def SS_TPI_firstdoughnutring(guesses, winit, rinit, BQinit, T_H_init, initial_b, factor_ss, j, tax_params, parameters, theta, tau_bq): ''' Solves the first entries of the upper triangle of the twist doughnut. This is separate from the main TPI function because the the values of b and n are scalars, so it is easier to just have a separate function for these cases. Inputs: guesses = guess for b and n (2x1 list) winit = initial wage rate (scalar) rinit = initial rental rate (scalar) BQinit = initial aggregate bequest (scalar) T_H_init = initial lump sum tax (scalar) initial_b = initial distribution of capital (SxJ array) factor_ss = steady state scaling factor (scalar) j = which ability type is being solved for (scalar) parameters = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rates (Jx1 array) Output: euler errors (2x1 list) ''' J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_ss, tau_payroll, retire, mean_income_data,\ h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = parameters analytical_mtrs, etr_params, mtrx_params, mtry_params = tax_params b2 = float(guesses[0]) n1 = float(guesses[1]) b1 = float(initial_b[-2, j]) # Euler 1 equations tax1_params = (J, S, retire, etr_params[-1,0,:], h_wealth, p_wealth, m_wealth, tau_payroll) tax1 = tax.total_taxes(rinit, b1, winit, e[-1, j], n1, BQinit, lambdas[ j], factor_ss, T_H_init, j, 'TPI_scalar', False, tax1_params, theta, tau_bq) cons1 = household.get_cons( rinit, b1, winit, e[-1, j], n1, BQinit, lambdas[j], b2, parameters, tax1) bequest_ut = rho[-1] * np.exp(-sigma * g_y) * chi_b[-1, j] * b2 ** (-sigma) error1 = household.marg_ut_cons(cons1, parameters) - bequest_ut # Euler 2 equations income2 = (rinit * b1 + winit * e[-1, j] * n1) * factor_ss deriv2 = 1 - tau_payroll - tax.MTR_labor(rinit, b1, winit, e[-1, j], n1, factor_ss, analytical_mtrs, etr_params[-1,0,:], mtrx_params[-1,0,:]) error2 = household.marg_ut_cons(cons1, parameters) * winit * \ e[-1, j] * deriv2 - household.marg_ut_labor(n1, chi_n[-1], parameters) if n1 <= 0 or n1 >= 1: error2 += 1e12 if b2 <= 0: error1 += 1e12 if cons1 <= 0: error1 += 1e12 return [error1] + [error2]
def SS_TPI_firstdoughnutring(guesses, winit, rinit, BQinit, T_H_init, initial_b, factor_ss, j, parameters, theta, tau_bq): ''' Solves the first entries of the upper triangle of the twist doughnut. This is separate from the main TPI function because the the values of b and n are scalars, so it is easier to just have a separate function for these cases. Inputs: guesses = guess for b and n (2x1 list) winit = initial wage rate (scalar) rinit = initial rental rate (scalar) BQinit = initial aggregate bequest (scalar) T_H_init = initial lump sum tax (scalar) initial_b = initial distribution of capital (SxJ array) factor_ss = steady state scaling factor (scalar) j = which ability type is being solved for (scalar) parameters = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rates (Jx1 array) Output: euler errors (2x1 list) ''' b2 = float(guesses[0]) n1 = float(guesses[1]) b1 = float(initial_b[-2, j]) # Euler 1 equations tax1 = tax.total_taxes(rinit, b1, winit, e[-1, j], n1, BQinit, lambdas[j], factor_ss, T_H_init, j, 'TPI_scalar', False, parameters, theta, tau_bq) cons1 = household.get_cons(rinit, b1, winit, e[-1, j], n1, BQinit, lambdas[j], b2, parameters, tax1) bequest_ut = rho[-1] * np.exp(-sigma * g_y) * chi_b[-1, j] * b2**(-sigma) error1 = household.marg_ut_cons(cons1, parameters) - bequest_ut # Euler 2 equations income2 = (rinit * b1 + winit * e[-1, j] * n1) * factor_ss deriv2 = 1 - tau_payroll - tax.tau_income( rinit, b1, winit, e[-1, j], n1, factor_ss, parameters) - tax.tau_income_deriv( rinit, b1, winit, e[-1, j], n1, factor_ss, parameters) * income2 error2 = household.marg_ut_cons(cons1, parameters) * winit * \ e[-1, j] * deriv2 - household.marg_ut_labor(n1, chi_n[-1], parameters) if n1 <= 0 or n1 >= 1: error2 += 1e12 if b2 <= 0: error1 += 1e12 if cons1 <= 0: error1 += 1e12 return [error1] + [error2]
def twist_doughnut(guesses, r, w, BQ, T_H, j, s, t, params): ''' Parameters: guesses = distribution of capital and labor (various length list) w = wage rate ((T+S)x1 array) r = rental rate ((T+S)x1 array) BQ = aggregate bequests ((T+S)x1 array) T_H = lump sum tax over time ((T+S)x1 array) factor = scaling factor (scalar) j = which ability type is being solved for (scalar) s = which upper triangle loop is being solved for (scalar) t = which diagonal is being solved for (scalar) params = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rate (Jx1 array) rho = mortality rate (Sx1 array) lambdas = ability weights (Jx1 array) e = ability type (SxJ array) initial_b = capital stock distribution in period 0 (SxJ array) chi_b = chi^b_j (Jx1 array) chi_n = chi^n_s (Sx1 array) Output: Value of Euler error (various length list) ''' income_tax_params, tpi_params, initial_b = params analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params J, S, T, BQ_dist, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, e, retire, mean_income_data,\ factor, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n = tpi_params length = len(guesses) / 2 b_guess = np.array(guesses[:length]) n_guess = np.array(guesses[length:]) if length == S: b_s = np.array([0] + list(b_guess[:-1])) else: b_s = np.array([(initial_b[-(s + 3), j])] + list(b_guess[:-1])) b_splus1 = b_guess b_splus2 = np.array(list(b_guess[1:]) + [0]) w_s = w[t:t + length] w_splus1 = w[t + 1:t + length + 1] r_s = r[t:t + length] r_splus1 = r[t + 1:t + length + 1] n_s = n_guess n_extended = np.array(list(n_guess[1:]) + [0]) e_s = e[-length:, j] e_extended = np.array(list(e[-length + 1:, j]) + [0]) BQ_s = BQ[t:t + length] BQ_splus1 = BQ[t + 1:t + length + 1] T_H_s = T_H[t:t + length] T_H_splus1 = T_H[t + 1:t + length + 1] omega = omega[t, -length:] BQ_dist = BQ_dist[-length:, j] # Savings euler equations # theta_params = (e[-1, j], 1, omega[0].reshape(S, 1), lambdas[j]) # theta = tax.replacement_rate_vals(n, w, factor, theta_params) theta = np.zeros((J,)) tax_s_params = (e_s, BQ_dist, lambdas[j], 'TPI', retire, etr_params, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax_s = tax.total_taxes(r_s, w_s, b_s, n_s, BQ_s, factor, T_H_s, j, False, tax_s_params) etr_params_sp1 = np.append(etr_params,np.reshape(etr_params[-1,:],(1,etr_params.shape[1])),axis=0)[1:,:] taxsp1_params = (e_extended, BQ_dist, lambdas[j], 'TPI', retire, etr_params_sp1, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax_splus1 = tax.total_taxes(r_splus1, w_splus1, b_splus1, n_extended, BQ_splus1, factor, T_H_splus1, j, True, taxsp1_params) cons_s_params = (e_s, BQ_dist, lambdas[j], g_y) cons_s = household.get_cons(omega, r_s, w_s, b_s, b_splus1, n_s, BQ_s, tax_s, cons_s_params) cons_sp1_params = (e_extended, BQ_dist, lambdas[j], g_y) cons_splus1 = household.get_cons(omega, r_splus1, w_splus1, b_splus1, b_splus2, n_extended, BQ_splus1, tax_splus1, cons_sp1_params) income_splus1 = (r_splus1 * b_splus1 + w_splus1 * e_extended * n_extended) * factor savings_ut = rho[-(length):] * np.exp(-sigma * g_y) * \ chi_b[j] * b_splus1 ** (-sigma) mtry_params_sp1 = np.append(mtry_params,np.reshape(mtry_params[-1,:],(1,mtry_params.shape[1])),axis=0)[1:,:] mtr_capital_params = (e_extended, etr_params_sp1, mtry_params_sp1, analytical_mtrs) deriv_savings = 1 + r_splus1 * (1 - tax.MTR_capital(r_splus1, w_splus1, b_splus1, n_extended, factor, mtr_capital_params)) error1 = household.marg_ut_cons(cons_s, sigma) - beta * (1 - rho[-(length):]) * np.exp(-sigma * g_y) * deriv_savings * household.marg_ut_cons( cons_splus1, sigma) - savings_ut # Labor leisure euler equations income_s = (r_s * b_s + w_s * e_s * n_s) * factor mtr_labor_params = (e_s, etr_params, mtrx_params, analytical_mtrs) deriv_laborleisure = 1 - tau_payroll - tax.MTR_labor(r_s, w_s, b_s, n_s, factor, mtr_labor_params) mu_labor_params = (b_ellipse, upsilon, ltilde, chi_n[-length:]) error2 = household.marg_ut_cons(cons_s, sigma) * w_s * e[-( length):, j] * deriv_laborleisure - household.marg_ut_labor(n_s, mu_labor_params) # Check and punish constraint violations mask1 = n_guess < 0 error2[mask1] += 1e12 mask2 = n_guess > ltilde error2[mask2] += 1e12 mask3 = cons_s < 0 error2[mask3] += 1e12 mask4 = b_guess <= 0 error2[mask4] += 1e12 mask5 = cons_splus1 < 0 error2[mask5] += 1e12 return list(error1.flatten()) + list(error2.flatten())
def firstdoughnutring(guesses, r, w, b, BQ, T_H, j, params): ''' Solves the first entries of the upper triangle of the twist doughnut. This is separate from the main TPI function because the the values of b and n are scalars, so it is easier to just have a separate function for these cases. Inputs: guesses = guess for b and n (2x1 list) winit = initial wage rate (scalar) rinit = initial rental rate (scalar) BQinit = initial aggregate bequest (scalar) T_H_init = initial lump sum tax (scalar) initial_b = initial distribution of capital (SxJ array) factor = steady state scaling factor (scalar) j = which ability type is being solved for (scalar) parameters = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rates (Jx1 array) Output: euler errors (2x1 list) ''' # unpack tuples of parameters income_tax_params, tpi_params, initial_b = params analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params J, S, T, BQ_dist, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, e, retire, mean_income_data,\ factor, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n = tpi_params b_splus1 = float(guesses[0]) n = float(guesses[1]) b_s = float(initial_b[-2, j]) # Euler 1 equations # theta_params = (e[-1, j], 1, omega[0].reshape(S, 1), lambdas[j]) # theta = tax.replacement_rate_vals(n, w, factor, theta_params) theta = np.zeros((J,)) tax1_params = (e[-1, j], BQ_dist[-1, j], lambdas[j], 'TPI_scalar', retire, etr_params[-1,0,:], h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax1 = tax.total_taxes(r, w, b_s, n, BQ, factor, T_H, j, False, tax1_params) cons_params = (e[-1, j], BQ_dist[-1, j], lambdas[j], g_y) cons = household.get_cons(omega[0,-1], r, w, b_s, b_splus1, n, BQ, tax1, cons_params) bequest_ut = rho[-1] * np.exp(-sigma * g_y) * chi_b[j] * b_splus1 ** (-sigma) error1 = household.marg_ut_cons(cons, sigma) - bequest_ut # Euler 2 equations income2 = (r * b_s + w * e[-1, j] * n) * factor mtr_labor_params = (e[-1, j], etr_params[-1,0,:], mtrx_params[-1,0,:], analytical_mtrs) deriv2 = 1 - tau_payroll - tax.MTR_labor(r, w, b_s, n, factor, mtr_labor_params) mu_labor_params = (b_ellipse, upsilon, ltilde, chi_n[-1]) error2 = household.marg_ut_cons(cons, sigma) * w * \ e[-1, j] * deriv2 - household.marg_ut_labor(n, mu_labor_params) #### TEST THESE FUNCS BELOW TO BE SURE GET SAME OUTPUT, but should use if so *** # foc_save_params = (e[-1, j], sigma, beta, g_y, chi_b, theta, tau_bq, rho, lambdas, J, S, # analytical_mtrs, etr_params[-1,0,:], mtry_params[-1,0,:], h_wealth, p_wealth, m_wealth, tau_payroll, retire, 'TPI') # error3 = household.FOC_savings(r, w, b_s, b_splus1, 0., n, BQ, factor, T_H, foc_save_params) # foc_labor_params = (e[-1, j], sigma, g_y, theta, b_ellipse, upsilon, chi_n, ltilde, tau_bq, lambdas, J, S, # analytical_mtrs, etr_params[-1,0,:], mtrx_params[-1,0,:], h_wealth, p_wealth, m_wealth, tau_payroll, retire, 'TPI') # error4 = household.FOC_labor(r, w, b, b_splus1, n, BQ, factor, T_H, foc_labor_params) # print 'check1:', error2-error4 # print 'check2:', error1-error3 if n <= 0 or n >= 1: error2 += 1e12 if b_splus1 <= 0: error1 += 1e12 if cons <= 0: error1 += 1e12 return [error1] + [error2]
def Steady_state_TPI_solver(guesses, winit, rinit, BQinit, T_H_init, factor, j, s, t, params, theta, tau_bq, rho, lambdas, e, initial_b, chi_b, chi_n): ''' Parameters: guesses = distribution of capital and labor (various length list) winit = wage rate ((T+S)x1 array) rinit = rental rate ((T+S)x1 array) BQinit = aggregate bequests ((T+S)x1 array) T_H_init = lump sum tax over time ((T+S)x1 array) factor = scaling factor (scalar) j = which ability type is being solved for (scalar) s = which upper triangle loop is being solved for (scalar) t = which diagonal is being solved for (scalar) params = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rate (Jx1 array) rho = mortalit rate (Sx1 array) lambdas = ability weights (Jx1 array) e = ability type (SxJ array) initial_b = capital stock distribution in period 0 (SxJ array) chi_b = chi^b_j (Jx1 array) chi_n = chi^n_s (Sx1 array) Output: Value of Euler error (various length list) ''' J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, \ a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params length = len(guesses) / 2 b_guess = np.array(guesses[:length]) n_guess = np.array(guesses[length:]) if length == S: b_s = np.array([0] + list(b_guess[:-1])) else: b_s = np.array([(initial_b[-(s + 3), j])] + list(b_guess[:-1])) b_splus1 = b_guess b_splus2 = np.array(list(b_guess[1:]) + [0]) w_s = winit[t:t + length] w_splus1 = winit[t + 1:t + length + 1] r_s = rinit[t:t + length] r_splus1 = rinit[t + 1:t + length + 1] n_s = n_guess n_extended = np.array(list(n_guess[1:]) + [0]) e_s = e[-length:, j] e_extended = np.array(list(e[-length + 1:, j]) + [0]) BQ_s = BQinit[t:t + length] BQ_splus1 = BQinit[t + 1:t + length + 1] T_H_s = T_H_init[t:t + length] T_H_splus1 = T_H_init[t + 1:t + length + 1] # Savings euler equations tax_s = tax.total_taxes(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[j], factor, T_H_s, j, 'TPI', False, params, theta, tau_bq) tax_splus1 = tax.total_taxes(r_splus1, b_splus1, w_splus1, e_extended, n_extended, BQ_splus1, lambdas[j], factor, T_H_splus1, j, 'TPI', True, params, theta, tau_bq) cons_s = household.get_cons(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[j], b_splus1, params, tax_s) cons_splus1 = household.get_cons(r_splus1, b_splus1, w_splus1, e_extended, n_extended, BQ_splus1, lambdas[j], b_splus2, params, tax_splus1) income_splus1 = (r_splus1 * b_splus1 + w_splus1 * e_extended * n_extended) * factor savings_ut = rho[-(length):] * np.exp(-sigma * g_y) * \ chi_b[-(length):, j] * b_splus1 ** (-sigma) deriv_savings = 1 + r_splus1 * ( 1 - tax.tau_income(r_splus1, b_splus1, w_splus1, e_extended, n_extended, factor, params) - tax.tau_income_deriv(r_splus1, b_splus1, w_splus1, e_extended, n_extended, factor, params) * income_splus1 ) - tax.tau_w_prime(b_splus1, params) * b_splus1 - tax.tau_wealth( b_splus1, params) error1 = household.marg_ut_cons( cons_s, params) - beta * (1 - rho[-(length):]) * np.exp( -sigma * g_y) * deriv_savings * household.marg_ut_cons( cons_splus1, params) - savings_ut # Labor leisure euler equations income_s = (r_s * b_s + w_s * e_s * n_s) * factor deriv_laborleisure = 1 - tau_payroll - tax.tau_income( r_s, b_s, w_s, e_s, n_s, factor, params) - tax.tau_income_deriv( r_s, b_s, w_s, e_s, n_s, factor, params) * income_s error2 = household.marg_ut_cons(cons_s, params) * w_s * e[ -(length):, j] * deriv_laborleisure - household.marg_ut_labor( n_s, chi_n[-length:], params) # Check and punish constraint violations mask1 = n_guess < 0 error2[mask1] += 1e12 mask2 = n_guess > ltilde error2[mask2] += 1e12 mask3 = cons_s < 0 error2[mask3] += 1e12 mask4 = b_guess <= 0 error2[mask4] += 1e12 mask5 = cons_splus1 < 0 error2[mask5] += 1e12 return list(error1.flatten()) + list(error2.flatten())
def twist_doughnut(guesses, r, w, BQ, T_H, j, s, t, params): ''' Parameters: guesses = distribution of capital and labor (various length list) w = wage rate ((T+S)x1 array) r = rental rate ((T+S)x1 array) BQ = aggregate bequests ((T+S)x1 array) T_H = lump sum tax over time ((T+S)x1 array) factor = scaling factor (scalar) j = which ability type is being solved for (scalar) s = which upper triangle loop is being solved for (scalar) t = which diagonal is being solved for (scalar) params = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rate (Jx1 array) rho = mortalit rate (Sx1 array) lambdas = ability weights (Jx1 array) e = ability type (SxJ array) initial_b = capital stock distribution in period 0 (SxJ array) chi_b = chi^b_j (Jx1 array) chi_n = chi^n_s (Sx1 array) Output: Value of Euler error (various length list) ''' income_tax_params, tpi_params, initial_b = params analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, e, retire, mean_income_data,\ factor, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n = tpi_params length = len(guesses) / 2 b_guess = np.array(guesses[:length]) n_guess = np.array(guesses[length:]) if length == S: b_s = np.array([0] + list(b_guess[:-1])) else: b_s = np.array([(initial_b[-(s + 3), j])] + list(b_guess[:-1])) b_splus1 = b_guess b_splus2 = np.array(list(b_guess[1:]) + [0]) w_s = w[t:t + length] w_splus1 = w[t + 1:t + length + 1] r_s = r[t:t + length] r_splus1 = r[t + 1:t + length + 1] n_s = n_guess n_extended = np.array(list(n_guess[1:]) + [0]) e_s = e[-length:, j] e_extended = np.array(list(e[-length + 1:, j]) + [0]) BQ_s = BQ[t:t + length] BQ_splus1 = BQ[t + 1:t + length + 1] T_H_s = T_H[t:t + length] T_H_splus1 = T_H[t + 1:t + length + 1] # Savings euler equations # theta_params = (e[-1, j], 1, omega[0].reshape(S, 1), lambdas[j]) # theta = tax.replacement_rate_vals(n, w, factor, theta_params) theta = np.zeros((J, )) tax_s_params = (e_s, lambdas[j], 'TPI', retire, etr_params, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax_s = tax.total_taxes(r_s, w_s, b_s, n_s, BQ_s, factor, T_H_s, j, False, tax_s_params) etr_params_sp1 = np.append(etr_params, np.reshape(etr_params[-1, :], (1, etr_params.shape[1])), axis=0)[1:, :] taxsp1_params = (e_extended, lambdas[j], 'TPI', retire, etr_params_sp1, h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax_splus1 = tax.total_taxes(r_splus1, w_splus1, b_splus1, n_extended, BQ_splus1, factor, T_H_splus1, j, True, taxsp1_params) cons_s_params = (e_s, lambdas[j], g_y) cons_s = household.get_cons(r_s, w_s, b_s, b_splus1, n_s, BQ_s, tax_s, cons_s_params) cons_sp1_params = (e_extended, lambdas[j], g_y) cons_splus1 = household.get_cons(r_splus1, w_splus1, b_splus1, b_splus2, n_extended, BQ_splus1, tax_splus1, cons_sp1_params) income_splus1 = (r_splus1 * b_splus1 + w_splus1 * e_extended * n_extended) * factor savings_ut = rho[-(length):] * np.exp(-sigma * g_y) * \ chi_b[j] * b_splus1 ** (-sigma) mtry_params_sp1 = np.append(mtry_params, np.reshape(mtry_params[-1, :], (1, mtry_params.shape[1])), axis=0)[1:, :] mtr_capital_params = (e_extended, etr_params_sp1, mtry_params_sp1, analytical_mtrs) deriv_savings = 1 + r_splus1 * (1 - tax.MTR_capital( r_splus1, w_splus1, b_splus1, n_extended, factor, mtr_capital_params)) error1 = household.marg_ut_cons( cons_s, sigma) - beta * (1 - rho[-(length):]) * np.exp( -sigma * g_y) * deriv_savings * household.marg_ut_cons( cons_splus1, sigma) - savings_ut # Labor leisure euler equations income_s = (r_s * b_s + w_s * e_s * n_s) * factor mtr_labor_params = (e_s, etr_params, mtrx_params, analytical_mtrs) deriv_laborleisure = 1 - tau_payroll - tax.MTR_labor( r_s, w_s, b_s, n_s, factor, mtr_labor_params) mu_labor_params = (b_ellipse, upsilon, ltilde, chi_n[-length:]) error2 = household.marg_ut_cons(cons_s, sigma) * w_s * e[ -(length):, j] * deriv_laborleisure - household.marg_ut_labor( n_s, mu_labor_params) # Check and punish constraint violations mask1 = n_guess < 0 error2[mask1] += 1e12 mask2 = n_guess > ltilde error2[mask2] += 1e12 mask3 = cons_s < 0 error2[mask3] += 1e12 mask4 = b_guess <= 0 error2[mask4] += 1e12 mask5 = cons_splus1 < 0 error2[mask5] += 1e12 return list(error1.flatten()) + list(error2.flatten())
