Example #1
0
class HtmcoreDetector(AnomalyDetector):
  """
  This detector uses an HTM based anomaly detection technique.
  """

  def __init__(self, *args, **kwargs):

    super(HtmcoreDetector, self).__init__(*args, **kwargs)

    ## API for controlling settings of htm.core HTM detector:

    # Set this to False if you want to get results based on raw scores
    # without using AnomalyLikelihood. This will give worse results, but
    # useful for checking the efficacy of AnomalyLikelihood. You will need
    # to re-optimize the thresholds when running with this setting.
    self.useLikelihood      = True
    self.useSpatialAnomaly  = True
    self.verbose            = True

    # Set this to true if you want to use the optimization.
    # If true, it reads the parameters from ./params.json
    # If false, it reads the parameters from ./best_params.json
    self.use_optimization   = False

    ## internal members 
    # (listed here for easier understanding)
    # initialized in `initialize()`
    self.encTimestamp   = None
    self.encValue       = None
    self.sp             = None
    self.tm             = None
    self.anLike         = None
    # optional debug info
    self.enc_info       = None
    self.sp_info        = None
    self.tm_info        = None
    # internal helper variables:
    self.inputs_ = []
    self.iteration_ = 0


  def getAdditionalHeaders(self):
    """Returns a list of strings."""
    return ["raw_score"] #TODO optional: add "prediction"


  def handleRecord(self, inputData):
    """Returns a tuple (anomalyScore, rawScore).

    @param inputData is a dict {"timestamp" : Timestamp(), "value" : float}

    @return tuple (anomalyScore, <any other fields specified in `getAdditionalHeaders()`>, ...)
    """
    # Send it to Numenta detector and get back the results
    return self.modelRun(inputData["timestamp"], inputData["value"]) 



  def initialize(self):
    # toggle parameters here
    if self.use_optimization:
      parameters = get_params('params.json')
    else:
      parameters = parameters_numenta_comparable

    # setup spatial anomaly
    if self.useSpatialAnomaly:
      # Keep track of value range for spatial anomaly detection
      self.minVal = None
      self.maxVal = None

    ## setup Enc, SP, TM, Likelihood
    # Make the Encoders.  These will convert input data into binary representations.
    self.encTimestamp = DateEncoder(timeOfDay= parameters["enc"]["time"]["timeOfDay"],
                                    weekend  = parameters["enc"]["time"]["weekend"])

    scalarEncoderParams            = RDSE_Parameters()
    scalarEncoderParams.size       = parameters["enc"]["value"]["size"]
    scalarEncoderParams.sparsity   = parameters["enc"]["value"]["sparsity"]
    scalarEncoderParams.resolution = parameters["enc"]["value"]["resolution"]

    self.encValue = RDSE( scalarEncoderParams )
    encodingWidth = (self.encTimestamp.size + self.encValue.size)
    self.enc_info = Metrics( [encodingWidth], 999999999 )

    # Make the HTM.  SpatialPooler & TemporalMemory & associated tools.
    # SpatialPooler
    spParams = parameters["sp"]
    self.sp = SpatialPooler(
      inputDimensions            = (encodingWidth,),
      columnDimensions           = (spParams["columnCount"],),
      potentialPct               = spParams["potentialPct"],
      potentialRadius            = encodingWidth,
      globalInhibition           = True,
      localAreaDensity           = spParams["localAreaDensity"],
      synPermInactiveDec         = spParams["synPermInactiveDec"],
      synPermActiveInc           = spParams["synPermActiveInc"],
      synPermConnected           = spParams["synPermConnected"],
      boostStrength              = spParams["boostStrength"],
      wrapAround                 = True
    )
    self.sp_info = Metrics( self.sp.getColumnDimensions(), 999999999 )

    # TemporalMemory
    tmParams = parameters["tm"]
    self.tm = TemporalMemory(
      columnDimensions          = (spParams["columnCount"],),
      cellsPerColumn            = tmParams["cellsPerColumn"],
      activationThreshold       = tmParams["activationThreshold"],
      initialPermanence         = tmParams["initialPerm"],
      connectedPermanence       = spParams["synPermConnected"],
      minThreshold              = tmParams["minThreshold"],
      maxNewSynapseCount        = tmParams["newSynapseCount"],
      permanenceIncrement       = tmParams["permanenceInc"],
      permanenceDecrement       = tmParams["permanenceDec"],
      predictedSegmentDecrement = 0.0,
      maxSegmentsPerCell        = tmParams["maxSegmentsPerCell"],
      maxSynapsesPerSegment     = tmParams["maxSynapsesPerSegment"]
    )
    self.tm_info = Metrics( [self.tm.numberOfCells()], 999999999 )

