def bench_classifiers(name): classifiers = [ ada_boost(name + '.ada_boost'), # boo gaussian_nb(name + '.gaussian_nb'), # eey knn(name + '.knn', sparse_data=True), # eey linear_discriminant_analysis(name + '.linear_discriminant_analysis', n_components=1), # eey random_forest(name + '.random_forest'), # boo sgd(name + '.sgd') # eey ] if xgboost: classifiers.append(xgboost_classification(name + '.xgboost')) # boo return hp.choice('%s' % name, classifiers)
Y_train_mini.sum(axis=0), Y_val_mini.sum(axis=0), Y_test_mini.sum(axis=0) ]))) print(seed_val) print("\ndata is loaded - next step > model testing\n") n_job = 6 select_classes = [0, 1, 2, 3, 4, 5] val_dist = X_val_mini.shape[0] / X_train_mini.shape[0] name = 'my_est_oVa' tic_mod_all = time.time() select_alg = [ ada_boost(name + '.ada_boost'), gaussian_nb(name + '.gaussian_nb'), knn(name + '.knn', sparse_data=True), linear_discriminant_analysis(name + '.linear_discriminant_analysis', n_components=1), random_forest(name + '.random_forest'), sgd(name + '.sgd'), xgboost_classification(name + '.xgboost') ] # fitting models estim_one_vs_rest = dict() # scoring models algo_scoring = dict() save_score_path = r'C:/Users/anden/PycharmProjects/NovelEEG/results'
X_val_mini.shape, Y_val_mini.shape, X_test_mini.shape, Y_test_mini.shape, X_model_mini.shape, Y_model_mini.shape, np.array([Y_train_mini.sum(axis=0), Y_val_mini.sum(axis=0), Y_test_mini.sum(axis=0)]))) print("\ndata is loaded - next step > model testing\n") print('model:%i\nrun_nr:%s_subsample_%.2f' % (args.index, args.reruns, args.subsample)) n_job = 5 select_classes = [0, 1, 2, 3, 4, 5] val_dist = X_val_mini.shape[0] / X_train_mini.shape[0] name = 'my_est_oVa' tic_mod_all = time.time() select_alg = [ada_boost(name + '.ada_boost'), gaussian_nb(name + '.gaussian_nb'), knn(name + '.knn', sparse_data=True), linear_discriminant_analysis(name + '.linear_discriminant_analysis', n_components=1), random_forest(name + '.random_forest'), sgd(name + '.sgd'), xgboost_classification(name + '.xgboost')] # fitting models and score initialization estim_one_vs_rest = dict() algo_scoring = dict() lars_table = {"model names": [], "wF1": [], "acc": [], "balanced acc": [], "sens": [], "sens-eyem": [], "sens-chew": [], "sens-shiv": [], "sens-elpp": [], "sens-musc": [], "sens-null": [], "acc-eyem": [], "acc-chew": [], "acc-shiv": [], "acc-elpp": [], "acc-musc": [], "acc-null": []}