def index(self): h = HTML() h.h1("Hello world") h.h2("And") h.h3("Bye") indexString= str(h) return indexString
def buildFlotTitle(category, title, timelineStats, uid): """ Builds markup to render title for txn visualizations :param category: Category of transactions visualized by this flot :param title: Text title for this visualization :param timelineStats: Timeline stats with delta series to be plotted :param uid: Unique identifier to generate css selector id """ constituentNames = [ '{} -> {}'.format(deltaSeries.beginProbeName, deltaSeries.endProbeName) for deltaSeries in timelineStats.getTscDeltaSeriesCollection() ] title = '{} {} charts {}'.format( category, title, ' for constituent - ' if constituentNames else '') element = HTML().div(klass=TIME_POINT_STATS_TITLE) element.h3(title, style='display: inline') if constituentNames: elementId = '{}ConstituentSelector'.format(uid) constituentSelector = element.select(id=elementId, klass=SELECTOR) for i, constituentName in enumerate(constituentNames): if i == len(constituentNames) - 1: constituentSelector.option(constituentName, selected='selected') else: constituentSelector.option(constituentName) return element
def buildDiffTitle(lhs, rhs): """ Builds a title for the transaction diff table """ from xpedite.report.markup import TIME_POINT_STATS_TITLE title = 'Transaction diff\ntxn #{} vs txn #{}'.format(lhs, rhs) element = HTML().div(klass=TIME_POINT_STATS_TITLE) element.h3(title) return element
def html(self, n=None): html = HTML() if n: html.h3('Node #' + str(n)) if self.host: html.b(self.host) html.b('(' + self.ip + ')') else: html.b(self.ip) p = html.p('') if self.city: p += self.city + ', ' if self.regionName: p += self.regionName + ', ' elif self.region: p += self.region + ', ' if self.country: p += self.country html.p html.a(WHOIS_URL + self.ip) return html
def buildReport(self, app, resultOrder, classifier, events, probes, txnFilter, benchmarkPaths): """Builds a html report from contents of a profile info module""" from xpedite.report.codeFormatter import CodeFormatter highlightWrapBegin = '<div class="wy-nav-content">' highlightWrapEnd = '</div>' description = """ <div>This report provides an overview of profile info parameters used in recording this profile.</div> <div>The report below comprises, the list of probes, performance counters, classifiers, and other attributes that control transaction generation.</div> """ report = HTML() report += description appInfoList = [ 'App Name = {}'.format(app.name), 'App Host = {}'.format(app.ip), 'App Info = {}'.format(app.appInfoPath), 'xpedite Run = {}'.format(app.runId), ] if resultOrder: appInfoList.append('Result Order = {}'.format(resultOrder)) report += formatList(appInfoList) report.h3('Probes') report += self.buildProbeTable(probes) if benchmarkPaths: report.h3('Benchmarks') report += formatList(benchmarkPaths) if events: report.h3('Performance Counters') report += self.buildPmcTable(events) if txnFilter: report.h3('Transaction Filter') report += CodeFormatter().format(txnFilter, 'highlight', highlightWrapBegin, highlightWrapEnd) if classifier: report.h3('Transaction Classifier') report += CodeFormatter().format(classifier, 'highlight', highlightWrapBegin, highlightWrapEnd) return report
def buildStatsTitle(category, benchmarkNames, transactionCount): """ Builds title markup for the stats table :param category: Category of transactions in this profile :param transactionCount: Number of transactions :param benchmarkNames: Names of given benchmarks """ title = '{} latency statistics ({} transactions) {}'.format( category, transactionCount, ' vs benchmark - ' if benchmarkNames else '') element = HTML().div(klass=TIME_POINT_STATS_TITLE) element.h3(title, style='display: inline') if benchmarkNames: bechmarkSelector = element.select( onchange='onSelectBenchmark(this)', klass=SELECTOR) for benchmarkName in benchmarkNames: bechmarkSelector.option(benchmarkName) return element
fp_samples.append(fp_new) tn_samples.append(tn_new) fn_samples.append(fn_new) return (tp_samples, fp_samples, tn_samples, fn_samples) th_list = read_th_nums(th_list) feature_importances = read_feature_importance(num_of_iters, feature_importances) feature_names = read_feature_names(feature_names) tp_samples, fp_samples, tn_samples, fn_samples = read_samples(num_of_iters, tp_samples, fp_samples, tn_samples, fn_samples, th_list) recal, precision, f1_score = read_stats(num_of_iters, recal, precision, f1_score) h.h1('While training on the problems 0-200', color = ('rgb(205, 12, 24)')) for i in range(0, num_of_iters, 2): h.h2('considering iteration number ' + str(i)) h.h3("Feature importances are:") table_data = [] table_line = [] table_line.append("feature_name") table_line.append("importance") table_data.append(table_line) h.p("feature_name \t\t\t importance") for j in range(0, len(feature_names)): table_line = [] table_line.append(feature_names[j]) table_line.append(feature_importances[i][j]) table_data.append(table_line) h.p(feature_names[j] + '\t\t\t ' + feature_importances[i][j]) h.h3("TP samples are") for k in range(0, len(th_list)):