    # setup likelihood, these settings are used in NAB
    if self.useLikelihood:
      anParams = parameters["anomaly"]["likelihood"]
      learningPeriod     = int(math.floor(self.probationaryPeriod / 2.0))
      self.anomalyLikelihood = AnomalyLikelihood(
                                 learningPeriod= learningPeriod,
                                 estimationSamples= self.probationaryPeriod - learningPeriod,
                                 reestimationPeriod= anParams["reestimationPeriod"])
    # Predictor
    # self.predictor = Predictor( steps=[1, 5], alpha=parameters["predictor"]['sdrc_alpha'] )
    # predictor_resolution = 1

    # initialize pandaBaker
    if PANDA_VIS_BAKE_DATA:
      self.BuildPandaSystem(self.sp, self.tm, parameters["enc"]["value"]["size"], self.encTimestamp.size)

  def modelRun(self, ts, val):
      """
         Run a single pass through HTM model

         @params ts - Timestamp
         @params val - float input value

         @return rawAnomalyScore computed for the `val` in this step
      """
      ## run data through our model pipeline: enc -> SP -> TM -> Anomaly
      self.inputs_.append( val )
      self.iteration_ += 1
      
      # 1. Encoding
      # Call the encoders to create bit representations for each value.  These are SDR objects.
      dateBits        = self.encTimestamp.encode(ts)
      valueBits       = self.encValue.encode(float(val))
      # Concatenate all these encodings into one large encoding for Spatial Pooling.
      encoding = SDR( self.encTimestamp.size + self.encValue.size ).concatenate([valueBits, dateBits])
      self.enc_info.addData( encoding )

      # 2. Spatial Pooler
      # Create an SDR to represent active columns, This will be populated by the
      # compute method below. It must have the same dimensions as the Spatial Pooler.
      activeColumns = SDR( self.sp.getColumnDimensions() )
      # Execute Spatial Pooling algorithm over input space.
      self.sp.compute(encoding, True, activeColumns)
      self.sp_info.addData( activeColumns )

      # 3. Temporal Memory
      # Execute Temporal Memory algorithm over active mini-columns.

      # to get predictive cells we need to call activateDendrites & activateCells separately
      if PANDA_VIS_BAKE_DATA:
        # activateDendrites calculates active segments
        self.tm.activateDendrites(learn=True)
        # predictive cells are calculated directly from active segments
        predictiveCells = self.tm.getPredictiveCells()
        # activates cells in columns by TM algorithm (winners, bursting...)
        self.tm.activateCells(activeColumns, learn=True)
      else:
        self.tm.compute(activeColumns, learn=True)

      self.tm_info.addData( self.tm.getActiveCells().flatten() )

      # 4.1 (optional) Predictor #TODO optional
      #TODO optional: also return an error metric on predictions (RMSE, R2,...)

      # 4.2 Anomaly 
      # handle spatial, contextual (raw, likelihood) anomalies
      # -Spatial
      spatialAnomaly = 0.0 #TODO optional: make this computed in SP (and later improve)
      if self.useSpatialAnomaly:
        # Update min/max values and check if there is a spatial anomaly
        if self.minVal != self.maxVal:
          tolerance = (self.maxVal - self.minVal) * SPATIAL_TOLERANCE
          maxExpected = self.maxVal + tolerance
          minExpected = self.minVal - tolerance
          if val > maxExpected or val < minExpected:
            spatialAnomaly = 1.0
        if self.maxVal is None or val > self.maxVal:
          self.maxVal = val
        if self.minVal is None or val < self.minVal:
          self.minVal = val

      # -temporal (raw)
      raw= self.tm.anomaly
      temporalAnomaly = raw

      if self.useLikelihood:
        # Compute log(anomaly likelihood)
        like = self.anomalyLikelihood.anomalyProbability(val, raw, ts)
        logScore = self.anomalyLikelihood.computeLogLikelihood(like)
        temporalAnomaly = logScore #TODO optional: TM to provide anomaly {none, raw, likelihood}, compare correctness with the py anomaly_likelihood

      anomalyScore = max(spatialAnomaly, temporalAnomaly) # this is the "main" anomaly, compared in NAB

      # 5. print stats
      if self.verbose and self.iteration_ % 1000 == 0:
          # print(self.enc_info)
          # print(self.sp_info)
          # print(self.tm_info)
          pass

