def main(): Pentose_target_compounds = ['D-Xylulose-5P', 'D-Ribulose-5P', 'D-Ribose-5P'] PP_compounds = \ ['D-Xylulose-5P',\ 'D-Ribulose-5P',\ 'D-Ribose-5P',\ 'D-Erythrose-4P',\ 'D-Sedoheptulose-7P',\ 'D-Fructose-6P',\ 'D-Glyceraldehyde-3P'] Glycolysis_compounds = \ ['Dihydroxyacetone-3P',\ 'D-Glyceraldehyde-3P',\ 'Bisphosphoglycerate',\ '3-Phosphoglycerate',\ '2-Phosphoglycerate',\ 'Phosphoenolpyruvate',\ 'Pyruvate'] TCA_compounds = \ ['Oxaloacetate',\ 'Citrate',\ 'cis-Aconitate',\ 'D-Isocitrate',\ '2-Ketoglutarate',\ #succinyl-CoA\ 'Succinate',\ 'Fumarate',\ 'Malate',\ ] Biosynthese_compounds = PP_compounds + Glycolysis_compounds + TCA_compounds pathway_list = [] # fast test pathway_list.append(("TEST", ['2-Phosphoglycerate'], ['Bisphosphoglycerate'], None)) # Optimality Modules: pathway_list.append(("Glucose to Fructose", ['D-glucose-6P'], ['D-fructose-6P'], None)) pathway_list.append(("Fructose to Glucose", ['D-fructose-6P'], ['D-glucose-6P'], None)) pathway_list.append(("oxaloacetate+acetyl-CoA to citrate", ['oxaloacetate + acetyl-CoA'], ['citrate'], None)) pathway_list.append(("cis-aconitate to succinate", ['cis-aconitate'], ['succinate'], None)) pathway_list.append(("D-xylose to D-xylulose-5P", ['D-Xylose'], ['D-Xylulose-5P'], None)) pathway_list.append(("D-arabitol to D-xylulose-5P", ['D-Arabitol'], ['D-Xylulose-5P'], None)) pathway_list.append(("L-arabinose to D-xylulose-5P", ['L-Arabinose'], ['D-Xylulose-5P'], None)) pathway_list.append(("L-xylulose to D-xylulose-5P", ['L-Xylulose'], ['D-Xylulose-5P'], None)) pathway_list.append(("ribitol to D-xylulose-5P", ['Ribitol'], ['D-Xylulose-5P'], None)) pathway_list.append(("D-ribose to D-xylulose-5P", ['D-Ribose'], ['D-Xylulose-5P'], None)) pathway_list.append(("Oxaloacetate to 2-Ketoglutarate", ['Oxaloacetate'], ['2-Ketoglutarate'], None)) pathway_list.append(("Citrate to 2-Ketoglutarate", ['Citrate'], ['2-Ketoglutarate'], None)) pathway_list.append(("Pentose Phosphate", ['D-Xylulose-5P + D-Xylulose-5P + D-Ribose-5P'], ['D-Fructose-6P + D-Fructose-6P + D-Glyceraldehyde-3P'], None)) #pathway_list.append(("Pentose Phosphate", ['D-Xylulose-5P + D-Ribose-5P'], ['D-Glyceraldehyde-3P + D-Sedoheptulose-7P'], None)) pathway_list.append(("D-glucose to D-ribulose-5P", ['D-Glucose'], ['D-Ribulose-5P'], None)) pathway_list.append(("D-glucose to D-fructose-16P", ['D-Glucose'], ['D-Fructose-16P'], None)) pathway_list.append(("D-fructose-6P to GAP+DHAP", ['D-Fructose-6P'], ['D-Glyceraldehyde-3P + Dihydroxyacetone-3P'], None)) pathway_list.append(("GAP to 3-PG", ['D-Glyceraldehyde-3P'], ['3-Phosphoglycerate'], None)) pathway_list.append(("GAP to 2-PG", ['D-Glyceraldehyde-3P'], ['2-Phosphoglycerate'], None)) pathway_list.append(("BPG to 3-PG", ['Bisphosphoglycerate'], ['3-Phosphoglycerate'], None)) pathway_list.append(("BPG to 2-PG", ['Bisphosphoglycerate'], ['2-Phosphoglycerate'], None)) pathway_list.append(("BPG to PEP", ['Bisphosphoglycerate'], ['Phosphoenolpyruvate'], None)) pathway_list.append(("3-PG to PYR", ['3-Phosphoglycerate'], ['Pyruvate'], None)) # Biosynthesis pathway_list.append(("3-PG to L-Serine", ['3-Phosphoglycerate'], ['L-Serine'], None)) pathway_list.append(("L-Serine to Glycine", ['L-Serine'], ['Glycine'], None)) pathway_list.append(("Pyruvate to L-Alanine", ['Pyruvate'], ['L-Alanine'], None)) pathway_list.append(("Synthesis of L-Serine", Biosynthese_compounds, ['L-Serine'], None)) pathway_list.append(("Synthesis of L-Alanine", Biosynthese_compounds, ['L-Alanine'], None)) pathway_list.append(("Synthesis of Glycine", Biosynthese_compounds, ['Glycine'], None)) pathway_list.append(("Synthesis of L-Aspartate", Biosynthese_compounds, ['L-Aspartate'], None)) pathway_list.append(("Synthesis of L-Glutamate", Biosynthese_compounds, ['L-Glutamate'], None)) # Pentose