Example #1
0
def Euler_equation_solver(guesses, r, w, T_H, factor, j, params, chi_b, chi_n, tau_bq, rho, lambdas, weights, e):
    '''
    Finds the euler error for certain b and n, one ability type at a time.
    Inputs:
        guesses = guesses for b and n (2Sx1 list)
        r = rental rate (scalar)
        w = wage rate (scalar)
        T_H = lump sum tax (scalar)
        factor = scaling factor to dollars (scalar)
        j = which ability group is being solved for (scalar)
        params = list of parameters (list)
        chi_b = chi^b_j (scalar)
        chi_n = chi^n_s (Sx1 array)
        tau_bq = bequest tax rate (scalar)
        rho = mortality rates (Sx1 array)
        lambdas = ability weights (scalar)
        weights = population weights (Sx1 array)
        e = ability levels (Sx1 array)
    Outputs:
        2Sx1 list of euler errors
    '''
    J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params
    b_guess = np.array(guesses[:S])
    n_guess = np.array(guesses[S:])
    b_s = np.array([0] + list(b_guess[:-1]))
    b_splus1 = b_guess
    b_splus2 = np.array(list(b_guess[1:]) + [0])

    BQ = house.get_BQ(r, b_splus1, weights, lambdas[j], rho, g_n_ss)
    theta = tax.replacement_rate_vals(n_guess, w, factor, e[:,j], J, weights, lambdas[j])

    error1 = house.euler_savings_func(w, r, e[:, j], n_guess, b_s, b_splus1, b_splus2, BQ, factor, T_H, chi_b[j], params, theta, tau_bq[j], rho, lambdas[j])
    error2 = house.euler_labor_leisure_func(w, r, e[:, j], n_guess, b_s, b_splus1, BQ, factor, T_H, chi_n, params, theta, tau_bq[j], lambdas[j])
    # Put in constraints for consumption and savings.  According to the euler equations, they can be negative.  When
    # Chi_b is large, they will be.  This prevents that from happening.
    # I'm not sure if the constraints are needed for labor.  But we might as well put them in for now.
    mask1 = n_guess < 0
    mask2 = n_guess > ltilde
    mask3 = b_guess <= 0
    error2[mask1] += 1e14
    error2[mask2] += 1e14
    error1[mask3] += 1e14
    tax1 = tax.total_taxes(r, b_s, w, e[:, j], n_guess, BQ, lambdas[j], factor, T_H, None, 'SS', False, params, theta, tau_bq[j])
    cons = house.get_cons(r, b_s, w, e[:, j], n_guess, BQ, lambdas[j], b_splus1, params, tax1)
    mask4 = cons < 0
    error1[mask4] += 1e14
    return list(error1.flatten()) + list(error2.flatten())
Example #2
0
if get_baseline:
    initial_b = bssmat_splus1
    initial_n = nssmat
else:
    initial_b = bssmat_init
    initial_n = nssmat_init

# Get an initial distribution of capital with the initial population distribution
K0 = house.get_K(initial_b, omega_stationary[0].reshape(S, 1), lambdas, g_n_vector[0])
b_sinit = np.array(list(np.zeros(J).reshape(1, J)) + list(initial_b[:-1]))
b_splus1init = initial_b
L0 = firm.get_L(e, initial_n, omega_stationary[0].reshape(S, 1), lambdas)
Y0 = firm.get_Y(K0, L0, parameters)
w0 = firm.get_w(Y0, L0, parameters)
r0 = firm.get_r(Y0, K0, parameters)
BQ0 = house.get_BQ(r0, initial_b, omega_stationary[0].reshape(S, 1), lambdas, rho.reshape(S, 1), g_n_vector[0])
T_H_0 = tax.get_lump_sum(r0, b_sinit, w0, e, initial_n, BQ0, lambdas, factor_ss, omega_stationary[0].reshape(S, 1), 'SS', parameters, theta, tau_bq)
tax0 = tax.total_taxes(r0, b_sinit, w0, e, initial_n, BQ0, lambdas, factor_ss, T_H_0, None, 'SS', False, parameters, theta, tau_bq)
c0 = house.get_cons(r0, b_sinit, w0, e, initial_n, BQ0.reshape(1, J), lambdas.reshape(1, J), b_splus1init, parameters, tax0)

'''
------------------------------------------------------------------------
Solve for equilibrium transition path by TPI
------------------------------------------------------------------------
'''


def SS_TPI_firstdoughnutring(guesses, winit, rinit, BQinit, T_H_init, j):
    '''
    Solves the first entries of the upper triangle of the twist doughnut.  This is
    separate from the main TPI function because the the values of b and n are scalars,
Example #3
0
bssmat = solutions[0:(S-1) * J].reshape(S-1, J)
bq = solutions[(S-1)*J:S*J]
bssmat_s = np.array(list(np.zeros(J).reshape(1, J)) + list(bssmat))
bssmat_splus1 = np.array(list(bssmat) + list(bq.reshape(1, J)))
nssmat = solutions[S * J:2*S*J].reshape(S, J)
wss, rss, factor_ss, T_Hss = solutions[2*S*J:]