def firstdoughnutring(guesses, r, w, b, BQ, T_H, j, params): ''' Solves the first entries of the upper triangle of the twist doughnut. This is separate from the main TPI function because the the values of b and n are scalars, so it is easier to just have a separate function for these cases. Inputs: guesses = guess for b and n (2x1 list) winit = initial wage rate (scalar) rinit = initial rental rate (scalar) BQinit = initial aggregate bequest (scalar) T_H_init = initial lump sum tax (scalar) initial_b = initial distribution of capital (SxJ array) factor = steady state scaling factor (scalar) j = which ability type is being solved for (scalar) parameters = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rates (Jx1 array) Output: euler errors (2x1 list) ''' # unpack tuples of parameters income_tax_params, tpi_params, initial_b = params analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_vector, tau_payroll, tau_bq, rho, omega, N_tilde, lambdas, e, retire, mean_income_data,\ factor, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon, chi_b, chi_n = tpi_params b_splus1 = float(guesses[0]) n = float(guesses[1]) b_s = float(initial_b[-2, j]) # Euler 1 equations # theta_params = (e[-1, j], 1, omega[0].reshape(S, 1), lambdas[j]) # theta = tax.replacement_rate_vals(n, w, factor, theta_params) theta = np.zeros((J, )) tax1_params = (e[-1, j], lambdas[j], 'TPI_scalar', retire, etr_params[-1, 0, :], h_wealth, p_wealth, m_wealth, tau_payroll, theta, tau_bq, J, S) tax1 = tax.total_taxes(r, w, b_s, n, BQ, factor, T_H, j, False, tax1_params) cons_params = (e[-1, j], lambdas[j], g_y) cons = household.get_cons(r, w, b_s, b_splus1, n, BQ, tax1, cons_params) bequest_ut = rho[-1] * np.exp(-sigma * g_y) * chi_b[j] * b_splus1**(-sigma) error1 = household.marg_ut_cons(cons, sigma) - bequest_ut # Euler 2 equations income2 = (r * b_s + w * e[-1, j] * n) * factor mtr_labor_params = (e[-1, j], etr_params[-1, 0, :], mtrx_params[-1, 0, :], analytical_mtrs) deriv2 = 1 - tau_payroll - tax.MTR_labor(r, w, b_s, n, factor, mtr_labor_params) mu_labor_params = (b_ellipse, upsilon, ltilde, chi_n[-1]) error2 = household.marg_ut_cons(cons, sigma) * w * \ e[-1, j] * deriv2 - household.marg_ut_labor(n, mu_labor_params) #### TEST THESE FUNCS BELOW TO BE SURE GET SAME OUTPUT, but should use if so *** # foc_save_params = (e[-1, j], sigma, beta, g_y, chi_b, theta, tau_bq, rho, lambdas, J, S, # analytical_mtrs, etr_params[-1,0,:], mtry_params[-1,0,:], h_wealth, p_wealth, m_wealth, tau_payroll, retire, 'TPI') # error3 = household.FOC_savings(r, w, b_s, b_splus1, 0., n, BQ, factor, T_H, foc_save_params) # foc_labor_params = (e[-1, j], sigma, g_y, theta, b_ellipse, upsilon, chi_n, ltilde, tau_bq, lambdas, J, S, # analytical_mtrs, etr_params[-1,0,:], mtrx_params[-1,0,:], h_wealth, p_wealth, m_wealth, tau_payroll, retire, 'TPI') # error4 = household.FOC_labor(r, w, b, b_splus1, n, BQ, factor, T_H, foc_labor_params) # print 'check1:', error2-error4 # print 'check2:', error1-error3 if n <= 0 or n >= 1: error2 += 1e12 if b_splus1 <= 0: error1 += 1e12 if cons <= 0: error1 += 1e12 return [error1] + [error2]