utilization pathway_list.append(("L-Arabinose to Pentose Phosphate", ['L-Arabinose'], Pentose_target_compounds, None)) pathway_list.append(("D-Xylose to Pentose Phosphate", ['D-Xylose'], Pentose_target_compounds, None)) pathway_list.append(("D-Ribose to Pentose Phosphate", ['D-Ribose'], Pentose_target_compounds, None)) pathway_list.append(("Ribitol to Pentose Phosphate", ['Ribitol'], Pentose_target_compounds, None)) pathway_list.append(("D-Arabitol to Pentose Phosphate", ['D-Arabitol'], Pentose_target_compounds, None)) # Glycolysis pathway_list.append(("GAP to PYR", ['D-Glyceraldehyde-3P'], ['Pyruvate'], 'PP')) pathway_list.append(("GAP to DHAP", ['D-Glyceraldehyde-3P'], ['Dihydroxyacetone-3P'], 'PP')) pathway_list.append(("GAP to PEP", ['D-Glyceraldehyde-3P + H2O'], ['Phosphoenolpyruvate + H2O'], 'PP')) pathway_list.append(("GAP to 2-PG", ['D-Glyceraldehyde-3P'], ['2-Phosphoglycerate'], 'PP')) pathway_list.append(("GLC to GAP", ['D-Glucose'], ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP')) pathway_list.append(("GLC to PYR", ['Glucose'], ['Pyruvate + Pyruvate'], 'PP')) pathway_list.append(("GLC-36P to GAP", ['D-Glucose-36P'], ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP')) pathway_list.append(("GLC-6P to GAP", ['D-Glucose-6P'], ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP')) pathway_list.append(("GLC-6P to BPG", ['D-Glucose-6P'], ['Bisphosphoglycerate + Bisphosphoglycerate'], 'PP')) pathway_list.append(("GLC-6P to 3-PG", ['D-Glucose-6P'], ['3-Phosphoglycerate + 3-Phosphoglycerate'], 'PP')) pathway_list.append(("GLC-6P to 2-PG", ['D-Glucose-6P'], ['2-Phosphoglycerate + 2-Phosphoglycerate'], 'PP')) pathway_list.append(("GLC-6P to PEP", ['D-Glucose-6P'], ['Phosphoenolpyruvate + Phosphoenolpyruvate'], 'PP')) pathway_list.append(("2-PG to PYR", ['2-Phosphoglycerate'], ['Pyruvate'], 'PP')) pathway_list.append(("3-PG to PYR", ['3-Phosphoglycerate'], ['Pyruvate'], 'PP')) pathway_list.append(("BPG to PYR", ['Bisphosphoglycerate'], ['Pyruvate'], 'PP')) pathway_list.append(("BPG to PEP", ['Bisphosphoglycerate'], ['Phosphoenolpyruvate'], 'PP')) # Arren's project pathway_list.append(("Glyoxylate + GAP to Pentose", ['Glyoxylate + D-Glyceraldehyde-3P'], Pentose_target_compounds, None)) pathway_list.append(("Glyoxylate + PYR to Pentose", ['Glyoxylate + Pyruvate'], Pentose_target_compounds, None)) pathway_list.append(("Glycolate + GAP to Pentose", ['Glycolate + D-Glyceraldehyde-3P'], Pentose_target_compounds, None)) pathway_list.append(("Glycolate + PYR to Pentose", ['Glycolate + Pyruvate'], Pentose_target_compounds, None)) pathway_names = [pathway[0] for pathway in pathway_list] pathway_map = {} for pathway in pathway_list: pathway_map[pathway[0]] = pathway[1:] if (len(sys.argv) > 1): pathway_name = pathway_names[int(sys.argv[1]) - 1] else: pathway_name = TkListSelection(pathway_names, "Choose a pathway:") if (pathway_name == None): sys.exit(0) (substrates, products, pruning_method) = pathway_map[pathway_name] pathfinder = PathFinder(carbon_only=False, pruning_method=pruning_method, ignore_chirality=True) print "-"*80 + "\nChosen pathway name is %s\n" % pathway_name + "-"*80 util._mkdir("../results") util._mkdir("../results/" + pathway_name) html_writer = HtmlWriter("../results/" + pathway_name + ".html") html_writer.write("<h1><center>%s</center></h1>\n" % pathway_name) html_writer.write("<ul>\n") for i in range(len(substrates)): for j in range(len(products)): ##(subs, prod) = pathfinder.balance_reaction(substrates[i], products[j]) (subs, prod) = (substrates[i], products[j]) pathway_prefix = "pathway_%d_%d" % (i, j) util._mkdir("../results/" + pathway_name + "/" + pathway_prefix) pathfinder.solve_pathway(subs, prod, html_writer, pathway_name, pathway_prefix, max_levels=6, stop_after_first_solution=True) html_writer.flush() html_writer.write("</ul>\n") html_writer.display() return
