featNo = chosenFeatures[j] file.write(str(j+1)+":") file.write(str(matrix[i][featNo])+" ") file.write("\n") return 0 result = loadPredict('predictions') [labelEval, searchID] = loadTest('test.dat') # print predict # print labels # print ids ourRank = [] results = hh.splitColumnsForEachID(searchID, result) labels = hh.splitColumnsForEachID(searchID, labelEval) for i in range(len(results)): rank = [] for j in range(len(results[i])): rank.append((results[i][j], labels[i][j])) rank = sorted(rank, key=itemgetter(0)) ourRank.append(rank) # for each in ourRank: # for eeach in each: # print eeach # print "\n"
time = (time.split())[0] month = int(time[5:7]) day = int(time[-11:-9]) dictMonth = {1:31,2:59,3:90,4:120,5:151,6:181,7:212,8:243,9:273,10:304,11:334,12:365} num_week = (dictMonth[month] + day+ int(booking[i]) ) if num_week>=365: num_week = num_week%365 num_week = num_week//7 if num_week > 51: num_week = num_week%51 allData[i][1] = num_week #24 normalizing distance dis = hh.replaceNullwithMedian(allData,25) dis = hh.getColumn(allData,25) dis = hh.splitColumnsForEachID(searchIDs, dis) for i in range(len(dis)): dis[i] = hh.normalizeOneZeroVec(dis[i]) normDis = [] for each in dis: normEach = [i for i in each] normDis += normEach allData = hh.setColumn(allData,normDis,25) #p27-50 - remove Nulls (24 features) toFillNull = [4,5,13,18,19,20,21,22,24] for i in toFillNull: allData = hh.replaceNullwithMedian(allData,i)