Example #1
0
def main():
    Pentose_target_compounds = ['D-Xylulose-5P', 'D-Ribulose-5P', 'D-Ribose-5P']
    
    PP_compounds = \
        ['D-Xylulose-5P',\
         'D-Ribulose-5P',\
         'D-Ribose-5P',\
         'D-Erythrose-4P',\
         'D-Sedoheptulose-7P',\
         'D-Fructose-6P',\
         'D-Glyceraldehyde-3P']
    
    Glycolysis_compounds = \
        ['Dihydroxyacetone-3P',\
         'D-Glyceraldehyde-3P',\
         'Bisphosphoglycerate',\
         '3-Phosphoglycerate',\
         '2-Phosphoglycerate',\
         'Phosphoenolpyruvate',\
         'Pyruvate']
    
    TCA_compounds = \
        ['Oxaloacetate',\
         'Citrate',\
         'cis-Aconitate',\
         'D-Isocitrate',\
         '2-Ketoglutarate',\
         #succinyl-CoA\
         'Succinate',\
         'Fumarate',\
         'Malate',\
         ]
    
    Biosynthese_compounds = PP_compounds + Glycolysis_compounds + TCA_compounds
    
    pathway_list = []
    # fast test
    pathway_list.append(("TEST", ['2-Phosphoglycerate'], ['Bisphosphoglycerate'], None))

    # Optimality Modules:
    pathway_list.append(("Glucose to Fructose", ['D-glucose-6P'], ['D-fructose-6P'], None))
    pathway_list.append(("Fructose to Glucose", ['D-fructose-6P'], ['D-glucose-6P'], None))
    
    pathway_list.append(("oxaloacetate+acetyl-CoA to citrate", ['oxaloacetate + acetyl-CoA'], ['citrate'], None))
    pathway_list.append(("cis-aconitate to succinate", ['cis-aconitate'], ['succinate'], None))
    pathway_list.append(("D-xylose to D-xylulose-5P", ['D-Xylose'], ['D-Xylulose-5P'], None))
    pathway_list.append(("D-arabitol to D-xylulose-5P", ['D-Arabitol'], ['D-Xylulose-5P'], None))
    pathway_list.append(("L-arabinose to D-xylulose-5P", ['L-Arabinose'], ['D-Xylulose-5P'], None))
    pathway_list.append(("L-xylulose to D-xylulose-5P", ['L-Xylulose'], ['D-Xylulose-5P'], None))
    pathway_list.append(("ribitol to D-xylulose-5P", ['Ribitol'], ['D-Xylulose-5P'], None))
    pathway_list.append(("D-ribose to D-xylulose-5P", ['D-Ribose'], ['D-Xylulose-5P'], None))
    pathway_list.append(("Oxaloacetate to 2-Ketoglutarate", ['Oxaloacetate'], ['2-Ketoglutarate'], None))
    pathway_list.append(("Citrate to 2-Ketoglutarate", ['Citrate'], ['2-Ketoglutarate'], None))
    
    
    pathway_list.append(("Pentose Phosphate", ['D-Xylulose-5P + D-Xylulose-5P + D-Ribose-5P'], ['D-Fructose-6P + D-Fructose-6P + D-Glyceraldehyde-3P'], None))
    #pathway_list.append(("Pentose Phosphate", ['D-Xylulose-5P + D-Ribose-5P'], ['D-Glyceraldehyde-3P + D-Sedoheptulose-7P'], None))
    pathway_list.append(("D-glucose to D-ribulose-5P", ['D-Glucose'], ['D-Ribulose-5P'], None))
    pathway_list.append(("D-glucose to D-fructose-16P", ['D-Glucose'], ['D-Fructose-16P'], None))
    pathway_list.append(("D-fructose-6P to GAP+DHAP", ['D-Fructose-6P'], ['D-Glyceraldehyde-3P + Dihydroxyacetone-3P'], None))
    pathway_list.append(("GAP to 3-PG", ['D-Glyceraldehyde-3P'], ['3-Phosphoglycerate'], None))
    pathway_list.append(("GAP to 2-PG", ['D-Glyceraldehyde-3P'], ['2-Phosphoglycerate'], None))
    pathway_list.append(("BPG to 3-PG", ['Bisphosphoglycerate'], ['3-Phosphoglycerate'], None))
    pathway_list.append(("BPG to 2-PG", ['Bisphosphoglycerate'], ['2-Phosphoglycerate'], None))
    pathway_list.append(("BPG to PEP", ['Bisphosphoglycerate'], ['Phosphoenolpyruvate'], None))
    pathway_list.append(("3-PG to PYR", ['3-Phosphoglycerate'], ['Pyruvate'], None))