def main(): Pentose_target_compounds = [ 'D-Xylulose-5P', 'D-Ribulose-5P', 'D-Ribose-5P' ] PP_compounds = \ ['D-Xylulose-5P',\ 'D-Ribulose-5P',\ 'D-Ribose-5P',\ 'D-Erythrose-4P',\ 'D-Sedoheptulose-7P',\ 'D-Fructose-6P',\ 'D-Glyceraldehyde-3P'] Glycolysis_compounds = \ ['Dihydroxyacetone-3P',\ 'D-Glyceraldehyde-3P',\ 'Bisphosphoglycerate',\ '3-Phosphoglycerate',\ '2-Phosphoglycerate',\ 'Phosphoenolpyruvate',\ 'Pyruvate'] TCA_compounds = \ ['Oxaloacetate',\ 'Citrate',\ 'cis-Aconitate',\ 'D-Isocitrate',\ '2-Ketoglutarate',\ #succinyl-CoA\ 'Succinate',\ 'Fumarate',\ 'Malate',\ ] Biosynthese_compounds = PP_compounds + Glycolysis_compounds + TCA_compounds pathway_list = [] # fast test pathway_list.append( ("TEST", ['2-Phosphoglycerate'], ['Bisphosphoglycerate'], None)) # Optimality Modules: pathway_list.append( ("Glucose to Fructose", ['D-glucose-6P'], ['D-fructose-6P'], None)) pathway_list.append( ("Fructose to Glucose", ['D-fructose-6P'], ['D-glucose-6P'], None)) pathway_list.append(("oxaloacetate+acetyl-CoA to citrate", ['oxaloacetate + acetyl-CoA'], ['citrate'], None)) pathway_list.append( ("cis-aconitate to succinate", ['cis-aconitate'], ['succinate'], None)) pathway_list.append( ("D-xylose to D-xylulose-5P", ['D-Xylose'], ['D-Xylulose-5P'], None)) pathway_list.append(("D-arabitol to D-xylulose-5P", ['D-Arabitol'], ['D-Xylulose-5P'], None)) pathway_list.append(("L-arabinose to D-xylulose-5P", ['L-Arabinose'], ['D-Xylulose-5P'], None)) pathway_list.append(("L-xylulose to D-xylulose-5P", ['L-Xylulose'], ['D-Xylulose-5P'], None)) pathway_list.append( ("ribitol to D-xylulose-5P", ['Ribitol'], ['D-Xylulose-5P'], None)) pathway_list.append( ("D-ribose to D-xylulose-5P", ['D-Ribose'], ['D-Xylulose-5P'], None)) pathway_list.append(("Oxaloacetate to 2-Ketoglutarate", ['Oxaloacetate'], ['2-Ketoglutarate'], None)) pathway_list.append( ("Citrate to 2-Ketoglutarate", ['Citrate'], ['2-Ketoglutarate'], None)) pathway_list.append( ("Pentose Phosphate", ['D-Xylulose-5P + D-Xylulose-5P + D-Ribose-5P'], ['D-Fructose-6P + D-Fructose-6P + D-Glyceraldehyde-3P'], None)) #pathway_list.append(("Pentose Phosphate", ['D-Xylulose-5P + D-Ribose-5P'], ['D-Glyceraldehyde-3P + D-Sedoheptulose-7P'], None)) pathway_list.append( ("D-glucose to D-ribulose-5P", ['D-Glucose'], ['D-Ribulose-5P'], None)) pathway_list.append(("D-glucose to D-fructose-16P", ['D-Glucose'], ['D-Fructose-16P'], None)) pathway_list.append(("D-fructose-6P to GAP+DHAP", ['D-Fructose-6P'], ['D-Glyceraldehyde-3P + Dihydroxyacetone-3P'], None)) pathway_list.append( ("GAP to 3-PG", ['D-Glyceraldehyde-3P'], ['3-Phosphoglycerate'], None)) pathway_list.append( ("GAP to 2-PG", ['D-Glyceraldehyde-3P'], ['2-Phosphoglycerate'], None)) pathway_list.append( ("BPG to 3-PG", ['Bisphosphoglycerate'], ['3-Phosphoglycerate'], None)) pathway_list.append( ("BPG to 2-PG", ['Bisphosphoglycerate'], ['2-Phosphoglycerate'], None)) pathway_list.append( ("BPG to PEP", ['Bisphosphoglycerate'], ['Phosphoenolpyruvate'], None)) pathway_list.append( ("3-PG to PYR", ['3-Phosphoglycerate'], ['Pyruvate'], None)) # Biosynthesis pathway_list.append( ("3-PG to L-Serine", ['3-Phosphoglycerate'], ['L-Serine'], None)) pathway_list.append( ("L-Serine to Glycine", ['L-Serine'], ['Glycine'], None)) pathway_list.append( ("Pyruvate to L-Alanine", ['Pyruvate'], ['L-Alanine'], None)) pathway_list.append( ("Synthesis of L-Serine", Biosynthese_compounds, ['L-Serine'], None)) pathway_list.append( ("Synthesis of L-Alanine", Biosynthese_compounds, ['L-Alanine'], None)) pathway_list.append( ("Synthesis of Glycine", Biosynthese_compounds, ['Glycine'], None)) pathway_list.append(("Synthesis of