Example #1
0
def SimplifiedQbsolv(max_iter=10,
                     max_time=None,
                     convergence=3,
                     energy_threshold=None,
                     max_subproblem_size=30):
    """Races a Tabu solver and a QPU-based sampler of flip-energy-impact induced
    subproblems.

    For arguments description see: :class:`~hybrid.reference.kerberos.Kerberos`.
    """

    energy_reached = None
    if energy_threshold is not None:
        energy_reached = lambda en: en <= energy_threshold

    workflow = hybrid.Loop(hybrid.Race(
        hybrid.InterruptableTabuSampler(),
        hybrid.EnergyImpactDecomposer(
            size=max_subproblem_size, rolling=True, rolling_history=0.15)
        | hybrid.QPUSubproblemAutoEmbeddingSampler()
        | hybrid.SplatComposer()) | hybrid.ArgMin()
                           | hybrid.TrackMin(output=True),
                           max_iter=max_iter,
                           max_time=max_time,
                           convergence=convergence,
                           terminate=energy_reached)

    return workflow
import hybrid

# load a problem
problem = sys.argv[1]
with open(problem) as fp:
    bqm = dimod.BinaryQuadraticModel.from_coo(fp)

# construct a Dialectic Search workflow
generate_antithesis = (hybrid.IdentityDecomposer()
                       | hybrid.RandomSubproblemSampler()
                       | hybrid.SplatComposer()
                       | hybrid.TabuProblemSampler())

generate_synthesis = (hybrid.GreedyPathMerge() | hybrid.TabuProblemSampler())

tracker = hybrid.TrackMin()

local_update = hybrid.LoopWhileNoImprovement(
    hybrid.Parallel(hybrid.Identity(), generate_antithesis)
    | generate_synthesis | tracker,
    max_tries=10)

global_update = hybrid.Loop(generate_antithesis | local_update, max_iter=10)

# run the workflow
init_state = hybrid.State.from_sample(hybrid.min_sample(bqm), bqm)
final_state = global_update.run(init_state).result()

# show execution profile
hybrid.profiling.print_counters(global_update)
Example #3
0
import sys

import dimod
import hybrid


# load a problem
problem = sys.argv[1]
with open(problem) as fp:
    bqm = dimod.BinaryQuadraticModel.from_coo(fp)


# define the workflow
iteration = hybrid.Race(
    hybrid.InterruptableTabuSampler(),
    hybrid.EnergyImpactDecomposer(size=50, rolling=True, rolling_history=0.15)
    | hybrid.QPUSubproblemAutoEmbeddingSampler()
    | hybrid.SplatComposer()
) | hybrid.ArgMin() | hybrid.TrackMin(output=True)

main = hybrid.Loop(iteration, max_iter=10, convergence=3)


# run the workflow
init_state = hybrid.State.from_sample(hybrid.min_sample(bqm), bqm)
solution = main.run(init_state).result()

# show results
print("Solution: sample={.samples.first}".format(solution))
Example #4
0
#subproblem = hybrid.EnergyImpactDecomposer(size=50, rolling_history=0.15)
subproblem = hybrid.Unwind(
    hybrid.EnergyImpactDecomposer(size=100,
                                  rolling_history=0.15,
                                  traversal='bfs'))
# QPU
#subsampler = hybrid.QPUSubproblemAutoEmbeddingSampler() | hybrid.SplatComposer()
qpu_sampler = hybrid.Map(
    hybrid.QPUSubproblemAutoEmbeddingSampler()) | hybrid.Reduce(
        hybrid.Lambda(merge_substates)) | hybrid.SplatComposer()

rand_sampler = hybrid.Map(hybrid.RandomSubproblemSampler()) | hybrid.Reduce(
    hybrid.Lambda(merge_substates)) | hybrid.SplatComposer()

iteration = hybrid.RacingBranches(
    hybrid.InterruptableTabuSampler(),
    subproblem | qpu_sampler) | hybrid.ArgMin() | hybrid.TrackMin(output=True)

workflow = hybrid.LoopUntilNoImprovement(iteration, convergence=5)

start_t = time.perf_counter()
# Convert to dimod sampler and run workflow
result = hybrid.HybridSampler(workflow).sample(bqm)

elapsed_t = time.perf_counter() - start_t
# show execution profile
#hybrid.profiling.print_counters(workflow)

print("Solution: sample={}".format(result.first))  # doctest: +SKIP
#dwave.inspector.show(result)
print("Elapsed time: {}".format(elapsed_t))
    return a.updated(
        subsamples=hybrid.hstack_samplesets(a.subsamples, b.subsamples))


subproblems = hybrid.Unwind(
    hybrid.EnergyImpactDecomposer(size=50, rolling_history=0.15))

qpu = hybrid.Map(hybrid.QPUSubproblemAutoEmbeddingSampler()) | hybrid.Reduce(
    hybrid.Lambda(merge_substates)) | hybrid.SplatComposer()

random = hybrid.Map(hybrid.RandomSubproblemSampler()) | hybrid.Reduce(
    hybrid.Lambda(merge_substates)) | hybrid.SplatComposer()

subsampler = hybrid.Parallel(qpu, random) | hybrid.ArgMin()

iteration = hybrid.Race(
    hybrid.InterruptableTabuSampler(),
    subproblems | subsampler) | hybrid.ArgMin() | hybrid.TrackMin(output=True)

main = hybrid.Loop(iteration, max_iter=10, convergence=3)

# run the workflow
init_state = hybrid.State.from_sample(hybrid.min_sample(bqm), bqm)
solution = main.run(init_state).result()

# show execution profile
hybrid.profiling.print_counters(main)

# show results
print("Solution: sample={.samples.first}".format(solution))
Example #6
0
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys

import dimod
import hybrid

# load a problem
problem = sys.argv[1]
with open(problem) as fp:
    bqm = dimod.BinaryQuadraticModel.from_coo(fp)

# define the workflow
iteration = hybrid.Race(
    hybrid.InterruptableTabuSampler(),
    hybrid.EnergyImpactDecomposer(size=50, rolling=True, rolling_history=0.15)
    | hybrid.QPUSubproblemAutoEmbeddingSampler()
    | hybrid.SplatComposer()) | hybrid.ArgMin() | hybrid.TrackMin(output=True)

main = hybrid.Loop(iteration, max_iter=10, convergence=3)

# run the workflow
init_state = hybrid.State.from_sample(hybrid.min_sample(bqm), bqm)
solution = main.run(init_state).result()

# show results
print("Solution: sample={.samples.first}".format(solution))