    # Biosynthesis
    pathway_list.append(("3-PG to L-Serine", ['3-Phosphoglycerate'], ['L-Serine'], None))
    pathway_list.append(("L-Serine to Glycine", ['L-Serine'], ['Glycine'], None))
    pathway_list.append(("Pyruvate to L-Alanine", ['Pyruvate'], ['L-Alanine'], None))
    
    pathway_list.append(("Synthesis of L-Serine", Biosynthese_compounds, ['L-Serine'], None))
    pathway_list.append(("Synthesis of L-Alanine", Biosynthese_compounds, ['L-Alanine'], None))
    pathway_list.append(("Synthesis of Glycine", Biosynthese_compounds, ['Glycine'], None))
    pathway_list.append(("Synthesis of L-Aspartate", Biosynthese_compounds, ['L-Aspartate'], None))
    pathway_list.append(("Synthesis of L-Glutamate", Biosynthese_compounds, ['L-Glutamate'], None))

    # Pentose utilization
    pathway_list.append(("L-Arabinose to Pentose Phosphate", ['L-Arabinose'], Pentose_target_compounds, None))
    pathway_list.append(("D-Xylose to Pentose Phosphate", ['D-Xylose'], Pentose_target_compounds, None))
    pathway_list.append(("D-Ribose to Pentose Phosphate", ['D-Ribose'], Pentose_target_compounds, None))
    pathway_list.append(("Ribitol to Pentose Phosphate", ['Ribitol'], Pentose_target_compounds, None))
    pathway_list.append(("D-Arabitol to Pentose Phosphate", ['D-Arabitol'], Pentose_target_compounds, None))

    # Glycolysis
    pathway_list.append(("GAP to PYR", ['D-Glyceraldehyde-3P'], ['Pyruvate'], 'PP'))
    pathway_list.append(("GAP to DHAP", ['D-Glyceraldehyde-3P'], ['Dihydroxyacetone-3P'], 'PP'))
    pathway_list.append(("GAP to PEP", ['D-Glyceraldehyde-3P + H2O'], ['Phosphoenolpyruvate + H2O'], 'PP'))
    pathway_list.append(("GAP to 2-PG", ['D-Glyceraldehyde-3P'], ['2-Phosphoglycerate'], 'PP'))
    pathway_list.append(("GLC to GAP", ['D-Glucose'], ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP'))
    pathway_list.append(("GLC to PYR", ['Glucose'], ['Pyruvate + Pyruvate'], 'PP'))
    pathway_list.append(("GLC-36P to GAP", ['D-Glucose-36P'], ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP'))
    pathway_list.append(("GLC-6P to GAP", ['D-Glucose-6P'], ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP'))
    pathway_list.append(("GLC-6P to BPG", ['D-Glucose-6P'], ['Bisphosphoglycerate + Bisphosphoglycerate'], 'PP'))
    pathway_list.append(("GLC-6P to 3-PG", ['D-Glucose-6P'], ['3-Phosphoglycerate + 3-Phosphoglycerate'], 'PP'))
    pathway_list.append(("GLC-6P to 2-PG", ['D-Glucose-6P'], ['2-Phosphoglycerate + 2-Phosphoglycerate'], 'PP'))
    pathway_list.append(("GLC-6P to PEP", ['D-Glucose-6P'], ['Phosphoenolpyruvate + Phosphoenolpyruvate'], 'PP'))
    pathway_list.append(("2-PG to PYR", ['2-Phosphoglycerate'], ['Pyruvate'], 'PP'))
    pathway_list.append(("3-PG to PYR", ['3-Phosphoglycerate'], ['Pyruvate'], 'PP'))
    pathway_list.append(("BPG to PYR", ['Bisphosphoglycerate'], ['Pyruvate'], 'PP'))
    pathway_list.append(("BPG to PEP", ['Bisphosphoglycerate'], ['Phosphoenolpyruvate'], 'PP'))
    
    # Arren's project
    pathway_list.append(("Glyoxylate + GAP to Pentose", ['Glyoxylate + D-Glyceraldehyde-3P'], Pentose_target_compounds, None))
    pathway_list.append(("Glyoxylate + PYR to Pentose", ['Glyoxylate + Pyruvate'], Pentose_target_compounds, None))
    pathway_list.append(("Glycolate + GAP to Pentose", ['Glycolate + D-Glyceraldehyde-3P'], Pentose_target_compounds, None))
    pathway_list.append(("Glycolate + PYR to Pentose", ['Glycolate + Pyruvate'], Pentose_target_compounds, None))
    
    pathway_names = [pathway[0] for pathway in pathway_list]
    pathway_map = {}
    for pathway in pathway_list:
        pathway_map[pathway[0]] = pathway[1:]
    
    if (len(sys.argv) > 1):
        pathway_name = pathway_names[int(sys.argv[1]) - 1]
    else:
        pathway_name = TkListSelection(pathway_names, "Choose a pathway:")
        if (pathway_name == None):
            sys.exit(0)
    
