the output directory if it does not exist
    if settings.output_filename:
        _mkdir_p(settings.output_filename)

    driver = ElasticDriver(rendezvous,
                           settings.discovery,
                           settings.min_np,
                           settings.max_np,
                           timeout=settings.elastic_timeout,
                           reset_limit=settings.reset_limit,
                           cooldown_range=settings.cooldown_range,
                           verbose=settings.verbose)

    handler = create_rendezvous_handler(driver)
    global_rendezv_port = rendezvous.start(handler)
    driver.wait_for_available_slots(settings.num_proc)

    nics = get_common_interfaces(driver)
    server_ip = network.get_driver_ip(nics)

    event = register_shutdown_event()
    run_command = get_run_command(command,
                                  server_ip,
                                  nics,
                                  global_rendezv_port,
                                  elastic=True)

    create_worker = _create_elastic_worker_fn(exec_command, run_command, env,
                                              event)

    driver.start(settings.num_proc, create_worker)
    res = driver.get_results()
    driver.stop()

    if res.error_message is not None:
        raise RuntimeError(res.error_message)

    for name, value in sorted(res.worker_results.items(),
                              key=lambda item: item[1][1]):
        exit_code, timestamp = value
        if exit_code != 0:
            raise RuntimeError(
                'Horovod detected that one or more processes exited with non-zero '
                'status, thus causing the job to be terminated. The first process '
                'to do so was:\nProcess name: {name}\nExit code: {code}\n'.
                format(name=name, code=exit_code))
Example #8
0
    def test_rank_and_size_with_host_added(self):
        """Tests training starts with one host two slots, then a second host is added."""
        slots = {'host-1': 2}
        discovery = FixedHosts(slots)

        def add_host():
            slots = {'host-1': 2, 'host-2': 2}
            discovery.set(slots)

        driver = ElasticDriver(mock.Mock(), discovery, min_np=2, max_np=4)
        driver.wait_for_available_slots(min_np=2)

        rank_results = {}

        def exec_command(slot_info, events):
            driver.record_ready(slot_info.hostname, slot_info.local_rank)

            if slot_info.hostname == 'host-1':
                if slot_info.rank == 0:
                    add_host()
                driver.wait_for_available_slots(4)
                driver.record_ready(slot_info.hostname, slot_info.local_rank)

            driver.record_ready(slot_info.hostname, slot_info.local_rank)
            updated_slot_info = driver.get_slot_info(slot_info.hostname,
                                                     slot_info.local_rank)
            rank_results[slot_info.rank] = (slot_info, updated_slot_info)
            return 0, time.time()

        driver.start(np=2, create_worker_fn=exec_command)
        res = driver.get_results().worker_results
        driver.stop()

        assert len(res) == 4
        for name, (exit_code, timestamp) in res.items():
            assert exit_code == 0, name

        assert len(rank_results) == 4
        for rank, (slot_info, updated_slot_info) in rank_results.items():
            assert updated_slot_info.size == 4, rank
            assert updated_slot_info.rank == slot_info.rank, rank
            assert updated_slot_info.local_size == slot_info.local_size, rank
            assert updated_slot_info.local_rank == slot_info.local_rank, rank
            assert updated_slot_info.cross_size == 2, rank
            assert updated_slot_info.cross_rank == slot_info.cross_rank, rank
Example #9
0
    def test_all_workers_fail(self):
        """Tests that training fails when all workers fail."""
        slots = {'host-1': 2, 'host-2': 2}
        discovery = FixedHosts(slots)

        driver = ElasticDriver(mock.Mock(), discovery, min_np=2, max_np=4)
        driver.wait_for_available_slots(min_np=2)

        def exec_command(slot_info, events):
            driver.record_ready(slot_info.hostname, slot_info.local_rank)
            return 1, time.time()

        driver.start(np=2, create_worker_fn=exec_command)
        res = driver.get_results().worker_results
        driver.stop()

        assert len(res) == 4
        for name, (exit_code, timestamp) in res.items():
            assert exit_code == 1, name
Example #10
0
class ElasticRayExecutor:
    """Executor for elastic jobs using Ray.

    Leverages the Ray global state to detect available hosts and
    slots. Assumes that the entire Ray cluster is available for
    the Executor to use.

    Args:
        settings: Configuration for the elastic job
            setup. You can use a standard Horovod ElasticSettings
            object or create one directly from
            ElasticRayExecutor.create_settings.
        use_gpu (bool): Whether to use GPU for allocation.
        cpus_per_slot (int): Number of CPU resources to allocate to
            each worker.
        gpus_per_slot (int): Number of GPU resources to allocate to
            each worker.
        env_vars (Dict): Environment variables to be set
            on the actors (worker processes) before initialization.
        override_discovery (bool): Whether for the ElasticRayExecutor to
            automatically provide a discovery mechanism for ElasticSettings.

