Example #1
0
def test_dataset_schema_bug():
    schema = {"abc": Primitive("int32"), "def": "int64"}
    ds = Dataset("./data/schema_bug", schema=schema, shape=(100, ))
    ds.flush()
    ds2 = Dataset("./data/schema_bug", schema=schema, shape=(100, ))

    schema = {
        "abc": "uint8",
        "def": {
            "ghi": Tensor((100, 100)),
            "rst": Tensor((100, 100, 100)),
        },
    }
    ds = Dataset("./data/schema_bug_2", schema=schema, shape=(100, ))
    ds.flush()
    ds2 = Dataset("./data/schema_bug_2", schema=schema, shape=(100, ))
Example #2
0
def test_primitive_repr():
    primitve_object = Primitive(int)
    assert "'int64'" == primitve_object.__repr__()
Example #3
0
def test_primitive_str():
    primitve_object = Primitive("int64")
    assert "'int64'" == primitve_object.__str__()
Example #4
0
        )

        sentences = list(df.sentence.values)
        labels = list(df.label.values)
        data = list(zip(sentences, labels))

        @transform(schema=self.schema)
        def load_transform(sample):
            return {"sentence": sample[0], "labels": sample[1]}

        ds = load_transform(data)
        return ds.store(self.tag)


def main(url, tag, schema):
    R = Retrieve(url, tag, schema)
    R.fetch()
    R.unpack()
    R.push()


if __name__ == "__main__":
    url = "https://nyu-mll.github.io/CoLA/cola_public_1.1.zip"
    tag = "activeloop/CoLA"
    schema = {
        "sentence": Text(shape=(None, ), max_shape=(500, )),
        "labels": Primitive(dtype="int64"),
    }

    main(url, tag, schema)