    (substrates, products, pruning_method) = pathway_map[pathway_name]
    pathfinder = PathFinder(carbon_only=False, pruning_method=pruning_method, ignore_chirality=True)

    print "-"*80 + "\nChosen pathway name is %s\n" % pathway_name + "-"*80

    util._mkdir("../results")
    util._mkdir("../results/" + pathway_name)
    html_writer = HtmlWriter("../results/" + pathway_name + ".html")
    html_writer.write("<h1><center>%s</center></h1>\n" % pathway_name)
    html_writer.write("<ul>\n")
    for i in range(len(substrates)):
        for j in range(len(products)):
            ##(subs, prod) = pathfinder.balance_reaction(substrates[i], products[j])
            (subs, prod) = (substrates[i], products[j])
            pathway_prefix = "pathway_%d_%d" % (i, j)
            util._mkdir("../results/" + pathway_name + "/" + pathway_prefix)
            pathfinder.solve_pathway(subs, prod, html_writer, pathway_name, pathway_prefix, max_levels=6, stop_after_first_solution=True)
            html_writer.flush()
    html_writer.write("</ul>\n")
    html_writer.display()
    
    return
Example #2
0
def main():
    Pentose_target_compounds = [
        'D-Xylulose-5P', 'D-Ribulose-5P', 'D-Ribose-5P'
    ]

    PP_compounds = \
        ['D-Xylulose-5P',\
         'D-Ribulose-5P',\
         'D-Ribose-5P',\
         'D-Erythrose-4P',\
         'D-Sedoheptulose-7P',\
         'D-Fructose-6P',\
         'D-Glyceraldehyde-3P']

    Glycolysis_compounds = \
        ['Dihydroxyacetone-3P',\
         'D-Glyceraldehyde-3P',\
         'Bisphosphoglycerate',\
         '3-Phosphoglycerate',\
         '2-Phosphoglycerate',\
         'Phosphoenolpyruvate',\
         'Pyruvate']

    TCA_compounds = \
        ['Oxaloacetate',\
         'Citrate',\
         'cis-Aconitate',\
         'D-Isocitrate',\
         '2-Ketoglutarate',\
         #succinyl-CoA\
         'Succinate',\
         'Fumarate',\
         'Malate',\
         ]

    Biosynthese_compounds = PP_compounds + Glycolysis_compounds + TCA_compounds

    pathway_list = []
    # fast test
    pathway_list.append(
        ("TEST", ['2-Phosphoglycerate'], ['Bisphosphoglycerate'], None))

    # Optimality Modules:
    pathway_list.append(
        ("Glucose to Fructose", ['D-glucose-6P'], ['D-fructose-6P'], None))
    pathway_list.append(
        ("Fructose to Glucose", ['D-fructose-6P'], ['D-glucose-6P'], None))

    pathway_list.append(("oxaloacetate+acetyl-CoA to citrate",
                         ['oxaloacetate + acetyl-CoA'], ['citrate'], None))
    pathway_list.append(
        ("cis-aconitate to succinate", ['cis-aconitate'], ['succinate'], None))
    pathway_list.append(
        ("D-xylose to D-xylulose-5P", ['D-Xylose'], ['D-Xylulose-5P'], None))
    pathway_list.append(("D-arabitol to D-xylulose-5P", ['D-Arabitol'],
                         ['D-Xylulose-5P'], None))
    pathway_list.append(("L-arabinose to D-xylulose-5P", ['L-Arabinose'],
                         ['D-Xylulose-5P'], None))
    pathway_list.append(("L-xylulose to D-xylulose-5P", ['L-Xylulose'],
                         ['D-Xylulose-5P'], None))
    pathway_list.append(
        ("ribitol to D-xylulose-5P", ['Ribitol'], ['D-Xylulose-5P'], None))
    pathway_list.append(
        ("D-ribose to D-xylulose-5P", ['D-Ribose'], ['D-Xylulose-5P'], None))
    pathway_list.append(("Oxaloacetate to 2-Ketoglutarate", ['Oxaloacetate'],
                         ['2-Ketoglutarate'], None))
    pathway_list.append(
        ("Citrate to 2-Ketoglutarate", ['Citrate'], ['2-Ketoglutarate'], None))

    pathway_list.append(
        ("Pentose Phosphate", ['D-Xylulose-5P + D-Xylulose-5P + D-Ribose-5P'],
         ['D-Fructose-6P + D-Fructose-6P + D-Glyceraldehyde-3P'], None))
    #pathway_list.append(("Pentose Phosphate", ['D-Xylulose-5P + D-Ribose-5P'], ['D-Glyceraldehyde-3P + D-Sedoheptulose-7P'], None))
    pathway_list.append(
        ("D-glucose to D-ribulose-5P", ['D-Glucose'], ['D-Ribulose-5P'], None))
    pathway_list.append(("D-glucose to D-fructose-16P", ['D-Glucose'],
                         ['D-Fructose-16P'], None))
    pathway_list.append(("D-fructose-6P to GAP+DHAP", ['D-Fructose-6P'],
                         ['D-Glyceraldehyde-3P + Dihydroxyacetone-3P'], None))
    pathway_list.append(
        ("GAP to 3-PG", ['D-Glyceraldehyde-3P'], ['3-Phosphoglycerate'], None))
    pathway_list.append(
        ("GAP to 2-PG", ['D-Glyceraldehyde-3P'], ['2-Phosphoglycerate'], None))
    pathway_list.append(
        ("BPG to 3-PG", ['Bisphosphoglycerate'], ['3-Phosphoglycerate'], None))
    pathway_list.append(
        ("BPG to 2-PG", ['Bisphosphoglycerate'], ['2-Phosphoglycerate'], None))
    pathway_list.append(
        ("BPG to PEP", ['Bisphosphoglycerate'], ['Phosphoenolpyruvate'], None))
    pathway_list.append(
        ("3-PG to PYR", ['3-Phosphoglycerate'], ['Pyruvate'], None))