    Example:

    .. code-block:: python

        import ray
        ray.init(address="auto")
        settings = ElasticRayExecutor.create_settings(verbose=True)
        executor = ElasticRayExecutor(
            settings, use_gpu=True, cpus_per_slot=2)
        executor.start()
        executor.run(train_fn)

    warning:: .. deprecated:: 0.25.0
    """
    @staticmethod
    def create_settings(
            min_num_proc: int = 1,
            max_num_proc: int = None,
            reset_limit: int = None,
            elastic_timeout: int = 600,
            timeout_s: int = 30,
            ssh_identity_file: str = None,
            nics: str = None,
            # min_np is deprecated, use min_num_proc instead
            min_np=None,
            # max_np is deprecated, use max_num_proc instead
            max_np=None,
            **kwargs):
        """Returns a Settings object for ElasticRayExecutor.

        Note that the `discovery` property will be set at runtime.

        Args:
            min_num_proc (int): Minimum number of processes running for
                training to continue. If number of available processes dips
                below this threshold, then training will wait for
                more instances to become available.
            max_num_proc (int): Maximum number of training processes,
                beyond which no additional processes will be created.
                If not specified, then will be unbounded.
            reset_limit (int): Maximum number of times that the training
                job can scale up or down the number of workers after
                which the job is terminated.
            elastic_timeout (int): Timeout for elastic initialisation after
                re-scaling the cluster. The default value is 600 seconds.
                Alternatively, the environment variable
                HOROVOD_ELASTIC_TIMEOUT can also be used.'
            timeout_s (int): Horovod performs all the checks and starts the
                processes before the specified timeout.
                The default value is 30 seconds.
            ssh_identity_file (str): File on the driver from which
                the identity (private key) is read.
            nics (set): Network interfaces that can be used for communication.
        """
        if min_np is not None:
            min_num_proc = min_np
            warnings.warn('min_np is deprecated, use min_num_proc instead',
                          DeprecationWarning)
        if max_np is not None:
            max_num_proc = max_np
            warnings.warn('max_np is deprecated, use max_num_proc instead',
                          DeprecationWarning)

        start_timeout = timeout.Timeout(
            timeout_s,
            message="Timed out waiting for {activity}. Please "
            "check connectivity between servers. You "
            "may need to increase the --start-timeout "
            "parameter if you have too many servers.")
        ssh_identity_file = ssh_identity_file or os.path.expanduser(
            "~/ray_bootstrap_key.pem")
        settings = ElasticSettings(
            discovery=None,
            min_num_proc=min_num_proc,
            max_num_proc=max_num_proc,
            elastic_timeout=elastic_timeout,
            reset_limit=reset_limit,
            num_proc=min_num_proc,
            ssh_identity_file=ssh_identity_file,
            nics=nics,
            start_timeout=start_timeout,
            key=secret.make_secret_key() if secret else None,
            **kwargs)
        return settings

    def __init__(self,
                 settings: ElasticSettings,
                 use_gpu: bool = False,
                 cpus_per_slot: int = 1,
                 gpus_per_slot: Optional[int] = None,
                 env_vars: dict = None,
                 override_discovery=True):
        if gpus_per_slot and not use_gpu:
            raise ValueError("gpus_per_slot is set, but use_gpu is False. "
                             "use_gpu must be True if gpus_per_slot is set. ")

        gpus_per_slot = gpus_per_slot or int(use_gpu)

        if use_gpu and gpus_per_slot < 1:
            raise ValueError(
                f"gpus_per_slot must be >= 1: Got {gpus_per_slot}.")

        if override_discovery:
            settings.discovery = RayHostDiscovery(use_gpu=use_gpu,
                                                  cpus_per_slot=cpus_per_slot,
                                                  gpus_per_slot=gpus_per_slot)
        self.cpus_per_slot = cpus_per_slot
        self.gpus_per_slot = gpus_per_slot
        self.use_gpu = use_gpu
        self.settings = settings
        self.driver = None
        self.rendezvous = None
        self.env_vars = env_vars or {}

    def start(self):
        """Starts the Horovod driver and services."""
        self.rendezvous = RendezvousServer(self.settings.verbose)
        self.driver = ElasticDriver(rendezvous=self.rendezvous,
                                    discovery=self.settings.discovery,
                                    min_num_proc=self.settings.min_num_proc,
                                    max_num_proc=self.settings.max_num_proc,
                                    timeout=self.settings.elastic_timeout,
                                    reset_limit=self.settings.reset_limit,
                                    verbose=self.settings.verbose)
        handler = create_rendezvous_handler(self.driver)
        logger.debug("[ray] starting rendezvous")
        global_rendezv_port = self.rendezvous.start(handler)

        logger.debug(f"[ray] waiting for {self.settings.num_proc} to start.")
        self.driver.wait_for_available_slots(self.settings.num_proc)