      # 6. panda vis
      if PANDA_VIS_BAKE_DATA:
          # ------------------HTMpandaVis----------------------
          # see more about this structure at https://github.com/htm-community/HTMpandaVis/blob/master/pandaBaker/README.md
          # fill up values
          pandaBaker.inputs["Value"].stringValue = "value: {:.2f}".format(val)
          pandaBaker.inputs["Value"].bits = valueBits.sparse

          pandaBaker.inputs["TimeOfDay"].stringValue = str(ts)
          pandaBaker.inputs["TimeOfDay"].bits = dateBits.sparse

          pandaBaker.layers["Layer1"].activeColumns = activeColumns.sparse
          pandaBaker.layers["Layer1"].winnerCells = self.tm.getWinnerCells().sparse
          pandaBaker.layers["Layer1"].predictiveCells = predictiveCells.sparse
          pandaBaker.layers["Layer1"].activeCells = self.tm.getActiveCells().sparse

          # customizable datastreams to be show on the DASH PLOTS
          pandaBaker.dataStreams["rawAnomaly"].value = temporalAnomaly
          pandaBaker.dataStreams["value"].value = val
          pandaBaker.dataStreams["numberOfWinnerCells"].value = len(self.tm.getWinnerCells().sparse)
          pandaBaker.dataStreams["numberOfPredictiveCells"].value = len(predictiveCells.sparse)
          pandaBaker.dataStreams["valueInput_sparsity"].value = valueBits.getSparsity()
          pandaBaker.dataStreams["dateInput_sparsity"].value = dateBits.getSparsity()

          pandaBaker.dataStreams["Layer1_SP_overlap_metric"].value = self.sp_info.overlap.overlap
          pandaBaker.dataStreams["Layer1_TM_overlap_metric"].value = self.sp_info.overlap.overlap
          pandaBaker.dataStreams["Layer1_SP_activation_frequency"].value = self.sp_info.activationFrequency.mean()
          pandaBaker.dataStreams["Layer1_TM_activation_frequency"].value = self.tm_info.activationFrequency.mean()
          pandaBaker.dataStreams["Layer1_SP_entropy"].value = self.sp_info.activationFrequency.mean()
          pandaBaker.dataStreams["Layer1_TM_entropy"].value = self.tm_info.activationFrequency.mean()

          pandaBaker.StoreIteration(self.iteration_-1)
          print("ITERATION: " + str(self.iteration_-1))

          # ------------------HTMpandaVis----------------------

      return (anomalyScore, raw)

  # with this method, the structure for visualization is defined
  def BuildPandaSystem(self, sp, tm, consumptionBits_size, dateBits_size):

      # we have two inputs connected to proximal synapses of Layer1
      pandaBaker.inputs["Value"] = cInput(consumptionBits_size)
      pandaBaker.inputs["TimeOfDay"] = cInput(dateBits_size)

      pandaBaker.layers["Layer1"] = cLayer(sp, tm)  # Layer1 has Spatial Pooler & Temporal Memory
      pandaBaker.layers["Layer1"].proximalInputs = [
          "Value",
          "TimeOfDay",
      ]
      pandaBaker.layers["Layer1"].distalInputs = ["Layer1"]

      # data for dash plots
      streams = ["rawAnomaly", "value", "numberOfWinnerCells", "numberOfPredictiveCells",
                 "valueInput_sparsity", "dateInput_sparsity", "Layer1_SP_overlap_metric", "Layer1_TM_overlap_metric",
                 "Layer1_SP_activation_frequency", "Layer1_TM_activation_frequency", "Layer1_SP_entropy",
                 "Layer1_TM_entropy"
                 ]

      pandaBaker.dataStreams = dict((name, cDataStream()) for name in streams)  # create dicts for more comfortable code
      # could be also written like: pandaBaker.dataStreams["myStreamName"] = cDataStream()

      pandaBaker.PrepareDatabase()
Example #2
0
def main(parameters=default_parameters, argv=None, verbose=True):
    if verbose:
        import pprint
        print("Parameters:")
        pprint.pprint(parameters, indent=4)
        print("")

    # Read the input file.
    records = []
    with open(_INPUT_FILE_PATH, "r") as fin:
        reader = csv.reader(fin)
        headers = next(reader)
        next(reader)
        next(reader)
        for record in reader:
            records.append(record)

