def main(args): if args.dt is not None: if args.abr == 'pensieve': pensiedt.PensieveDT().main(args) elif args.abr == 'robustmpc': robustmdt.RobustMPCDT().main(args) elif args.abr == 'hotdash': hotdadt.HotdashDT().main(args) else: if args.abr == 'pensieve': pensieve.Pensieve().main(args) elif args.abr == 'robustmpc': robustmpc.RobustMPC().main(args) elif args.abr == 'hotdash': hotdash.Hotdash().main(args)
all_cooked_bw=all_cooked_bw, all_file_names=all_file_names) time_calc = np.zeros((max_iters, 3)) if args.abr == 'pensieve': teacher = pensieve.Pensieve() student = pensiedt.PensieveDT() predict = teacher.predict elif args.abr == 'robustmpc': teacher = robustmpc.RobustMPC() student = robustmdt.RobustMPCDT() predict = teacher.predict elif args.abr == 'hotdash': teacher = hotdash.Hotdash() student = hotdadt.HotdashDT() predict = teacher.predict else: raise NotImplementedError t1 = time.time() # Step 1: Initialization for the first iteration trace = get_rollouts(env=net_env, policy=teacher, args=args, n_batch_rollouts=n_batch_rollouts) states.extend((state for state, _, _ in trace)) actions.extend((action for _, action, _ in trace)) serials.extend(serial for _, _, serial in trace)