        # Host-to-host common interface detection
        # requires at least 2 hosts in an elastic job.
        min_hosts = _get_min_start_hosts(self.settings)
        current_hosts = self.driver.wait_for_available_slots(
            self.settings.num_proc, min_hosts=min_hosts)
        logger.debug("[ray] getting common interfaces")
        nics = detect_nics(
            self.settings,
            all_host_names=current_hosts.host_assignment_order,
        )
        logger.debug("[ray] getting driver IP")
        server_ip = socket.gethostbyname(socket.gethostname())
        self.run_env_vars = create_run_env_vars(server_ip,
                                                nics,
                                                global_rendezv_port,
                                                elastic=True)

    def _create_resources(self, hostname: str):
        resources = dict(num_cpus=self.cpus_per_slot,
                         num_gpus=int(self.use_gpu) * self.gpus_per_slot,
                         resources={f"node:{hostname}": 0.01})
        return resources

    def _create_remote_worker(self, slot_info, worker_env_vars):
        hostname = slot_info.hostname
        loaded_worker_cls = self.remote_worker_cls.options(
            **self._create_resources(hostname))

        worker = loaded_worker_cls.remote()
        worker.update_env_vars.remote(worker_env_vars)
        worker.update_env_vars.remote(create_slot_env_vars(slot_info))
        if self.use_gpu:
            visible_devices = ",".join(
                [str(i) for i in range(slot_info.local_size)])
            worker.update_env_vars.remote(
                {"CUDA_VISIBLE_DEVICES": visible_devices})
        return worker

    def _create_spawn_worker_fn(self, return_results: List,
                                worker_fn: Callable,
                                queue: "ray.util.Queue") -> Callable:
        self.remote_worker_cls = ray.remote(BaseHorovodWorker)
        # event = register_shutdown_event()
        worker_env_vars = {}
        worker_env_vars.update(self.run_env_vars.copy())
        worker_env_vars.update(self.env_vars.copy())
        worker_env_vars.update({"PYTHONUNBUFFERED": "1"})

        def worker_loop(slot_info, events):
            def ping_worker(worker):
                # There is an odd edge case where a node can be removed
                # before the remote worker is started, leading to a failure
                # in trying to create the horovod mesh.
                try:
                    ping = worker.execute.remote(lambda _: 1)
                    ray.get(ping, timeout=10)
                except Exception as e:
                    logger.error(f"{slot_info.hostname}: Ping failed - {e}")
                    return False
                return True

            worker = self._create_remote_worker(slot_info, worker_env_vars)
            if not ping_worker(worker):
                return 1, time.time()

            ray.get(worker.set_queue.remote(queue))
            future = worker.execute.remote(lambda _: worker_fn())

            result = None
            while result is None:
                try:
                    #  TODO: make this event driven at some point.
                    retval = ray.get(future, timeout=0.1)
                    return_results.append((slot_info.rank, retval))
                    # Success
                    result = 0, time.time()
                except GetTimeoutError:
                    # Timeout
                    if any(e.is_set() for e in events):
                        ray.kill(worker)
                        result = 1, time.time()
                except Exception as e:
                    logger.error(f"{slot_info.hostname}[{slot_info.rank}]:{e}")
                    ray.kill(worker)
                    result = 1, time.time()
            logger.debug(f"Worker ({slot_info}) routine is done!")
            return result

        return worker_loop

    def run(self,
            worker_fn: Callable,
            callbacks: Optional[List[Callable]] = None) -> List[Any]:
        """Executes the provided function on all workers.

        Args:
            worker_fn: Target elastic function that can be executed.
            callbacks: List of callables. Each callback must either
                be a callable function or a class that implements __call__.
                Every callback will be invoked on every value logged
                by the rank 0 worker.

        Returns:
            List of return values from every completed worker.
        """
        return_values = []
        from ray.util.queue import Queue
        import inspect
        args = inspect.getfullargspec(Queue).args
        if "actor_options" not in args:
            # Ray 1.1 and less
            _queue = Queue()
        else:
            _queue = Queue(actor_options={
                "num_cpus": 0,
                "resources": {
                    ray.state.current_node_id(): 0.001
                }
            })
        self.driver.start(
            self.settings.num_proc,
            self._create_spawn_worker_fn(return_values, worker_fn, _queue))

        def _process_calls(queue, callbacks, event):
            if not callbacks:
                return
            while queue.actor:
                if not queue.empty():
                    result = queue.get_nowait()
                    for c in callbacks:
                        c(result)
                    # avoid slamming the CI
                elif event.is_set():
                    break
                time.sleep(0.1)

        try:
            event = threading.Event()
            _callback_thread = threading.Thread(target=_process_calls,
                                                args=(_queue, callbacks,
                                                      event),
                                                daemon=True)
            _callback_thread.start()
            res = self.driver.get_results()
            event.set()
            if _callback_thread:
                _callback_thread.join(timeout=60)
        finally:
            if hasattr(_queue, "shutdown"):
                _queue.shutdown()
            else:
                done_ref = _queue.actor.__ray_terminate__.remote()
                done, not_done = ray.wait([done_ref], timeout=5)
                if not_done:
                    ray.kill(_queue.actor)
        self.driver.stop()

        if res.error_message is not None:
            raise RuntimeError(res.error_message)

        for name, value in sorted(res.worker_results.items(),
                                  key=lambda item: item[1][1]):
            exit_code, timestamp = value
            if exit_code != 0:
                raise RuntimeError(
                    'Horovod detected that one or more processes '
                    'exited with non-zero '
                    'status, thus causing the job to be terminated. '
                    'The first process '
                    'to do so was:\nProcess name: {name}\nExit code: {code}\n'.
                    format(name=name, code=exit_code))

