def nnet1_template(dataset_name='skdata.larochelle_etal_2007.Rectangles', sup_min_epochs=30, # THESE ARE KINDA SMALL FOR SERIOUS RESULTS sup_max_epochs=400): template = rSON2( 'preprocessing', one_of( rSON2( 'kind', 'raw'), rSON2( 'kind', 'zca', 'energy', uniform(0.5, 1.0))), 'dataset_name', dataset_name, 'sup_max_epochs', sup_max_epochs, 'sup_min_epochs', sup_min_epochs, 'iseed', one_of(5, 6, 7, 8), 'batchsize', one_of(20, 100), 'lr', lognormal(numpy.log(.01), 3), 'lr_anneal_start', geom(100, 10000), 'l2_penalty', one_of(0, lognormal(numpy.log(1.0e-6), 3)), 'next_layer', rSON2( 'n_hid', geom(2**4, 2**10, round=16), 'W_init_dist', one_of('uniform', 'normal'), 'W_init_algo', one_of('old', 'Xavier'), 'W_init_algo_old_multiplier', uniform(.2, 2), 'cd_epochs', 0, 'cd_batchsize', 100, 'cd_sample_v0s', one_of(False, True), 'cd_lr', lognormal(numpy.log(.01), 3), 'cd_lr_anneal_start', geom(10, 10000), 'next_layer', None)) return template
def dbn_template(dataset_name='skdata.larochelle_etal_2007.Rectangles', sup_min_epochs=300, sup_max_epochs=4000): template = rSON2( 'preprocessing', one_of(rSON2('kind', 'raw'), rSON2('kind', 'zca', 'energy', uniform(0.5, 1.0))), 'dataset_name', dataset_name, 'sup_max_epochs', sup_max_epochs, 'sup_min_epochs', sup_min_epochs, 'iseed', one_of(5, 6, 7, 8), 'batchsize', one_of(20, 100), 'lr', lognormal(numpy.log(.01), 3), 'lr_anneal_start', geom(100, 10000), 'l2_penalty', one_of(0, lognormal(numpy.log(1.0e-6), 2)), 'next_layer', one_of( None, rSON2( 'n_hid', geom(2**7, 2**12, round=16), 'W_init_dist', one_of('uniform', 'normal'), 'W_init_algo', one_of('old', 'Xavier'), 'W_init_algo_old_multiplier', lognormal(0.0, 1.0), 'cd_epochs', geom(1, 3000), 'cd_batchsize', 100, 'cd_sample_v0s', one_of(False, True), 'cd_lr', lognormal(numpy.log(.01), 2), 'cd_lr_anneal_start', geom(10, 10000), 'next_layer', one_of( None, rSON2( 'n_hid', geom(2**7, 2**12, round=16), 'W_init_dist', one_of('uniform', 'normal'), 'W_init_algo', one_of('old', 'Xavier'), 'W_init_algo_old_multiplier', lognormal(0.0, 1.0), 'cd_epochs', geom(1, 2000), 'cd_batchsize', 100, 'cd_sample_v0s', one_of(False, True), 'cd_lr', lognormal(numpy.log(.01), 2), 'cd_lr_anneal_start', geom(10, 10000), 'next_layer', one_of( None, rSON2( 'n_hid', geom(2**7, 2**12, round=16), 'W_init_dist', one_of('uniform', 'normal'), 'W_init_algo', one_of('old', 'Xavier'), 'W_init_algo_old_multiplier', lognormal(0., 1.), 'cd_epochs', geom(1, 1500), 'cd_batchsize', 100, 'cd_sample_v0s', one_of(False, True), 'cd_lr', lognormal(numpy.log(.01), 2), 'cd_lr_anneal_start', geom(10, 10000), 'next_layer', None, ))))))) return template
def __init__(self): Base.__init__(self, rSON2('x', lognormal(0, 2)))