    # Biosynthesis
    pathway_list.append(
        ("3-PG to L-Serine", ['3-Phosphoglycerate'], ['L-Serine'], None))
    pathway_list.append(
        ("L-Serine to Glycine", ['L-Serine'], ['Glycine'], None))
    pathway_list.append(
        ("Pyruvate to L-Alanine", ['Pyruvate'], ['L-Alanine'], None))

    pathway_list.append(
        ("Synthesis of L-Serine", Biosynthese_compounds, ['L-Serine'], None))
    pathway_list.append(
        ("Synthesis of L-Alanine", Biosynthese_compounds, ['L-Alanine'], None))
    pathway_list.append(
        ("Synthesis of Glycine", Biosynthese_compounds, ['Glycine'], None))
    pathway_list.append(("Synthesis of L-Aspartate", Biosynthese_compounds,
                         ['L-Aspartate'], None))
    pathway_list.append(("Synthesis of L-Glutamate", Biosynthese_compounds,
                         ['L-Glutamate'], None))

    # Pentose utilization
    pathway_list.append(("L-Arabinose to Pentose Phosphate", ['L-Arabinose'],
                         Pentose_target_compounds, None))
    pathway_list.append(("D-Xylose to Pentose Phosphate", ['D-Xylose'],
                         Pentose_target_compounds, None))
    pathway_list.append(("D-Ribose to Pentose Phosphate", ['D-Ribose'],
                         Pentose_target_compounds, None))
    pathway_list.append(("Ribitol to Pentose Phosphate", ['Ribitol'],
                         Pentose_target_compounds, None))
    pathway_list.append(("D-Arabitol to Pentose Phosphate", ['D-Arabitol'],
                         Pentose_target_compounds, None))

    # Glycolysis
    pathway_list.append(
        ("GAP to PYR", ['D-Glyceraldehyde-3P'], ['Pyruvate'], 'PP'))
    pathway_list.append(("GAP to DHAP", ['D-Glyceraldehyde-3P'],
                         ['Dihydroxyacetone-3P'], 'PP'))
    pathway_list.append(("GAP to PEP", ['D-Glyceraldehyde-3P + H2O'],
                         ['Phosphoenolpyruvate + H2O'], 'PP'))
    pathway_list.append(
        ("GAP to 2-PG", ['D-Glyceraldehyde-3P'], ['2-Phosphoglycerate'], 'PP'))
    pathway_list.append(("GLC to GAP", ['D-Glucose'],
                         ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP'))
    pathway_list.append(
        ("GLC to PYR", ['Glucose'], ['Pyruvate + Pyruvate'], 'PP'))
    pathway_list.append(("GLC-36P to GAP", ['D-Glucose-36P'],
                         ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP'))
    pathway_list.append(("GLC-6P to GAP", ['D-Glucose-6P'],
                         ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP'))
    pathway_list.append(("GLC-6P to BPG", ['D-Glucose-6P'],
                         ['Bisphosphoglycerate + Bisphosphoglycerate'], 'PP'))
    pathway_list.append(("GLC-6P to 3-PG", ['D-Glucose-6P'],
                         ['3-Phosphoglycerate + 3-Phosphoglycerate'], 'PP'))
    pathway_list.append(("GLC-6P to 2-PG", ['D-Glucose-6P'],
                         ['2-Phosphoglycerate + 2-Phosphoglycerate'], 'PP'))
    pathway_list.append(("GLC-6P to PEP", ['D-Glucose-6P'],
                         ['Phosphoenolpyruvate + Phosphoenolpyruvate'], 'PP'))
    pathway_list.append(
        ("2-PG to PYR", ['2-Phosphoglycerate'], ['Pyruvate'], 'PP'))
    pathway_list.append(
        ("3-PG to PYR", ['3-Phosphoglycerate'], ['Pyruvate'], 'PP'))
    pathway_list.append(
        ("BPG to PYR", ['Bisphosphoglycerate'], ['Pyruvate'], 'PP'))
    pathway_list.append(
        ("BPG to PEP", ['Bisphosphoglycerate'], ['Phosphoenolpyruvate'], 'PP'))