        return_values = [
            value for k, value in sorted(return_values, key=lambda kv: kv[0])
        ]
        return return_values
Example #11
0
def launch_gloo_elastic(command_or_func, exec_command, settings, env, get_common_interfaces, rendezvous, executable):
    # Make the output directory if it does not exist
    if settings.output_filename:
        _mkdir_p(settings.output_filename)

    driver = ElasticDriver(rendezvous, settings.discovery,
                           settings.min_num_proc, settings.max_num_proc,
                           timeout=settings.elastic_timeout,
                           reset_limit=settings.reset_limit,
                           cooldown_range=settings.cooldown_range,
                           verbose=settings.verbose)

    handler = create_rendezvous_handler(driver)
    global_rendezv_port = rendezvous.start(handler)
    driver.wait_for_available_slots(settings.num_proc)

    nics = get_common_interfaces(driver)
    server_ip = network.get_driver_ip(nics)
    run_func_server = None
    run_func_server_port = None

    if settings.run_func_mode:
        # when running a func, we have to spin up the KVStoreServer
        # to get the func to the remote process and the result back
        run_func_server = KVStoreServer(verbose=settings.verbose)
        run_func_server_port = run_func_server.start_server()
        put_data_into_kvstore(server_ip, run_func_server_port, 'runfunc', 'func', command_or_func)

        command = [executable, '-m', 'horovod.runner.run_task', server_ip, str(run_func_server_port)]
    else:
        command = command_or_func

    try:
        event = register_shutdown_event()
        run_command = get_run_command(command, server_ip, nics, global_rendezv_port, elastic=True)

        create_worker = _create_elastic_worker_fn(exec_command, run_command, env, event)

        driver.start(settings.num_proc, create_worker)
        res = driver.get_results()
        driver.stop()

        if res.error_message is not None:
            raise RuntimeError(res.error_message)

        for name, value in sorted(res.worker_results.items(), key=lambda item: item[1][1]):
            exit_code, timestamp = value
            if exit_code != 0:
                raise RuntimeError('Horovod detected that one or more processes exited with non-zero '
                                   'status, thus causing the job to be terminated. The first process '
                                   'to do so was:\nProcess name: {name}\nExit code: {code}\n'
                                   .format(name=name, code=exit_code))

        # fetch the result if running a func
        if settings.run_func_mode:
            results = [None] * settings.min_num_proc
            # TODO: make it parallel to improve performance
            for i in range(settings.min_num_proc):
                results[i] = read_data_from_kvstore(server_ip, run_func_server_port, 'runfunc_result', str(i))
            return results

        return None
    finally:
        if run_func_server:
            run_func_server.shutdown_server()
Example #12
0
class ElasticRayExecutor:
    """Executor for elastic jobs using Ray.

    Leverages the Ray global state to detect available hosts and
    slots. Assumes that the entire Ray cluster is available for
    the Executor to use.

    Args:
        settings: Configuration for the elastic job
            setup. You can use a standard Horovod ElasticSettings
            object or create one directly from
            ElasticRayExecutor.create_settings.
        use_gpu (bool): Whether to use GPU for allocation.
        cpus_per_slot (int): Number of CPU resources to allocate to
            each worker.
        gpus_per_slot (int): Number of GPU resources to allocate to
            each worker.
        env_vars (Dict): Environment variables to be set
            on the actors (worker processes) before initialization.
        override_discovery (bool): Whether for the ElasticRayExecutor to
            automatically provide a discovery mechanism for ElasticSettings.

    Example:

    .. code-block:: python

        import ray
        ray.init(address="auto")
        settings = ElasticRayExecutor.create_settings(verbose=True)
        executor = ElasticRayExecutor(
            settings, use_gpu=True, cpus_per_slot=2)
        executor.start()
        executor.run(train_fn)
    """
    @staticmethod
    def create_settings(min_np: int = 1,
                        max_np: int = None,
                        reset_limit: int = None,
                        elastic_timeout: int = 600,
                        timeout_s: int = 30,
                        ssh_identity_file: str = None,
                        nics: str = None,
                        **kwargs):
        """Returns a Settings object for ElasticRayExecutor.

        Note that the `discovery` property will be set at runtime.

        Args:
            min_np (int): Minimum number of processes running for
                training to continue. If number of available processes dips
                below this threshold, then training will wait for
                more instances to become available.
            max_np (int): Maximum number of training processes,
                beyond which no additional processes will be created.
                If not specified, then will be unbounded.
            reset_limit (int): Maximum number of times that the training
                job can scale up or down the number of workers after
                which the job is terminated.
            elastic_timeout (int): Timeout for elastic initialisation after
                re-scaling the cluster. The default value is 600 seconds.
                Alternatively, the environment variable
                HOROVOD_ELASTIC_TIMEOUT can also be used.'
            timeout_s (int): Horovod performs all the checks and starts the
                processes before the specified timeout.
                The default value is 30 seconds.
            ssh_identity_file (str): File on the driver from which
                the identity (private key) is read.
            nics (set): Network interfaces that can be used for communication.
        """
        start_timeout = timeout.Timeout(
            timeout_s,
            message="Timed out waiting for {activity}. Please "
            "check connectivity between servers. You "
            "may need to increase the --start-timeout "
            "parameter if you have too many servers.")
        ssh_identity_file = ssh_identity_file or os.path.expanduser(
            "~/ray_bootstrap_key.pem")
        settings = ElasticSettings(
            discovery=None,
            min_np=min_np,
            max_np=max_np,
            elastic_timeout=elastic_timeout,
            reset_limit=reset_limit,
            num_proc=min_np,
            ssh_identity_file=ssh_identity_file,
            nics=nics,
            start_timeout=start_timeout,
            key=secret.make_secret_key() if secret else None,
            **kwargs)
        return settings