Kss = house.get_K(bssmat_splus1, omega_SS.reshape(S, 1), lambdas, g_n_ss)
Lss = firm.get_L(e, nssmat, omega_SS.reshape(S, 1), lambdas)
Yss = firm.get_Y(Kss, Lss, parameters)

Iss = firm.get_I(Kss, Kss, delta, g_y, g_n_ss)

theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, e, J, omega_SS.reshape(S, 1), lambdas)
BQss = house.get_BQ(rss, bssmat_splus1, omega_SS.reshape(S, 1), lambdas, rho.reshape(S, 1), g_n_ss)
b_s = np.array(list(np.zeros(J).reshape((1, J))) + list(bssmat))
taxss = tax.total_taxes(rss, b_s, wss, e, nssmat, BQss, lambdas, factor_ss, T_Hss, None, 'SS', False, parameters, theta, tau_bq)
cssmat = house.get_cons(rss, b_s, wss, e, nssmat, BQss.reshape(1, J), lambdas.reshape(1, J), bssmat_splus1, parameters, taxss)

Css = house.get_C(cssmat, omega_SS.reshape(S, 1), lambdas)

resource_constraint = Yss - (Css + Iss)

print 'Resource Constraint Difference:', resource_constraint

house.constraint_checker_SS(bssmat, nssmat, cssmat, parameters)

b_s = np.array(list(np.zeros(J).reshape((1, J))) + list(bssmat))
b_splus1 = bssmat_splus1
b_splus2 = np.array(list(bssmat_splus1[1:]) + list(np.zeros(J).reshape((1, J))))
Example #4
0
def SS_solver(b_guess_init, n_guess_init, wguess, rguess, T_Hguess, factorguess, chi_n, chi_b, params, iterative_params, tau_bq, rho, lambdas, weights, e):
    '''
    Solves for the steady state distribution of capital, labor, as well as w, r, T_H and the scaling factor, using an iterative method similar to TPI.
    Inputs:
        b_guess_init = guesses for b (SxJ array)
        n_guess_init = guesses for n (SxJ array)
        wguess = guess for wage rate (scalar)
        rguess = guess for rental rate (scalar)
        T_Hguess = guess for lump sum tax (scalar)
        factorguess = guess for scaling factor to dollars (scalar)
        chi_n = chi^n_s (Sx1 array)
        chi_b = chi^b_j (Jx1 array)
        params = list of parameters (list)
        iterative_params = list of parameters that determine the convergence of the while loop (list)
        tau_bq = bequest tax rate (Jx1 array)
        rho = mortality rates (Sx1 array)
        lambdas = ability weights (Jx1 array)
        weights = population weights (Sx1 array)
        e = ability levels (SxJ array)
    Outputs:
        solutions = steady state values of b, n, w, r, factor, T_H ((2*S*J+4)x1 array)
    '''
    J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params
    maxiter, mindist_SS = iterative_params
    # Rename the inputs
    w = wguess
    r = rguess
    T_H = T_Hguess
    factor = factorguess
    bssmat = b_guess_init
    nssmat = n_guess_init

    dist = 10
    iteration = 0
    dist_vec = np.zeros(maxiter)
    
    while (dist > mindist_SS) and (iteration < maxiter):
        # Solve for the steady state levels of b and n, given w, r, T_H and factor
        for j in xrange(J):
            # Solve the euler equations
            guesses = np.append(bssmat[:, j], nssmat[:, j])
            solutions = opt.fsolve(Euler_equation_solver, guesses * .9, args=(r, w, T_H, factor, j, params, chi_b, chi_n, tau_bq, rho, lambdas, weights, e), xtol=1e-13)
            bssmat[:,j] = solutions[:S]
            nssmat[:,j] = solutions[S:]
            # print np.array(Euler_equation_solver(np.append(bssmat[:, j], nssmat[:, j]), r, w, T_H, factor, j, params, chi_b, chi_n, theta, tau_bq, rho, lambdas, e)).max()