    # Arren's project
    pathway_list.append(
        ("Glyoxylate + GAP to Pentose", ['Glyoxylate + D-Glyceraldehyde-3P'],
         Pentose_target_compounds, None))
    pathway_list.append(
        ("Glyoxylate + PYR to Pentose", ['Glyoxylate + Pyruvate'],
         Pentose_target_compounds, None))
    pathway_list.append(
        ("Glycolate + GAP to Pentose", ['Glycolate + D-Glyceraldehyde-3P'],
         Pentose_target_compounds, None))
    pathway_list.append(
        ("Glycolate + PYR to Pentose", ['Glycolate + Pyruvate'],
         Pentose_target_compounds, None))

    pathway_names = [pathway[0] for pathway in pathway_list]
    pathway_map = {}
    for pathway in pathway_list:
        pathway_map[pathway[0]] = pathway[1:]

    if (len(sys.argv) > 1):
        pathway_name = pathway_names[int(sys.argv[1]) - 1]
    else:
        pathway_name = TkListSelection(pathway_names, "Choose a pathway:")
        if (pathway_name == None):
            sys.exit(0)

    (substrates, products, pruning_method) = pathway_map[pathway_name]
    pathfinder = PathFinder(carbon_only=False,
                            pruning_method=pruning_method,
                            ignore_chirality=True)

    print "-" * 80 + "\nChosen pathway name is %s\n" % pathway_name + "-" * 80

    util._mkdir("../results")
    util._mkdir("../results/" + pathway_name)
    html_writer = HtmlWriter("../results/" + pathway_name + ".html")
    html_writer.write("<h1><center>%s</center></h1>\n" % pathway_name)
    html_writer.write("<ul>\n")
    for i in range(len(substrates)):
        for j in range(len(products)):
            ##(subs, prod) = pathfinder.balance_reaction(substrates[i], products[j])
            (subs, prod) = (substrates[i], products[j])
            pathway_prefix = "pathway_%d_%d" % (i, j)
            util._mkdir("../results/" + pathway_name + "/" + pathway_prefix)
            pathfinder.solve_pathway(subs,
                                     prod,
                                     html_writer,
                                     pathway_name,
                                     pathway_prefix,
                                     max_levels=6,
                                     stop_after_first_solution=True)
            html_writer.flush()
    html_writer.write("</ul>\n")
    html_writer.display()

    return
Example #3
0
#!/usr/bin/python

import sys
import os
import util
from chemconvert import hash2graph
from html_writer import HtmlWriter
from svg import Scene

html = HtmlWriter("../results/hash_list.html")
util._mkdir("../results/hash_list")

for line in util.parse_text_file(sys.argv[1]):
	print line
	graph = hash2graph(line)
	graph.initialize_pos()
	scene = graph.svg(Scene(200, 200, font_size=12))    
	html.write_svg(scene, "../results/hash_list/" + line)

html.display()
Example #4
0
#!/usr/bin/python

import sys
import os
import util
from chemconvert import hash2graph
from html_writer import HtmlWriter
from svg import Scene

html = HtmlWriter("../results/hash_list.html")
util._mkdir("../results/hash_list")

for line in util.parse_text_file(sys.argv[1]):
    print line
    graph = hash2graph(line)
    graph.initialize_pos()
    scene = graph.svg(Scene(200, 200, font_size=12))
    html.write_svg(scene, "../results/hash_list/" + line)

html.display()
Example #5
0
class Pathologic:
    def __init__(self, modules_file, experiment_name, max_module_size=6):

        self.modules_file = modules_file
        self.experiment_name = experiment_name
        self.max_module_size = max_module_size
        util._mkdir("../log")
        self.logfile = open("../log/pathologic_" + self.experiment_name + ".log", "w")
        
        util._mkdir("../results")
        util._mkdir("../results/pathologic_" + self.experiment_name)
        self.html_writer = HtmlWriter("../results/pathologic_" + self.experiment_name + ".html")
        self.html_writer.write("<h1>List of optimal and non-optimal pathways</h1>\n")
        self.html_writer.write("<ul>\n")
        self.line_counter = 0
        self.pathfinder = None
    
    def find_shortest_pathways(self, substrate, product, max_levels, stop_after_first_solution=True):
        G_subs = compound2graph(substrate)
        G_prod = compound2graph(product)
        return self.pathfinder.find_shortest_pathway([G_subs], [G_prod], max_levels=max_levels, stop_after_first_solution=stop_after_first_solution)
    
    def get_distance(self, substrate, product, max_levels):
        G_subs = compound2graph(substrate)
        G_prod = compound2graph(product)
        return self.pathfinder.find_distance([G_subs], [G_prod], max_levels=max_levels)
    
    def get_all_pathways(self, substrate, product, max_levels):
        """return all existing pathways with a length <= max_distance.
        """
        (original_compound_map, possible_pathways, min_length) = self.find_shortest_pathways(substrate, product, max_levels=max_levels, stop_after_first_solution=False)
        if (possible_pathways == []):
            return []
        else:
            scene_list = self.pathfinder.get_all_possible_scenes(original_compound_map, possible_pathways)
            return [scene for (cost, scene) in scene_list] # strip off the cost of each pathway
    
    def get_shortest_pathways(self, substrate, product, max_levels):
        """return -1 if the is no path with length <= max_levels.
           otherwise a pair containing a list of all pathways with the minimal length and the minimal length itself
        """
        (original_compound_map, possible_pathways, min_length) = self.find_shortest_pathways(substrate, product, max_levels=max_levels, stop_after_first_solution=True)
        if (possible_pathways == []):
            return ([], -1)
        else:
            scene_list = self.pathfinder.get_all_possible_scenes(original_compound_map, possible_pathways)
            return ([scene for (cost, scene) in scene_list], min_length) # strip off the cost of each pathway
    