L-Aspartate", Biosynthese_compounds, ['L-Aspartate'], None)) pathway_list.append(("Synthesis of L-Glutamate", Biosynthese_compounds, ['L-Glutamate'], None)) # Pentose utilization pathway_list.append(("L-Arabinose to Pentose Phosphate", ['L-Arabinose'], Pentose_target_compounds, None)) pathway_list.append(("D-Xylose to Pentose Phosphate", ['D-Xylose'], Pentose_target_compounds, None)) pathway_list.append(("D-Ribose to Pentose Phosphate", ['D-Ribose'], Pentose_target_compounds, None)) pathway_list.append(("Ribitol to Pentose Phosphate", ['Ribitol'], Pentose_target_compounds, None)) pathway_list.append(("D-Arabitol to Pentose Phosphate", ['D-Arabitol'], Pentose_target_compounds, None)) # Glycolysis pathway_list.append( ("GAP to PYR", ['D-Glyceraldehyde-3P'], ['Pyruvate'], 'PP')) pathway_list.append(("GAP to DHAP", ['D-Glyceraldehyde-3P'], ['Dihydroxyacetone-3P'], 'PP')) pathway_list.append(("GAP to PEP", ['D-Glyceraldehyde-3P + H2O'], ['Phosphoenolpyruvate + H2O'], 'PP')) pathway_list.append( ("GAP to 2-PG", ['D-Glyceraldehyde-3P'], ['2-Phosphoglycerate'], 'PP')) pathway_list.append(("GLC to GAP", ['D-Glucose'], ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP')) pathway_list.append( ("GLC to PYR", ['Glucose'], ['Pyruvate + Pyruvate'], 'PP')) pathway_list.append(("GLC-36P to GAP", ['D-Glucose-36P'], ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP')) pathway_list.append(("GLC-6P to GAP", ['D-Glucose-6P'], ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP')) pathway_list.append(("GLC-6P to BPG", ['D-Glucose-6P'], ['Bisphosphoglycerate + Bisphosphoglycerate'], 'PP')) pathway_list.append(("GLC-6P to 3-PG", ['D-Glucose-6P'], ['3-Phosphoglycerate + 3-Phosphoglycerate'], 'PP')) pathway_list.append(("GLC-6P to 2-PG", ['D-Glucose-6P'], ['2-Phosphoglycerate + 2-Phosphoglycerate'], 'PP')) pathway_list.append(("GLC-6P to PEP", ['D-Glucose-6P'], ['Phosphoenolpyruvate + Phosphoenolpyruvate'], 'PP')) pathway_list.append( ("2-PG to PYR", ['2-Phosphoglycerate'], ['Pyruvate'], 'PP')) pathway_list.append( ("3-PG to PYR", ['3-Phosphoglycerate'], ['Pyruvate'], 'PP')) pathway_list.append( ("BPG to PYR", ['Bisphosphoglycerate'], ['Pyruvate'], 'PP')) pathway_list.append( ("BPG to PEP", ['Bisphosphoglycerate'], ['Phosphoenolpyruvate'], 'PP')) # Arren's project pathway_list.append( ("Glyoxylate + GAP to Pentose", ['Glyoxylate + D-Glyceraldehyde-3P'], Pentose_target_compounds, None)) pathway_list.append( ("Glyoxylate + PYR to Pentose", ['Glyoxylate + Pyruvate'], Pentose_target_compounds, None)) pathway_list.append( ("Glycolate + GAP to Pentose", ['Glycolate + D-Glyceraldehyde-3P'], Pentose_target_compounds, None)) pathway_list.append( ("Glycolate + PYR to Pentose", ['Glycolate + Pyruvate'], Pentose_target_compounds, None)) pathway_names = [pathway[0] for pathway in pathway_list] pathway_map = {} for pathway in pathway_list: pathway_map[pathway[0]] = pathway[1:] if (len(sys.argv) > 1): pathway_name = pathway_names[int(sys.argv[1]) - 1] else: pathway_name = TkListSelection(pathway_names, "Choose a pathway:") if (pathway_name == None): sys.exit(0) (substrates, products, pruning_method) = pathway_map[pathway_name] pathfinder = PathFinder(carbon_only=False, pruning_method=pruning_method, ignore_chirality=True) print "-" * 80 + "\nChosen pathway name is %s\n" % pathway_name + "-" * 80 util._mkdir("../results") util._mkdir("../results/" + pathway_name) html_writer = HtmlWriter("../results/" + pathway_name + ".html") html_writer.write("<h1><center>%s</center></h1>\n" % pathway_name) html_writer.write("<ul>\n") for i in range(len(substrates)): for j in range(len(products)): ##(subs, prod) = pathfinder.balance_reaction(substrates[i], products[j]) (subs, prod) = (substrates[i], products[j]) pathway_prefix = "pathway_%d_%d" % (i, j) util._mkdir("../results/" + pathway_name + "/" + pathway_prefix) pathfinder.solve_pathway(subs, prod, html_writer, pathway_name, pathway_prefix, max_levels=6, stop_after_first_solution=True) html_writer.flush() html_writer.write("</ul>\n") html_writer.display() return