        K = house.get_K(bssmat, weights.reshape(S, 1), lambdas.reshape(1, J), g_n_ss)
        L = firm.get_L(e, nssmat, weights.reshape(S, 1), lambdas.reshape(1, J))
        Y = firm.get_Y(K, L, params)
        new_r = firm.get_r(Y, K, params)
        new_w = firm.get_w(Y, L, params)
        b_s = np.array(list(np.zeros(J).reshape(1, J)) + list(bssmat[:-1, :]))
        average_income_model = ((new_r * b_s + new_w * e * nssmat) * weights.reshape(S, 1) * lambdas.reshape(1, J)).sum()
        new_factor = mean_income_data / average_income_model 
        new_BQ = house.get_BQ(new_r, bssmat, weights.reshape(S, 1), lambdas.reshape(1, J), rho.reshape(S, 1), g_n_ss)
        theta = tax.replacement_rate_vals(nssmat, new_w, new_factor, e, J, weights.reshape(S, 1), lambdas)
        new_T_H = tax.get_lump_sum(new_r, b_s, new_w, e, nssmat, new_BQ, lambdas.reshape(1, J), factor, weights.reshape(S, 1), 'SS', params, theta, tau_bq)

        r = misc_funcs.convex_combo(new_r, r, params)
        w = misc_funcs.convex_combo(new_w, w, params)
        factor = misc_funcs.convex_combo(new_factor, factor, params)
        T_H = misc_funcs.convex_combo(new_T_H, T_H, params)
        if T_H != 0:
            dist = np.array([misc_funcs.perc_dif_func(new_r, r)] + [misc_funcs.perc_dif_func(new_w, w)] + [misc_funcs.perc_dif_func(new_T_H, T_H)] + [misc_funcs.perc_dif_func(new_factor, factor)]).max()
        else:
            # If T_H is zero (if there are no taxes), a percent difference will throw NaN's, so we use an absoluate difference
            dist = np.array([misc_funcs.perc_dif_func(new_r, r)] + [misc_funcs.perc_dif_func(new_w, w)] + [abs(new_T_H - T_H)] + [misc_funcs.perc_dif_func(new_factor, factor)]).max()
        dist_vec[iteration] = dist
        # Similar to TPI: if the distance between iterations increases, then decrease the value of nu to prevent cycling
        if iteration > 10:
            if dist_vec[iteration] - dist_vec[iteration-1] > 0:
                nu /= 2.0
                print 'New value of nu:', nu
        iteration += 1
        print "Iteration: %02d" % iteration, " Distance: ", dist

    eul_errors = np.ones(J)
    b_mat = np.zeros((S, J))
    n_mat = np.zeros((S, J))
    # Given the final w, r, T_H and factor, solve for the SS b and n (if you don't do a final fsolve, there will be a slight mismatch, with high euler errors)
    for j in xrange(J):
        solutions1 = opt.fsolve(Euler_equation_solver, np.append(bssmat[:, j], nssmat[:, j])* .9, args=(r, w, T_H, factor, j, params, chi_b, chi_n, tau_bq, rho, lambdas, weights, e), xtol=1e-13)
        eul_errors[j] = np.array(Euler_equation_solver(solutions1, r, w, T_H, factor, j, params, chi_b, chi_n, tau_bq, rho, lambdas, weights, e)).max()
        b_mat[:, j] = solutions1[:S]
        n_mat[:, j] = solutions1[S:]
    print 'SS fsolve euler error:', eul_errors.max()
    solutions = np.append(b_mat.flatten(), n_mat.flatten())
    other_vars = np.array([w, r, factor, T_H])
    solutions = np.append(solutions, other_vars)
    return solutions
Example #5
0
    initial_b = bssmat_splus1
    initial_n = nssmat
else:
    initial_b = bssmat_init
    initial_n = nssmat_init

# Get an initial distribution of capital with the initial population distribution
K0 = house.get_K(initial_b, omega_stationary[0].reshape(S, 1), lambdas,
                 g_n_vector[0])
b_sinit = np.array(list(np.zeros(J).reshape(1, J)) + list(initial_b[:-1]))
b_splus1init = initial_b
L0 = firm.get_L(e, initial_n, omega_stationary[0].reshape(S, 1), lambdas)
Y0 = firm.get_Y(K0, L0, parameters)
w0 = firm.get_w(Y0, L0, parameters)
r0 = firm.get_r(Y0, K0, parameters)
BQ0 = house.get_BQ(r0, initial_b, omega_stationary[0].reshape(S, 1), lambdas,
                   rho.reshape(S, 1), g_n_vector[0])
T_H_0 = tax.get_lump_sum(r0, b_sinit, w0, e, initial_n, BQ0, lambdas,
                         factor_ss, omega_stationary[0].reshape(S, 1), 'SS',
                         parameters, theta, tau_bq)
tax0 = tax.total_taxes(r0, b_sinit, w0, e, initial_n, BQ0, lambdas, factor_ss,
                       T_H_0, None, 'SS', False, parameters, theta, tau_bq)
c0 = house.get_cons(r0, b_sinit, w0, e, initial_n, BQ0.reshape(1, J),
                    lambdas.reshape(1, J), b_splus1init, parameters, tax0)
'''
------------------------------------------------------------------------
Solve for equilibrium transition path by TPI
------------------------------------------------------------------------
'''


def SS_TPI_firstdoughnutring(guesses, winit, rinit, BQinit, T_H_init, j):