    def __init__(self,
                 settings: ElasticSettings,
                 use_gpu: bool = False,
                 cpus_per_slot: int = 1,
                 gpus_per_slot: Optional[int] = None,
                 env_vars: dict = None,
                 override_discovery=True):
        if gpus_per_slot and not use_gpu:
            raise ValueError("gpus_per_slot is set, but use_gpu is False. "
                             "use_gpu must be True if gpus_per_slot is set. ")
        if use_gpu and gpus_per_slot < 1:
            raise ValueError(
                f"gpus_per_slot must be >= 1: Got {gpus_per_slot}.")

        gpus_per_slot = gpus_per_slot or 1
        if override_discovery:
            settings.discovery = RayHostDiscovery(use_gpu=use_gpu,
                                                  cpus_per_slot=cpus_per_slot,
                                                  gpus_per_slot=gpus_per_slot)
        self.cpus_per_slot = cpus_per_slot
        self.gpus_per_slot = gpus_per_slot
        self.use_gpu = use_gpu
        self.settings = settings
        self.driver = None
        self.rendezvous = None
        self.env_vars = env_vars or {}

    def start(self):
        """Starts the Horovod driver and services."""
        self.rendezvous = RendezvousServer(self.settings.verbose)
        self.driver = ElasticDriver(rendezvous=self.rendezvous,
                                    discovery=self.settings.discovery,
                                    min_np=self.settings.min_np,
                                    max_np=self.settings.max_np,
                                    timeout=self.settings.elastic_timeout,
                                    reset_limit=self.settings.reset_limit,
                                    verbose=self.settings.verbose)
        handler = create_rendezvous_handler(self.driver)
        global_rendezv_port = self.rendezvous.start(handler)
        self.driver.wait_for_available_slots(self.settings.num_proc)

        # Host-to-host common interface detection
        # requires at least 2 hosts in an elastic job.
        min_hosts = _get_min_start_hosts(self.settings)
        current_hosts = self.driver.wait_for_available_slots(
            self.settings.num_proc, min_hosts=min_hosts)
        nics = driver_service.get_common_interfaces(
            self.settings, current_hosts.host_assignment_order)

        server_ip = network.get_driver_ip(nics)
        self.run_env_vars = create_run_env_vars(server_ip,
                                                nics,
                                                global_rendezv_port,
                                                elastic=True)

    def _create_resources(self, hostname: str):
        resources = dict(num_cpus=self.cpus_per_slot,
                         num_gpus=int(self.use_gpu) * self.gpus_per_slot,
                         resources={f"node:{hostname}": 0.01})
        return resources

    def _create_remote_worker(self, slot_info, worker_env_vars):
        hostname = slot_info.hostname
        loaded_worker_cls = self.remote_worker_cls.options(
            **self._create_resources(hostname))

        worker = loaded_worker_cls.remote()
        worker.update_env_vars.remote(worker_env_vars)
        worker.update_env_vars.remote(create_slot_env_vars(slot_info))
        if self.use_gpu:
            visible_devices = ",".join(
                [str(i) for i in range(slot_info.local_size)])
            worker.update_env_vars.remote(
                {"CUDA_VISIBLE_DEVICES": visible_devices})
        return worker

    def _create_spawn_worker_fn(self, return_results: List,
                                worker_fn: Callable) -> Callable:
        self.remote_worker_cls = ray.remote(BaseHorovodWorker)
        # event = register_shutdown_event()
        worker_env_vars = {}
        worker_env_vars.update(self.run_env_vars.copy())
        worker_env_vars.update(self.env_vars.copy())
        worker_env_vars.update({"PYTHONUNBUFFERED": "1"})

        def worker_loop(slot_info, events):
            worker = self._create_remote_worker(slot_info, worker_env_vars)
            future = worker.execute.remote(lambda _: worker_fn())

            result = None
            while result is None:
                try:
                    #  TODO: make this event driven at some point.
                    retval = ray.get(future, timeout=0.1)
                    return_results.append((slot_info.rank, retval))
                    # Success
                    result = 0, time.time()
                except GetTimeoutError:
                    # Timeout
                    if any(e.is_set() for e in events):
                        ray.kill(worker)
                        result = 1, time.time()
                except Exception as e:
                    logger.exception(str(e))
                    # Fail
                    result = 1, time.time()
            return result

        return worker_loop

    def run(self, worker_fn: Callable) -> List[Any]:
        """Executes the provided function on all workers.