def Steady_state_TPI_solver(guesses, winit, rinit, BQinit, T_H_init, factor, j, s, t, params, theta, tau_bq, rho, lambdas, e, initial_b, chi_b, chi_n): ''' Parameters: guesses = distribution of capital and labor (various length list) winit = wage rate ((T+S)x1 array) rinit = rental rate ((T+S)x1 array) BQinit = aggregate bequests ((T+S)x1 array) T_H_init = lump sum tax over time ((T+S)x1 array) factor = scaling factor (scalar) j = which ability type is being solved for (scalar) s = which upper triangle loop is being solved for (scalar) t = which diagonal is being solved for (scalar) params = list of parameters (list) theta = replacement rates (Jx1 array) tau_bq = bequest tax rate (Jx1 array) rho = mortalit rate (Sx1 array) lambdas = ability weights (Jx1 array) e = ability type (SxJ array) initial_b = capital stock distribution in period 0 (SxJ array) chi_b = chi^b_j (Jx1 array) chi_n = chi^n_s (Sx1 array) Output: Value of Euler error (various length list) ''' J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, \ a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params length = len(guesses) / 2 b_guess = np.array(guesses[:length]) n_guess = np.array(guesses[length:]) if length == S: b_s = np.array([0] + list(b_guess[:-1])) else: b_s = np.array([(initial_b[-(s + 3), j])] + list(b_guess[:-1])) b_splus1 = b_guess b_splus2 = np.array(list(b_guess[1:]) + [0]) w_s = winit[t:t + length] w_splus1 = winit[t + 1:t + length + 1] r_s = rinit[t:t + length] r_splus1 = rinit[t + 1:t + length + 1] n_s = n_guess n_extended = np.array(list(n_guess[1:]) + [0]) e_s = e[-length:, j] e_extended = np.array(list(e[-length + 1:, j]) + [0]) BQ_s = BQinit[t:t + length] BQ_splus1 = BQinit[t + 1:t + length + 1] T_H_s = T_H_init[t:t + length] T_H_splus1 = T_H_init[t + 1:t + length + 1] # Savings euler equations tax_s = tax.total_taxes(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[ j], factor, T_H_s, j, 'TPI', False, params, theta, tau_bq) tax_splus1 = tax.total_taxes(r_splus1, b_splus1, w_splus1, e_extended, n_extended, BQ_splus1, lambdas[ j], factor, T_H_splus1, j, 'TPI', True, params, theta, tau_bq) cons_s = household.get_cons(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[ j], b_splus1, params, tax_s) cons_splus1 = household.get_cons(r_splus1, b_splus1, w_splus1, e_extended, n_extended, BQ_splus1, lambdas[ j], b_splus2, params, tax_splus1) income_splus1 = (r_splus1 * b_splus1 + w_splus1 * e_extended * n_extended) * factor savings_ut = rho[-(length):] * np.exp(-sigma * g_y) * \ chi_b[-(length):, j] * b_splus1 ** (-sigma) deriv_savings = 1 + r_splus1 * (1 - tax.tau_income( r_splus1, b_splus1, w_splus1, e_extended, n_extended, factor, params) - tax.tau_income_deriv( r_splus1, b_splus1, w_splus1, e_extended, n_extended, factor, params) * income_splus1) - tax.tau_w_prime( b_splus1, params) * b_splus1 - tax.tau_wealth(b_splus1, params) error1 = household.marg_ut_cons(cons_s, params) - beta * (1 - rho[-(length):]) * np.exp(-sigma * g_y) * deriv_savings * household.marg_ut_cons( cons_splus1, params) - savings_ut # Labor leisure euler equations income_s = (r_s * b_s + w_s * e_s * n_s) * factor deriv_laborleisure = 1 - tau_payroll - tax.tau_income(r_s, b_s, w_s, e_s, n_s, factor, params) - tax.tau_income_deriv( r_s, b_s, w_s, e_s, n_s, factor, params) * income_s error2 = household.marg_ut_cons(cons_s, params) * w_s * e[-( length):, j] * deriv_laborleisure - household.marg_ut_labor(n_s, chi_n[-length:], params) # Check and punish constraint violations mask1 = n_guess < 0 error2[mask1] += 1e12 mask2 = n_guess > ltilde error2[mask2] += 1e12 mask3 = cons_s < 0 error2[mask3] += 1e12 mask4 = b_guess <= 0 error2[mask4] += 1e12 mask5 = cons_splus1 < 0 error2[mask5] += 1e12 return list(error1.flatten()) + list(error2.flatten())