    def verify_pathway(self, pathway):
        sys.stdout.write("Verifying pathway: %s\n" % str(pathway))
        for i in range(len(pathway)-1):
            sys.stdout.write(" - checking '%s' -> '%s' ... " % tuple(pathway[i:i+2]))
            sys.stdout.flush()
            distance = self.get_distance(pathway[i], pathway[i+1], 1)
            if (distance == -1):
                sys.stdout.write("FAILED (not neighbors)\n")
            else:
                sys.stdout.write("OK\n")
            sys.stdout.flush()
    
    def is_optimal(self, pathway, i, j, draw_scenes=False):
        sys.stdout.write(str(pathway[i:j+1]) + " ... ")
    
        wt_distance = j - i
        if (wt_distance <= 1): # we have verified that this is optimal already
            return True
        
        if (draw_scenes):
            # try to find at least one path which is shorter than the wild-type path:
            (scenes, dist) = self.get_shortest_pathways(pathway[i], pathway[j], wt_distance - 1)
        else:
            dist = self.get_distance(pathway[i], pathway[j], wt_distance - 1)
        
        if (dist == -1): # which means no shorter path has been found, hence the WT pathway is one of the shortest
            sys.stdout.write(" is optimal!\n")
            self.html_writer.write("<li><span style=color:green>%s - OPTIMAL</span></li>\n" % str(pathway[i:j+1]))
            self.html_writer.flush()
            return True
        else:                  # there is a shorter path than the WT one
            sys.stdout.write(" is not optimal!\n")
            self.html_writer.write("<li>\n  <span style=color:red>%s - NOT OPTIMAL</span><br>\n  " % str(pathway[i:j+1]))
            
            if (draw_scenes):
                #for s in scenes:
                s = scenes[0] # draws only the first scene (otherwise it could be too long)
                self.html_writer.write_svg(s, "pathologic_" + self.experiment_name + "/pathway_%d_%d_%d" % (self.line_counter, i, j))
                self.html_writer.write("\n</li>\n")
                self.html_writer.flush()
            return False
    
    def find_modules(self, pathway, draw_scenes=False):
        self.verify_pathway(pathway)
        i = 0
        for j in range(2, len(pathway)):
            if (j - i >= self.max_module_size):
                sys.stdout.write(str(pathway[i:(j+1)]) + " is too long for me, chopping off the head...\n")
                i += 1
            
            # shorten the path from it's head until it is optimal (or too short, i.e. length=1)
            while ( (j - i) > 1 and (not self.is_optimal(pathway, i, j, draw_scenes=draw_scenes)) ):
                i += 1

    def analyze(self, carbon_only=True, use_antimotifs=True, draw_scenes=False):
        for line in util.parse_text_file("../rec/" + self.modules_file + ".txt"):
            if (line[0] == '@'):
                line = line[1:]
                self.pathfinder = PathFinder(carbon_only=carbon_only, pruning_method=None, ignore_chirality=False, use_antimotifs=use_antimotifs, outstream=self.logfile)
            else:
                self.pathfinder = PathFinder(carbon_only=carbon_only, pruning_method=None, ignore_chirality=True, use_antimotifs=use_antimotifs, outstream=self.logfile)
            
            pathway = line.split(';')
            self.find_modules(pathway, draw_scenes=draw_scenes)
            self.line_counter += 1

    def analyze_pairs(self, carbon_only=True, use_antimotifs=True, max_distance=4):
        distances = [] # the minimal pathway length between the substrate and the product
        alternatives = [] # each value is the number of alternative pathways with the minimal distance

        line_counter = 0
        for line in util.parse_text_file("../rec/" + self.modules_file + ".txt"):
            if (line[0] == '@'):
                line = line[1:]
                self.pathfinder = PathFinder(carbon_only=carbon_only, pruning_method=None, ignore_chirality=False, use_antimotifs=use_antimotifs, outstream=self.logfile)
            else:
                self.pathfinder = PathFinder(carbon_only=carbon_only, pruning_method=None, ignore_chirality=True, use_antimotifs=use_antimotifs, outstream=self.logfile)

            (subs, prod, max_steps) = line.split(";", 2)
            if (max_steps in ['-1','inf','']):
                sys.stdout.write(subs + " -(?)-> " + prod)
                sys.stdout.flush()
                (scenes, dist) = self.get_shortest_pathways(subs, prod, max_distance)
            else:
                dist = int(max_steps)
                sys.stdout.write(subs + " -(%d)-> " % dist + prod)
                sys.stdout.flush()
                scenes = self.get_all_pathways(subs, prod, dist)