        Args:
            worker_fn: Target elastic function that can be executed.

        Returns:
            List of return values from every completed worker.
        """
        return_values = []
        self.driver.start(
            self.settings.num_proc,
            self._create_spawn_worker_fn(return_values, worker_fn))
        res = self.driver.get_results()
        self.driver.stop()

        if res.error_message is not None:
            raise RuntimeError(res.error_message)

        for name, value in sorted(res.worker_results.items(),
                                  key=lambda item: item[1][1]):
            exit_code, timestamp = value
            if exit_code != 0:
                raise RuntimeError(
                    'Horovod detected that one or more processes '
                    'exited with non-zero '
                    'status, thus causing the job to be terminated. '
                    'The first process '
                    'to do so was:\nProcess name: {name}\nExit code: {code}\n'.
                    format(name=name, code=exit_code))

        return_values = [
            value for k, value in sorted(return_values, key=lambda kv: kv[0])
        ]
        return return_values
Example #13
0
class ElasticAdapter(Adapter):
    """Adapter for executing Ray calls for elastic Horovod jobs.

    Args:
        settings (horovod.Settings): Configuration for job setup. You can
            use a standard Horovod Settings object or create one directly
            from RayExecutor.create_settings.
        min_workers (int): Minimum number of processes running for
            training to continue. If number of available processes dips
            below this threshold, then training will wait for
            more instances to become available.
        max_workers (int): Maximum number of training processes,
            beyond which no additional processes will be created.
            If not specified, then will be unbounded.
        reset_limit (int): Maximum number of times that the training
            job can scale up or down the number of workers after
            which the job is terminated.
        cooldown_range (Tuple[int, int]): Range(in seconds) a failing
            host will remain in blacklist.
            Example: cooldown_range=(10, 100)
            This sets the minimum cooldown period to 10 seconds,
            and the maximum cooldown period to 100 seconds.
        elastic_timeout (int): Timeout for elastic initialisation after
            re-scaling the cluster. The default value is 600 seconds.
            Alternatively, the environment variable
            HOROVOD_ELASTIC_TIMEOUT can also be used.'
        cpus_per_worker (int): Number of CPU resources to allocate to
            each worker.
        use_gpu (bool): Whether to use GPU for allocation. TODO: this
            can be removed.
        gpus_per_worker (int): Number of GPU resources to allocate to
            each worker.
        override_discovery (bool): Whether for the ElasticRayExecutor to
            automatically provide a discovery mechanism for ElasticSettings.

    """
    def __init__(self,
                 settings,
                 min_workers: int,
                 max_workers: Optional[int] = None,
                 use_gpu: bool = False,
                 cpus_per_worker: int = 1,
                 gpus_per_worker: Optional[int] = None,
                 override_discovery: bool = True,
                 reset_limit: int = None,
                 cooldown_range: Optional[Tuple[int, int]] = None,
                 elastic_timeout: int = 600):
        self.settings = settings
        if override_discovery:
            settings.discovery = RayHostDiscovery(
                use_gpu=use_gpu,
                cpus_per_worker=cpus_per_worker,
                gpus_per_worker=gpus_per_worker)
        self.cpus_per_worker = cpus_per_worker
        self.gpus_per_worker = gpus_per_worker
        self.use_gpu = use_gpu
        # moved from settings
        self.min_workers = min_workers
        self.max_workers = max_workers
        self.num_workers = min_workers
        self.reset_limit = reset_limit
        self.cooldown_range = cooldown_range
        self.elastic_timeout = elastic_timeout
        self.driver = None
        self.rendezvous = None

    def start(self,
              executable_cls: type = None,
              executable_args: Optional[List] = None,
              executable_kwargs: Optional[Dict] = None,
              extra_env_vars: Optional[Dict] = None):
        """Starts the Horovod driver and services.

        Args:
            executable_cls (type): The class that will be created within
                an actor (BaseHorovodWorker). This will allow Horovod
                to establish its connections and set env vars.
            executable_args (List): Arguments to be passed into the
                worker class upon initialization.
            executable_kwargs (Dict): Keyword arguments to be passed into the
                worker class upon initialization.
            extra_env_vars (Dict): Environment variables to be set
                on the actors (worker processes) before initialization.

        """

        self.rendezvous = RendezvousServer(self.settings.verbose)
        self.driver = ElasticDriver(rendezvous=self.rendezvous,
                                    discovery=self.settings.discovery,
                                    min_np=self.min_workers,
                                    max_np=self.max_workers,
                                    timeout=self.elastic_timeout,
                                    reset_limit=self.reset_limit,
                                    cooldown_range=self.cooldown_range,
                                    verbose=self.settings.verbose)
        handler = create_rendezvous_handler(self.driver)
        logger.debug("[ray] starting rendezvous")
        global_rendezv_port = self.rendezvous.start(handler)

        logger.debug(f"[ray] waiting for {self.num_workers} to start.")
        self.driver.wait_for_available_slots(self.num_workers)