#!/usr/bin/python import sys import os import util from chemconvert import hash2graph from html_writer import HtmlWriter from svg import Scene html = HtmlWriter("../results/hash_list.html") util._mkdir("../results/hash_list") for line in util.parse_text_file(sys.argv[1]): print line graph = hash2graph(line) graph.initialize_pos() scene = graph.svg(Scene(200, 200, font_size=12)) html.write_svg(scene, "../results/hash_list/" + line) html.display()
class Pathologic: def __init__(self, modules_file, experiment_name, max_module_size=6): self.modules_file = modules_file self.experiment_name = experiment_name self.max_module_size = max_module_size util._mkdir("../log") self.logfile = open("../log/pathologic_" + self.experiment_name + ".log", "w") util._mkdir("../results") util._mkdir("../results/pathologic_" + self.experiment_name) self.html_writer = HtmlWriter("../results/pathologic_" + self.experiment_name + ".html") self.html_writer.write("<h1>List of optimal and non-optimal pathways</h1>\n") self.html_writer.write("<ul>\n") self.line_counter = 0 self.pathfinder = None def find_shortest_pathways(self, substrate, product, max_levels, stop_after_first_solution=True): G_subs = compound2graph(substrate) G_prod = compound2graph(product) return self.pathfinder.find_shortest_pathway([G_subs], [G_prod], max_levels=max_levels, stop_after_first_solution=stop_after_first_solution) def get_distance(self, substrate, product, max_levels): G_subs = compound2graph(substrate) G_prod = compound2graph(product) return self.pathfinder.find_distance([G_subs], [G_prod], max_levels=max_levels) def get_all_pathways(self, substrate, product, max_levels): """return all existing pathways with a length <= max_distance. """ (original_compound_map, possible_pathways, min_length) = self.find_shortest_pathways(substrate, product, max_levels=max_levels, stop_after_first_solution=False) if (possible_pathways == []): return [] else: scene_list = self.pathfinder.get_all_possible_scenes(original_compound_map, possible_pathways) return [scene for (cost, scene) in scene_list] # strip off the cost of each pathway def get_shortest_pathways(self, substrate, product, max_levels): """return -1 if the is no path with length <= max_levels. otherwise a pair containing a list of all pathways with the minimal length and the minimal length itself """ (original_compound_map, possible_pathways, min_length) = self.find_shortest_pathways(substrate, product, max_levels=max_levels, stop_after_first_solution=True) if (possible_pathways == []): return ([], -1) else: scene_list = self.pathfinder.get_all_possible_scenes(original_compound_map, possible_pathways) return ([scene for (cost, scene) in scene_list], min_length) # strip off the cost of each pathway def verify_pathway(self, pathway): sys.stdout.write("Verifying pathway: %s\n" % str(pathway)) for i in range(len(pathway)-1): sys.stdout.write(" - checking '%s' -> '%s' ... " % tuple(pathway[i:i+2])) sys.stdout.flush() distance = self.get_distance(pathway[i], pathway[i+1], 1) if (distance == -1): sys.stdout.write("FAILED (not neighbors)\n") else: sys.stdout.write("OK\n") sys.stdout.flush() def is_optimal(self, pathway, i, j, draw_scenes=False): sys.stdout.write(str(pathway[i:j+1]) + " ... ") wt_distance = j - i if (wt_distance <= 1): # we have verified that this is optimal already return True if (draw_scenes): # try to find at least one path which is shorter than the wild-type path: (scenes, dist) = self.get_shortest_pathways(pathway[i], pathway[j], wt_distance - 1) else: dist = self.get_distance(pathway[i], pathway[j], wt_distance - 1) if (dist == -1): # which means no shorter path has been found, hence the WT pathway is one of the shortest sys.stdout.write(" is optimal!