            if (dist == -1):
                sys.stdout.write(", Distance(L) = inf, N = 0\n")
                sys.stdout.flush()
                distances.append("inf")
                alternatives.append(0)
                self.html_writer.write("<li><span style=color:red>%s <-> %s (distance > %d)</span></li>\n" % (subs, prod, self.max_module_size))
                self.html_writer.flush()
            else:
                sys.stdout.write(", Distance(L) = %d, N = %d\n" % (dist, len(scenes)))
                sys.stdout.flush()
                distances.append(dist)
                alternatives.append(len(scenes))
                self.html_writer.write("<li><span style=color:green>%s <-> %s (distance = %d)</span></li>\n" % (subs, prod, dist))
                for i in range(len(scenes)):
                    self.html_writer.write("<li>")
                    self.html_writer.write_svg(scenes[i], "pathologic_" + self.experiment_name + "/pair%d_path%d" % (line_counter,i))
                    self.html_writer.write("</li>\n")
                self.html_writer.flush()
            line_counter += 1
                    
        result_file = open("../results/" + self.experiment_name + ".txt", "w")
        result_file.write(str(distances) + "\n" + str(alternatives) + "\n")
        result_file.close()

    def display(self):
        self.html_writer.write("</ul>\n")
        self.html_writer.write(self.pathfinder.reactor.antimotif_summary())
        self.html_writer.display()

    def __del__(self):
        del self.pathfinder
        self.logfile.close()
Example #6
0
class Pathologic:
    def __init__(self, modules_file, experiment_name, max_module_size=6):

        self.modules_file = modules_file
        self.experiment_name = experiment_name
        self.max_module_size = max_module_size
        util._mkdir("../log")
        self.logfile = open(
            "../log/pathologic_" + self.experiment_name + ".log", "w")

        util._mkdir("../results")
        util._mkdir("../results/pathologic_" + self.experiment_name)
        self.html_writer = HtmlWriter("../results/pathologic_" +
                                      self.experiment_name + ".html")
        self.html_writer.write(
            "<h1>List of optimal and non-optimal pathways</h1>\n")
        self.html_writer.write("<ul>\n")
        self.line_counter = 0
        self.pathfinder = None

    def find_shortest_pathways(self,
                               substrate,
                               product,
                               max_levels,
                               stop_after_first_solution=True):
        G_subs = compound2graph(substrate)
        G_prod = compound2graph(product)
        return self.pathfinder.find_shortest_pathway(
            [G_subs], [G_prod],
            max_levels=max_levels,
            stop_after_first_solution=stop_after_first_solution)

    def get_distance(self, substrate, product, max_levels):
        G_subs = compound2graph(substrate)
        G_prod = compound2graph(product)
        return self.pathfinder.find_distance([G_subs], [G_prod],
                                             max_levels=max_levels)

    def get_all_pathways(self, substrate, product, max_levels):
        """return all existing pathways with a length <= max_distance.
        """
        (original_compound_map, possible_pathways,
         min_length) = self.find_shortest_pathways(
             substrate,
             product,
             max_levels=max_levels,
             stop_after_first_solution=False)
        if (possible_pathways == []):
            return []
        else:
            scene_list = self.pathfinder.get_all_possible_scenes(
                original_compound_map, possible_pathways)
            return [scene for (cost, scene) in scene_list
                    ]  # strip off the cost of each pathway

    def get_shortest_pathways(self, substrate, product, max_levels):
        """return -1 if the is no path with length <= max_levels.
           otherwise a pair containing a list of all pathways with the minimal length and the minimal length itself
        """
        (original_compound_map, possible_pathways,
         min_length) = self.find_shortest_pathways(
             substrate,
             product,
             max_levels=max_levels,
             stop_after_first_solution=True)
        if (possible_pathways == []):
            return ([], -1)
        else:
            scene_list = self.pathfinder.get_all_possible_scenes(
                original_compound_map, possible_pathways)
            return ([scene for (cost, scene) in scene_list], min_length
                    )  # strip off the cost of each pathway

    def verify_pathway(self, pathway):
        sys.stdout.write("Verifying pathway: %s\n" % str(pathway))
        for i in range(len(pathway) - 1):
            sys.stdout.write(" - checking '%s' -> '%s' ... " %
                             tuple(pathway[i:i + 2]))
            sys.stdout.flush()
            distance = self.get_distance(pathway[i], pathway[i + 1], 1)
            if (distance == -1):
                sys.stdout.write("FAILED (not neighbors)\n")
            else:
                sys.stdout.write("OK\n")
            sys.stdout.flush()

    def is_optimal(self, pathway, i, j, draw_scenes=False):
        sys.stdout.write(str(pathway[i:j + 1]) + " ... ")

        wt_distance = j - i
        if (wt_distance <= 1):  # we have verified that this is optimal already
            return True

        if (draw_scenes):
            # try to find at least one path which is shorter than the wild-type path:
            (scenes,
             dist) = self.get_shortest_pathways(pathway[i], pathway[j],
                                                wt_distance - 1)
        else:
            dist = self.get_distance(pathway[i], pathway[j], wt_distance - 1)