        # Host-to-host common interface detection
        # requires at least 2 hosts in an elastic job.
        min_hosts = _get_min_start_hosts(self.settings)
        current_hosts = self.driver.wait_for_available_slots(
            self.num_workers, min_hosts=min_hosts)
        logger.debug("[ray] getting common interfaces")
        nics = detect_nics(
            self.settings,
            all_host_names=current_hosts.host_assignment_order,
        )
        logger.debug("[ray] getting driver IP")
        server_ip = socket.gethostbyname(socket.gethostname())
        self.run_env_vars = create_run_env_vars(server_ip,
                                                nics,
                                                global_rendezv_port,
                                                elastic=True)

        self.executable_cls = executable_cls
        self.executable_args = executable_args
        self.executable_kwargs = executable_kwargs
        self.env_vars = extra_env_vars or {}

    def _create_resources(self, hostname: str):
        resources = dict(num_cpus=self.cpus_per_worker,
                         num_gpus=int(self.use_gpu) * self.gpus_per_worker,
                         resources={f"node:{hostname}": 0.01})
        return resources

    def _create_remote_worker(self, slot_info, worker_env_vars):
        hostname = slot_info.hostname
        loaded_worker_cls = self.remote_worker_cls.options(
            **self._create_resources(hostname))

        worker = loaded_worker_cls.remote()
        worker.update_env_vars.remote(worker_env_vars)
        worker.update_env_vars.remote(create_slot_env_vars(slot_info))
        if self.use_gpu:
            visible_devices = ",".join(
                [str(i) for i in range(slot_info.local_size)])
            worker.update_env_vars.remote(
                {"CUDA_VISIBLE_DEVICES": visible_devices})
        return worker

    def _create_spawn_worker_fn(self, return_results: List,
                                worker_fn: Callable,
                                queue: "ray.util.Queue") -> Callable:
        self.remote_worker_cls = ray.remote(BaseHorovodWorker)
        # event = register_shutdown_event()
        worker_env_vars = {}
        worker_env_vars.update(self.run_env_vars.copy())
        worker_env_vars.update(self.env_vars.copy())
        worker_env_vars.update({"PYTHONUNBUFFERED": "1"})

        def worker_loop(slot_info, events):
            def ping_worker(worker):
                # There is an odd edge case where a node can be removed
                # before the remote worker is started, leading to a failure
                # in trying to create the horovod mesh.
                try:
                    ping = worker.execute.remote(lambda _: 1)
                    ray.get(ping, timeout=10)
                except Exception as e:
                    logger.error(f"{slot_info.hostname}: Ping failed - {e}")
                    return False
                return True

            worker = self._create_remote_worker(slot_info, worker_env_vars)
            if not ping_worker(worker):
                return 1, time.time()

            ray.get(worker.set_queue.remote(queue))
            future = worker.execute.remote(worker_fn)

            result = None
            while result is None:
                try:
                    #  TODO: make this event driven at some point.
                    retval = ray.get(future, timeout=0.1)
                    return_results.append((slot_info.rank, retval))
                    # Success
                    result = 0, time.time()
                except GetTimeoutError:
                    # Timeout
                    if any(e.is_set() for e in events):
                        ray.kill(worker)
                        result = 1, time.time()
                except Exception as e:
                    logger.error(f"{slot_info.hostname}[{slot_info.rank}]:{e}")
                    ray.kill(worker)
                    result = 1, time.time()
            logger.debug(f"Worker ({slot_info}) routine is done!")
            return result

        return worker_loop

    def run(self,
            fn: Callable[[Any], Any],
            args: Optional[List] = None,
            kwargs: Optional[Dict] = None,
            callbacks: Optional[List[Callable]] = None) -> List[Any]:
        """Executes the provided function on all workers.

        Args:
            fn: Target function that can be executed with arbitrary
                args and keyword arguments.
            args: List of arguments to be passed into the target function.
            kwargs: Dictionary of keyword arguments to be
                passed into the target function.
            callbacks: List of callables. Each callback must either
                be a callable function or a class that implements __call__.
                Every callback will be invoked on every value logged
                by the rank 0 worker.

        Returns:
            Deserialized return values from the target function.
        """
        args = args or []
        kwargs = kwargs or {}
        f = lambda _: fn(*args, **kwargs)
        return self._run_remote(f, callbacks=callbacks)

    def _run_remote(self,
                    worker_fn: Callable,
                    callbacks: Optional[List[Callable]] = None) -> List[Any]:
        """Executes the provided function on all workers.

        Args:
            worker_fn: Target elastic function that can be executed.
            callbacks: List of callables. Each callback must either
                be a callable function or a class that implements __call__.
                Every callback will be invoked on every value logged
                by the rank 0 worker.