\n") self.html_writer.write("<li><span style=color:green>%s - OPTIMAL</span></li>\n" % str(pathway[i:j+1])) self.html_writer.flush() return True else: # there is a shorter path than the WT one sys.stdout.write(" is not optimal!\n") self.html_writer.write("<li>\n <span style=color:red>%s - NOT OPTIMAL</span><br>\n " % str(pathway[i:j+1])) if (draw_scenes): #for s in scenes: s = scenes[0] # draws only the first scene (otherwise it could be too long) self.html_writer.write_svg(s, "pathologic_" + self.experiment_name + "/pathway_%d_%d_%d" % (self.line_counter, i, j)) self.html_writer.write("\n</li>\n") self.html_writer.flush() return False def find_modules(self, pathway, draw_scenes=False): self.verify_pathway(pathway) i = 0 for j in range(2, len(pathway)): if (j - i >= self.max_module_size): sys.stdout.write(str(pathway[i:(j+1)]) + " is too long for me, chopping off the head...\n") i += 1 # shorten the path from it's head until it is optimal (or too short, i.e. length=1) while ( (j - i) > 1 and (not self.is_optimal(pathway, i, j, draw_scenes=draw_scenes)) ): i += 1 def analyze(self, carbon_only=True, use_antimotifs=True, draw_scenes=False): for line in util.parse_text_file("../rec/" + self.modules_file + ".txt"): if (line[0] == '@'): line = line[1:] self.pathfinder = PathFinder(carbon_only=carbon_only, pruning_method=None, ignore_chirality=False, use_antimotifs=use_antimotifs, outstream=self.logfile) else: self.pathfinder = PathFinder(carbon_only=carbon_only, pruning_method=None, ignore_chirality=True, use_antimotifs=use_antimotifs, outstream=self.logfile) pathway = line.split(';') self.find_modules(pathway, draw_scenes=draw_scenes) self.line_counter += 1 def analyze_pairs(self, carbon_only=True, use_antimotifs=True, max_distance=4): distances = [] # the minimal pathway length between the substrate and the product alternatives = [] # each value is the number of alternative pathways with the minimal distance line_counter = 0 for line in util.parse_text_file("../rec/" + self.modules_file + ".txt"): if (line[0] == '@'): line = line[1:] self.pathfinder = PathFinder(carbon_only=carbon_only, pruning_method=None, ignore_chirality=False, use_antimotifs=use_antimotifs, outstream=self.logfile) else: self.pathfinder = PathFinder(carbon_only=carbon_only, pruning_method=None, ignore_chirality=True, use_antimotifs=use_antimotifs, outstream=self.logfile) (subs, prod, max_steps) = line.split(";", 2) if (max_steps in ['-1','inf','']): sys.stdout.write(subs + " -(?)-> " + prod) sys.stdout.flush() (scenes, dist) = self.get_shortest_pathways(subs, prod, max_distance) else: dist = int(max_steps) sys.stdout.write(subs + " -(%d)-> " % dist + prod) sys.stdout.flush() scenes = self.get_all_pathways(subs, prod, dist) if (dist == -1): sys.stdout.write(", Distance(L) = inf, N = 0\n") sys.stdout.flush() distances.append("inf") alternatives.append(0) self.html_writer.write("<li><span style=color:red>%s <-> %s (distance > %d)</span></li>\n" % (subs, prod, self.max_module_size)) self.html_writer.flush() else: sys.stdout.write(", Distance(L) = %d, N = %d\n" % (dist, len(scenes))) sys.stdout.flush() distances.append(dist) alternatives.append(len(scenes)) self.html_writer.write("<li><span style=color:green>%s <-> %s (distance = %d)</span></li>\n" % (subs, prod, dist)) for i in range(len(scenes)): self.html_writer.write("<li>") self.html_writer.write_svg(scenes[i], "pathologic_" + self.experiment_name + "/pair%d_path%d" % (line_counter,i)) self.html_writer.write("</li>\n") self.html_writer.flush() line_counter += 1 result_file = open("../results/" + self.experiment_name + ".txt", "w") result_file.write(str(distances) + "\n" + str(alternatives) + "\n") result_file.close() def display(self): self.html_writer.write("</ul>\n") self.html_writer.write(self.pathfinder.reactor.antimotif_summary()) self.html_writer.display() def __del__(self): del self.pathfinder self.logfile.close()