    # Make the Encoders.  These will convert input data into binary representations.
    dateEncoder = DateEncoder(timeOfDay=parameters["enc"]["time"]["timeOfDay"],
                              weekend=parameters["enc"]["time"]["weekend"])

    scalarEncoderParams = RDSE_Parameters()
    scalarEncoderParams.size = parameters["enc"]["value"]["size"]
    scalarEncoderParams.sparsity = parameters["enc"]["value"]["sparsity"]
    scalarEncoderParams.resolution = parameters["enc"]["value"]["resolution"]
    scalarEncoder = RDSE(scalarEncoderParams)
    encodingWidth = (dateEncoder.size + scalarEncoder.size)
    enc_info = Metrics([encodingWidth], 999999999)

    # Make the HTM.  SpatialPooler & TemporalMemory & associated tools.
    spParams = parameters["sp"]
    sp = SpatialPooler(inputDimensions=(encodingWidth, ),
                       columnDimensions=(spParams["columnCount"], ),
                       potentialPct=spParams["potentialPct"],
                       potentialRadius=encodingWidth,
                       globalInhibition=True,
                       localAreaDensity=spParams["localAreaDensity"],
                       synPermInactiveDec=spParams["synPermInactiveDec"],
                       synPermActiveInc=spParams["synPermActiveInc"],
                       synPermConnected=spParams["synPermConnected"],
                       boostStrength=spParams["boostStrength"],
                       wrapAround=True)
    sp_info = Metrics(sp.getColumnDimensions(), 999999999)

    tmParams = parameters["tm"]
    tm = TemporalMemory(
        columnDimensions=(spParams["columnCount"], ),
        cellsPerColumn=tmParams["cellsPerColumn"],
        activationThreshold=tmParams["activationThreshold"],
        initialPermanence=tmParams["initialPerm"],
        connectedPermanence=spParams["synPermConnected"],
        minThreshold=tmParams["minThreshold"],
        maxNewSynapseCount=tmParams["newSynapseCount"],
        permanenceIncrement=tmParams["permanenceInc"],
        permanenceDecrement=tmParams["permanenceDec"],
        predictedSegmentDecrement=0.0,
        maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
        maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"])
    tm_info = Metrics([tm.numberOfCells()], 999999999)

    # setup likelihood, these settings are used in NAB
    anParams = parameters["anomaly"]["likelihood"]
    probationaryPeriod = int(
        math.floor(float(anParams["probationaryPct"]) * len(records)))
    learningPeriod = int(math.floor(probationaryPeriod / 2.0))
    anomaly_history = AnomalyLikelihood(
        learningPeriod=learningPeriod,
        estimationSamples=probationaryPeriod - learningPeriod,
        reestimationPeriod=anParams["reestimationPeriod"])

    predictor = Predictor(steps=[1, 5],
                          alpha=parameters["predictor"]['sdrc_alpha'])
    predictor_resolution = 1

    # Iterate through every datum in the dataset, record the inputs & outputs.
    inputs = []
    anomaly = []
    anomalyProb = []
    predictions = {1: [], 5: []}
    for count, record in enumerate(records):

        # Convert date string into Python date object.
        dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M")
        # Convert data value string into float.
        consumption = float(record[1])
        inputs.append(consumption)

        # Call the encoders to create bit representations for each value.  These are SDR objects.
        dateBits = dateEncoder.encode(dateString)
        consumptionBits = scalarEncoder.encode(consumption)

        # Concatenate all these encodings into one large encoding for Spatial Pooling.
        encoding = SDR(encodingWidth).concatenate([consumptionBits, dateBits])
        enc_info.addData(encoding)

        # Create an SDR to represent active columns, This will be populated by the
        # compute method below. It must have the same dimensions as the Spatial Pooler.
        activeColumns = SDR(sp.getColumnDimensions())

        # Execute Spatial Pooling algorithm over input space.
        sp.compute(encoding, True, activeColumns)
        sp_info.addData(activeColumns)

        # Execute Temporal Memory algorithm over active mini-columns.
        # tm.compute(activeColumns, learn=True)
        tm.activateDendrites(True)
        predictiveCellsSDR = tm.getPredictiveCells()