        if (
                dist == -1
        ):  # which means no shorter path has been found, hence the WT pathway is one of the shortest
            sys.stdout.write(" is optimal!\n")
            self.html_writer.write(
                "<li><span style=color:green>%s - OPTIMAL</span></li>\n" %
                str(pathway[i:j + 1]))
            self.html_writer.flush()
            return True
        else:  # there is a shorter path than the WT one
            sys.stdout.write(" is not optimal!\n")
            self.html_writer.write(
                "<li>\n  <span style=color:red>%s - NOT OPTIMAL</span><br>\n  "
                % str(pathway[i:j + 1]))

            if (draw_scenes):
                #for s in scenes:
                s = scenes[
                    0]  # draws only the first scene (otherwise it could be too long)
                self.html_writer.write_svg(
                    s, "pathologic_" + self.experiment_name +
                    "/pathway_%d_%d_%d" % (self.line_counter, i, j))
                self.html_writer.write("\n</li>\n")
                self.html_writer.flush()
            return False

    def find_modules(self, pathway, draw_scenes=False):
        self.verify_pathway(pathway)
        i = 0
        for j in range(2, len(pathway)):
            if (j - i >= self.max_module_size):
                sys.stdout.write(
                    str(pathway[i:(j + 1)]) +
                    " is too long for me, chopping off the head...\n")
                i += 1

            # shorten the path from it's head until it is optimal (or too short, i.e. length=1)
            while (
                (j - i) > 1 and
                (not self.is_optimal(pathway, i, j, draw_scenes=draw_scenes))):
                i += 1

    def analyze(self,
                carbon_only=True,
                use_antimotifs=True,
                draw_scenes=False):
        for line in util.parse_text_file("../rec/" + self.modules_file +
                                         ".txt"):
            if (line[0] == '@'):
                line = line[1:]
                self.pathfinder = PathFinder(carbon_only=carbon_only,
                                             pruning_method=None,
                                             ignore_chirality=False,
                                             use_antimotifs=use_antimotifs,
                                             outstream=self.logfile)
            else:
                self.pathfinder = PathFinder(carbon_only=carbon_only,
                                             pruning_method=None,
                                             ignore_chirality=True,
                                             use_antimotifs=use_antimotifs,
                                             outstream=self.logfile)

            pathway = line.split(';')
            self.find_modules(pathway, draw_scenes=draw_scenes)
            self.line_counter += 1

    def analyze_pairs(self,
                      carbon_only=True,
                      use_antimotifs=True,
                      max_distance=4):
        distances = [
        ]  # the minimal pathway length between the substrate and the product
        alternatives = [
        ]  # each value is the number of alternative pathways with the minimal distance

        line_counter = 0
        for line in util.parse_text_file("../rec/" + self.modules_file +
                                         ".txt"):
            if (line[0] == '@'):
                line = line[1:]
                self.pathfinder = PathFinder(carbon_only=carbon_only,
                                             pruning_method=None,
                                             ignore_chirality=False,
                                             use_antimotifs=use_antimotifs,
                                             outstream=self.logfile)
            else:
                self.pathfinder = PathFinder(carbon_only=carbon_only,
                                             pruning_method=None,
                                             ignore_chirality=True,
                                             use_antimotifs=use_antimotifs,
                                             outstream=self.logfile)

            (subs, prod, max_steps) = line.split(";", 2)
            if (max_steps in ['-1', 'inf', '']):
                sys.stdout.write(subs + " -(?)-> " + prod)
                sys.stdout.flush()
                (scenes,
                 dist) = self.get_shortest_pathways(subs, prod, max_distance)
            else:
                dist = int(max_steps)
                sys.stdout.write(subs + " -(%d)-> " % dist + prod)
                sys.stdout.flush()
                scenes = self.get_all_pathways(subs, prod, dist)

            if (dist == -1):
                sys.stdout.write(", Distance(L) = inf, N = 0\n")
                sys.stdout.flush()
                distances.append("inf")
                alternatives.append(0)
                self.html_writer.write(
                    "<li><span style=color:red>%s <-> %s (distance > %d)</span></li>\n"
                    % (subs, prod, self.max_module_size))
                self.html_writer.flush()
            else:
                sys.stdout.write(", Distance(L) = %d, N = %d\n" %
                                 (dist, len(scenes)))
                sys.stdout.flush()
                distances.append(dist)
                alternatives.append(len(scenes))
                self.html_writer.write(
                    "<li><span style=color:green>%s <-> %s (distance = %d)</span></li>\n"
                    % (subs, prod, dist))
                for i in range(len(scenes)):
                    self.html_writer.write("<li>")
                    self.html_writer.write_svg(
                        scenes[i], "pathologic_" + self.experiment_name +
                        "/pair%d_path%d" % (line_counter, i))
                    self.html_writer.write("</li>\n")
                self.html_writer.flush()
            line_counter += 1

        result_file = open("../results/" + self.experiment_name + ".txt", "w")
        result_file.write(str(distances) + "\n" + str(alternatives) + "\n")
        result_file.close()

    def display(self):
        self.html_writer.write("</ul>\n")
        self.html_writer.write(self.pathfinder.reactor.antimotif_summary())
        self.html_writer.display()

    def __del__(self):
        del self.pathfinder
        self.logfile.close()