        Returns:
            List of return values from every completed worker.
        """
        return_values = []
        from ray.util.queue import Queue
        import inspect
        args = inspect.getfullargspec(Queue).args
        if "actor_options" not in args:
            # Ray 1.1 and less
            _queue = Queue()
        else:
            _queue = Queue(actor_options={
                "num_cpus": 0,
                "resources": {
                    ray.state.current_node_id(): 0.001
                }
            })
        self.driver.start(
            self.num_workers,
            self._create_spawn_worker_fn(return_values, worker_fn, _queue))

        def _process_calls(queue, callbacks, event):
            if not callbacks:
                return
            while queue.actor:
                if not queue.empty():
                    result = queue.get_nowait()
                    for c in callbacks:
                        c(result)
                    # avoid slamming the CI
                elif event.is_set():
                    break
                time.sleep(0.1)

        try:
            event = threading.Event()
            _callback_thread = threading.Thread(target=_process_calls,
                                                args=(_queue, callbacks,
                                                      event),
                                                daemon=True)
            _callback_thread.start()
            res = self.driver.get_results()
            event.set()
            if _callback_thread:
                _callback_thread.join(timeout=60)
        finally:
            if hasattr(_queue, "shutdown"):
                _queue.shutdown()
            else:
                done_ref = _queue.actor.__ray_terminate__.remote()
                done, not_done = ray.wait([done_ref], timeout=5)
                if not_done:
                    ray.kill(_queue.actor)
        self.driver.stop()

        if res.error_message is not None:
            raise RuntimeError(res.error_message)

        for name, value in sorted(res.worker_results.items(),
                                  key=lambda item: item[1][1]):
            exit_code, timestamp = value
            if exit_code != 0:
                raise RuntimeError(
                    'Horovod detected that one or more processes '
                    'exited with non-zero '
                    'status, thus causing the job to be terminated. '
                    'The first process '
                    'to do so was:\nProcess name: {name}\nExit code: {code}\n'.
                    format(name=name, code=exit_code))

        return_values = [
            value for k, value in sorted(return_values, key=lambda kv: kv[0])
        ]
        return return_values

    def run_remote(self, fn: Callable[[Any], Any]) -> List[Any]:
        raise NotImplementedError(
            "ObjectRefs cannot be returned from Elastic runs as the workers are ephemeral"
        )

    def execute(self,
                fn: Callable[["executable_cls"], Any],
                callbacks: Optional[List[Callable]] = None) -> List[Any]:
        """Executes the provided function on all workers.

        Args:
            fn: Target function to be invoked on every object.
            callbacks: List of callables. Each callback must either
                be a callable function or a class that implements __call__.
                Every callback will be invoked on every value logged
                by the rank 0 worker.
        Returns:
            Deserialized return values from the target function.
        """
        return ray.get(self._run_remote(fn, callbacks=callbacks))

    def execute_single(self, fn: Callable[["executable_cls"],
                                          Any]) -> List[Any]:
        """Executes the provided function on the rank 0 worker (chief).

        Args:
            fn: Target function to be invoked on the chief object.

        Returns:
            Deserialized return values from the target function.
        """
        raise NotImplementedError(
            "Elastic mode does not support execute_single. Please use the execute method instead"
        )

    def shutdown(self):
        """Destroys the driver."""
        if not self.driver:
            return
        assert self.driver.finished()
        self.driver = None
Example #14
0
    def test_worker_notification_manager(self):
        """Tests that host add events are sent to the worker notification service and consumed."""
        slots = {'host-1': 2}
        discovery = FixedHosts(slots)

        rendezvous = RendezvousServer()
        driver = ElasticDriver(rendezvous, discovery, min_np=2, max_np=4)
        driver.wait_for_available_slots(min_np=2)
        handler = create_rendezvous_handler(driver)

        common_intfs = network.get_local_intfs()
        addr = network.get_driver_ip(common_intfs)
        port = rendezvous.start(handler)
        nic = list(common_intfs)[0]

        rank_results = {}

        class NotificationReceiver:
            def __init__(self):
                self.events = []

            def on_hosts_updated(self, timestamp, res):
                self.events.append((timestamp, res))

        def add_host():
            slots = {'host-1': 2, 'host-2': 2}
            discovery.set(slots)

        def remove_host():
            slots = {'host-2': 2}
            discovery.set(slots)

        def exec_command(slot_info, events):
            manager = WorkerNotificationManager()
            manager.init(rendezvous_addr=addr,
                         rendezvous_port=port,
                         nic=nic,
                         hostname=slot_info.hostname,
                         local_rank=slot_info.local_rank)

            notification_receiver = NotificationReceiver()
            manager.register_listener(notification_receiver)

            driver.record_ready(slot_info.hostname, slot_info.local_rank)

            if slot_info.rank == 0:
                add_host()
            driver.wait_for_available_slots(4)

            if slot_info.rank == 0:
                remove_host()

            # Busy wait for the number of available slots to decrease
            while driver._host_manager.current_hosts.count_available_slots(
            ) > 2:
                time.sleep(0.01)

            rank_results[slot_info.rank] = notification_receiver.events
            return 0, time.time()

        driver.start(np=2, create_worker_fn=exec_command)
        res = driver.get_results().worker_results
        driver.stop()

        assert len(res) == 2
        for name, (exit_code, timestamp) in res.items():
            assert exit_code == 0, name

        assert len(rank_results) == 2
        for rank, events in rank_results.items():
            expected = 2 if rank == 0 else 0
            assert len(events) == expected, rank
            if rank == 0:
                # First update is an add
                assert events[0][1] == HostUpdateResult.added
                # Second update is a removal
                assert events[1][1] == HostUpdateResult.removed

        rendezvous.stop()