        # ------------------HTMpandaVis----------------------

        # fill up values
        serverData.HTMObjects["HTM1"].inputs[
            "SL_Consumption"].stringValue = "consumption: {:.2f}".format(
                consumption)
        serverData.HTMObjects["HTM1"].inputs[
            "SL_Consumption"].bits = consumptionBits.sparse
        serverData.HTMObjects["HTM1"].inputs[
            "SL_Consumption"].count = consumptionBits.size

        serverData.HTMObjects["HTM1"].inputs[
            "SL_TimeOfDay"].stringValue = record[0]
        serverData.HTMObjects["HTM1"].inputs[
            "SL_TimeOfDay"].bits = dateBits.sparse
        serverData.HTMObjects["HTM1"].inputs[
            "SL_TimeOfDay"].count = dateBits.size

        serverData.HTMObjects["HTM1"].layers[
            "SensoryLayer"].activeColumns = activeColumns.sparse
        serverData.HTMObjects["HTM1"].layers[
            "SensoryLayer"].winnerCells = tm.getWinnerCells().sparse
        serverData.HTMObjects["HTM1"].layers[
            "SensoryLayer"].predictiveCells = predictiveCellsSDR.sparse

        pandaServer.serverData = serverData

        pandaServer.spatialPoolers["HTM1"] = sp
        pandaServer.temporalMemories["HTM1"] = tm
        pandaServer.NewStateDataReady()

        print("One step finished")
        while not pandaServer.runInLoop and not pandaServer.runOneStep:
            pass
        pandaServer.runOneStep = False
        print("Proceeding one step...")

        # ------------------HTMpandaVis----------------------

        tm.activateCells(activeColumns, True)

        tm_info.addData(tm.getActiveCells().flatten())

        activeCells = tm.getActiveCells()
        print("ACTIVE" + str(len(activeCells.sparse)))

        # Predict what will happen, and then train the predictor based on what just happened.
        pdf = predictor.infer(tm.getActiveCells())
        for n in (1, 5):
            if pdf[n]:
                predictions[n].append(np.argmax(pdf[n]) * predictor_resolution)
            else:
                predictions[n].append(float('nan'))

        rawAnomaly = Anomaly.calculateRawAnomaly(
            activeColumns, tm.cellsToColumns(predictiveCellsSDR))
        print("aaa" + str(rawAnomaly))
        anomalyLikelihood = anomaly_history.anomalyProbability(
            consumption, rawAnomaly
        )  # need to use different calculation as we are not calling sp.compute(..)
        anomaly.append(rawAnomaly)
        anomalyProb.append(anomalyLikelihood)

        predictor.learn(count, tm.getActiveCells(),
                        int(consumption / predictor_resolution))

    # Print information & statistics about the state of the HTM.
    print("Encoded Input", enc_info)
    print("")
    print("Spatial Pooler Mini-Columns", sp_info)
    print(str(sp))
    print("")
    print("Temporal Memory Cells", tm_info)
    print(str(tm))
    print("")

    # Shift the predictions so that they are aligned with the input they predict.
    for n_steps, pred_list in predictions.items():
        for x in range(n_steps):
            pred_list.insert(0, float('nan'))
            pred_list.pop()

    # Calculate the predictive accuracy, Root-Mean-Squared
    accuracy = {1: 0, 5: 0}
    accuracy_samples = {1: 0, 5: 0}

    for idx, inp in enumerate(inputs):
        for n in predictions:  # For each [N]umber of time steps ahead which was predicted.
            val = predictions[n][idx]
            if not math.isnan(val):
                accuracy[n] += (inp - val)**2
                accuracy_samples[n] += 1
    for n in sorted(predictions):
        accuracy[n] = (accuracy[n] / accuracy_samples[n])**.5
        print("Predictive Error (RMS)", n, "steps ahead:", accuracy[n])

    # Show info about the anomaly (mean & std)
    print("Anomaly Mean", np.mean(anomaly))
    print("Anomaly Std ", np.std(anomaly))

    # Plot the Predictions and Anomalies.
    if verbose:
        try:
            import matplotlib.pyplot as plt
        except:
            print(
                "WARNING: failed to import matplotlib, plots cannot be shown.")
            return -accuracy[5]

        plt.subplot(2, 1, 1)
        plt.title("Predictions")
        plt.xlabel("Time")
        plt.ylabel("Power Consumption")
        plt.plot(
            np.arange(len(inputs)),
            inputs,
            'red',
            np.arange(len(inputs)),
            predictions[1],
            'blue',
            np.arange(len(inputs)),
            predictions[5],
            'green',
        )
        plt.legend(labels=('Input', '1 Step Prediction, Shifted 1 step',
                           '5 Step Prediction, Shifted 5 steps'))

        plt.subplot(2, 1, 2)
        plt.title("Anomaly Score")
        plt.xlabel("Time")
        plt.ylabel("Power Consumption")
        inputs = np.array(inputs) / max(inputs)
        plt.plot(
            np.arange(len(inputs)),
            inputs,
            'red',
            np.arange(len(inputs)),
            anomaly,
            'blue',
        )
        plt.legend(labels=('Input', 'Anomaly Score'))
        plt.show()

    return -accuracy[5]