class Pathologic: def __init__(self, modules_file, experiment_name, max_module_size=6): self.modules_file = modules_file self.experiment_name = experiment_name self.max_module_size = max_module_size util._mkdir("../log") self.logfile = open( "../log/pathologic_" + self.experiment_name + ".log", "w") util._mkdir("../results") util._mkdir("../results/pathologic_" + self.experiment_name) self.html_writer = HtmlWriter("../results/pathologic_" + self.experiment_name + ".html") self.html_writer.write( "<h1>List of optimal and non-optimal pathways</h1>\n") self.html_writer.write("<ul>\n") self.line_counter = 0 self.pathfinder = None def find_shortest_pathways(self, substrate, product, max_levels, stop_after_first_solution=True): G_subs = compound2graph(substrate) G_prod = compound2graph(product) return self.pathfinder.find_shortest_pathway( [G_subs], [G_prod], max_levels=max_levels, stop_after_first_solution=stop_after_first_solution) def get_distance(self, substrate, product, max_levels): G_subs = compound2graph(substrate) G_prod = compound2graph(product) return self.pathfinder.find_distance([G_subs], [G_prod], max_levels=max_levels) def get_all_pathways(self, substrate, product, max_levels): """return all existing pathways with a length <= max_distance. """ (original_compound_map, possible_pathways, min_length) = self.find_shortest_pathways( substrate, product, max_levels=max_levels, stop_after_first_solution=False) if (possible_pathways == []): return [] else: scene_list = self.pathfinder.get_all_possible_scenes( original_compound_map, possible_pathways) return [scene for (cost, scene) in scene_list ] # strip off the cost of each pathway def get_shortest_pathways(self, substrate, product, max_levels): """return -1 if the is no path with length <= max_levels. otherwise a pair containing a list of all pathways with the minimal length and the minimal length itself """ (original_compound_map, possible_pathways, min_length) = self.find_shortest_pathways( substrate, product, max_levels=max_levels, stop_after_first_solution=True) if (possible_pathways == []): return ([], -1) else: scene_list = self.pathfinder.get_all_possible_scenes( original_compound_map, possible_pathways) return ([scene for (cost, scene) in scene_list], min_length ) # strip off the cost of each pathway def verify_pathway(self, pathway): sys.stdout.write("Verifying pathway: %s\n" % str(pathway)) for i in range(len(pathway) - 1): sys.stdout.write(" - checking '%s' -> '%s' ... " % tuple(pathway[i:i + 2])) sys.stdout.flush() distance = self.get_distance(pathway[i], pathway[i + 1], 1) if (distance == -1): sys.stdout.write("FAILED (not neighbors)\n") else: sys.stdout.write("OK\n") sys.stdout.flush() def is_optimal(self, pathway, i, j, draw_scenes=False): sys.stdout.write(str(pathway[i:j + 1]) + " ... ") wt_distance = j - i if (wt_distance <= 1): # we have verified that this is optimal already return True if (draw_scenes): # try to find at least one path which is shorter than the wild-type path: (scenes, dist) = self.get_shortest_pathways(pathway[i], pathway[j], wt_distance - 1) else: dist = self.get_distance(pathway[i], pathway[j], wt_distance - 1) if ( dist == -1 ): # which means no shorter path has been found, hence the WT pathway is one of the shortest sys.stdout.write(" is optimal!\n") self.html_writer.write( "<li><span style=color:green>%s - OPTIMAL</span></li>\n" % str(pathway[i:j + 1])) self.html_writer.flush() return True else: # there is a shorter path than the WT one sys.stdout.write(" is not optimal!\n") self.html_writer.write( "<li>\n <span style=color:red>%s - NOT OPTIMAL</span><br>\n " % str(pathway[i:j + 1])) if (draw_scenes): #for s in scenes: s = scenes[ 0] # draws only the first scene (otherwise it could be too long) self.html_writer.write_svg( s, "pathologic_" + self.experiment_name + "/pathway_%d_%d_%d" % (self.line_counter, i, j)) self.html_writer.write("\n</li>\n") self.html_writer.flush() return False def find_modules(self, pathway, draw_scenes=False): self.verify_pathway(pathway) i = 0 for j in range(2, len(pathway)): if (j - i >= self.max_module_size): sys.stdout.write( str(pathway[i:(j + 1)]) + " is too long for me, chopping off the head...\n") i += 1 # shorten the path from it's head until it is optimal (or too short, i.e. length=1) while ( (j - i) > 1 and (not self.is_optimal(pathway, i, j, draw_scenes=draw_scenes))): i += 1 def analyze(self, carbon_only=True, use_antimotifs=True, draw_scenes=False): for line in util.parse_text_file("../rec/" + self.modules_file + ".txt"): if (line[0] == '@'): line = line[1:] self.pathfinder = PathFinder(carbon_only=carbon_only, pruning_method=None, ignore_chirality=False, use_antimotifs=use_antimotifs, outstream=self.logfile) else: self.pathfinder = PathFinder(carbon_only=carbon_only, pruning_method=None, ignore_chirality=True, use_antimotifs=use_antimotifs, outstream=self.logfile) pathway = line.split(';') self.find_modules(pathway, draw_scenes=draw_scenes) self.line_counter += 1 def analyze_pairs(self, carbon_only=True, use_antimotifs=True, max_distance=4): distances = [ ] # the minimal pathway length between the substrate and the product alternatives = [ ] # each value is the number of alternative pathways with the minimal distance line_counter = 0 for line in util.parse_text_file("../rec/" + self.modules_file + ".txt"): if (line[0] == '@'): line = line[1:] self.pathfinder = PathFinder(carbon_only=carbon_only, pruning_method=None, ignore_chirality=False, use_antimotifs=use_antimotifs, outstream=self.logfile) else: self.pathfinder = PathFinder(carbon_only=carbon_only, pruning_method=None, ignore_chirality=True, use_antimotifs=use_antimotifs, outstream=self.logfile) (subs, prod, max_steps) = line.split(";", 2) if (max_steps in ['-1', 'inf', '']): sys.stdout.write(subs + " -(?)-> " + prod) sys.stdout.flush() (scenes, dist) = self.get_shortest_pathways(subs, prod, max_distance) else: dist = int(max_steps) sys.stdout.write(subs + " -(%d)-> " % dist + prod) sys.stdout.flush() scenes = self.get_all_pathways(subs, prod, dist) if (dist == -1): sys.stdout.write(", Distance(L) = inf, N = 0\n") sys.stdout.flush() distances.append("inf") alternatives.append(0) self.html_writer.write( "<li><span style=color:red>%s <-> %s (distance > %d)</span></li>\n" % (subs, prod, self.max_module_size)) self.html_writer.flush() else: sys.stdout.write(", Distance(L) = %d, N = %d\n" % (dist, len(scenes))) sys.stdout.flush() distances.append(dist) alternatives.append(len(scenes)) self.html_writer.write( "<li><span style=color:green>%s <-> %s (distance = %d)</span></li>\n" % (subs, prod, dist)) for i in range(len(scenes)): self.html_writer.write("<li>") self.html_writer.write_svg( scenes[i], "pathologic_" + self.experiment_name + "/pair%d_path%d" % (line_counter, i)) self.html_writer.write("</li>\n") self.html_writer.flush() line_counter += 1 result_file = open("../results/" + self.experiment_name + ".txt", "w") result_file.write(str(distances) + "\n" + str(alternatives) + "\n") result_file.close() def display(self): self.html_writer.write("</ul>\n") self.html_writer.write(self.pathfinder.reactor.antimotif_summary()) self.html_writer.display() def __del__(self): del self.pathfinder self.logfile.close()