Example #1
0
            print('batch: ' + str(k))
            xT = torch.from_numpy(
                np.concatenate([
                    xNorm[:, iS[k]:iE[k], :],
                    np.tile(cNorm[iS[k]:iE[k], :], [nt, 1, 1])
                ],
                               axis=-1)).float()
            if torch.cuda.is_available():
                xT = xT.cuda()
                model = model.cuda()
            yT = model(xT)[-1, :, :]
            yOutLst.append(yT.detach().cpu().numpy())
        temp = np.concatenate(yOutLst, axis=0)
        yOut = np.ndarray(temp.shape)
        for k in range(ny):
            yOut[:, k] = transform.transOut(temp[:, k], mtdLstY[k],
                                            statLstY[k])

        # save output
        dfOut = info
        dfOut['train'] = np.nan
        dfOut['train'][indTrain] = 1
        dfOut['train'][indTest] = 0
        varC = dictData['varC']
        targetFile = os.path.join(modelFolder, 'target.csv')
        # if not os.path.exists(targetFile):
        targetDf = pd.merge(dfOut,
                            pd.DataFrame(data=y, columns=varC),
                            left_index=True,
                            right_index=True)
        targetDf.to_csv(targetFile)
        outFile = os.path.join(modelFolder, 'output_Ep' + str(iEp) + '.csv')
Example #2
0
def loadSeq(siteNo, varY, model, optX='F', optT='Y8090', order=(5, 0, 5)):
    if model == 'ARMA':
        dirAR = os.path.join(kPath.dirWQ, 'modelStat', 'ARMA')
        strOrder = '-'.join([str(k) for k in order])
        saveFolderName = '{}-{}-{}-{}'.format(optX, optT, varY, strOrder)
        saveFolder = os.path.join(dirAR, saveFolderName)
    elif model == 'LR':
        dirLR = os.path.join(kPath.dirWQ, 'modelStat', 'LR')
        saveFolderName = '{}-{}-{}'.format(optX, optT, varY)
        saveFolder = os.path.join(dirLR, saveFolderName)
    else:
        raise Exception('model {} invalid!'.format(model))
    predFile = os.path.join(saveFolder, siteNo)
    if not os.path.exists(saveFolder):
        os.mkdir(saveFolder)

    if os.path.exists(predFile):
        dfP = pd.read_csv(predFile, index_col=None)
        dfP = utils.time.datePdf(dfP)
    else:
        if optX == 'F':
            varX = gridMET.varLst
        elif optX == 'QF':
            varX = ['00060'] + gridMET.varLst
        else:
            raise Exception('optX {} invalid!'.format(optX))
        dfX = waterQuality.readSiteX(siteNo, varX)
        dfY = waterQuality.readSiteY(siteNo, [varY])
        # normalize
        mtdX = waterQuality.extractVarMtd(varX)
        normX, statX = transform.transInAll(dfX.values, mtdX)
        dfXN = pd.DataFrame(data=normX, index=dfX.index, columns=dfX.columns)
        mtdY = waterQuality.extractVarMtd([varY])
        normY, statY = transform.transInAll(dfY.values, mtdY)
        dfYN = pd.DataFrame(data=normY, index=dfY.index, columns=dfY.columns)
        if optT == 'Y8090':
            dfXT = dfXN[dfXN.index < np.datetime64('2000-01-01')]
            dfYT = dfYN[dfYN.index < np.datetime64('2000-01-01')]
        elif optT == 'Y0010':
            dfXT = dfXN[dfXN.index >= np.datetime64('2000-01-01')]
            dfYT = dfYN[dfYN.index >= np.datetime64('2000-01-01')]
        else:
            raise Exception('optT {} invalid!'.format(optT))

        # train and test
        if model == 'ARMA':
            dfPN, resT = trainARMA(dfXT, dfYT, dfXN, dfYN, order)
        if model == 'LR':
            dfPN = trainLR(dfXT, dfYT, dfXN, dfYN)
        yP = transform.transOut(dfPN.values, mtdY[0], statY[0])
        dfP = pd.DataFrame(data=yP, index=dfYN.index, columns=dfYN.columns)

        # save result, model, stat
        dfP.reset_index().to_csv(predFile, index=False)
        statFile = os.path.join(saveFolder, siteNo + '_stat.json')
        with open(statFile, 'w') as fp:
            json.dump(dict(statX=statX, statY=statY), fp, indent=4)
        # save model
        # if model == 'ARMA':
        #     modelFile = os.path.join(saveFolder, siteNo+'_model.p')
        #     resT.save(modelFile)
    return dfP
Example #3
0
 def transOutYC(self, ycP):
     if ycP.shape[-1] != 0:
         return transform.transOut(ycP, self.statYC)
     else:
         return None
Example #4
0
 def transOutY(self, yP):
     if yP.shape[-1] != 0:
         return transform.transOut(yP, self.statY)
     else:
         return None
Example #5
0
yc = transform.transInAll(ycA, mtdYC, statLst=statYC)

(x, xc) = trainTS.dealNaN((x, xc), [1, 1])
nt = x.shape[0]
xT = torch.from_numpy(np.concatenate([x, np.tile(xc, [nt, 1, 1])],
                                     axis=-1)).float()
if torch.cuda.is_available():
    xT = xT.cuda()

model = model.train(mode=False)
# yP, gate = model(xT)
yP, b, gate = model(xT)
yO = yP.detach().cpu().numpy()
# gate = gate.detach().cpu().numpy()

predY = transform.transOut(yO[:, :, 0], mtdY[0], statY[0])
predYC = transform.transOutAll(yO[:, :, 1:], mtdYC, statYC)
obsY = dfY.values
obsYC = dfYC.values

t = dfY.index.values
fig, axes = plt.subplots(4, 1)
axplot.plotTS(axes[0], t, [predY, obsY], styLst='---', cLst='rb')
axes[0].set_title('streamflow')
axes[0].set_xticks([])
codePdf = usgs.codePdf
for k, code in enumerate(codeLst):
    axplot.plotTS(axes[k + 1],
                  t, [predYC[:, 0, k], obsYC[:, k]],
                  styLst='-*',
                  cLst='rb')
Example #6
0
                ],
                               axis=-1)).float()
            if torch.cuda.is_available():
                xT = xT.cuda()
                model = model.cuda()
            # yT = model(xT)[:, :, 0]
            ycT = model(xT)[-1, :, 1:]
            # yPLst.append(yT.detach().cpu().numpy())
            ycPLst.append(ycT.detach().cpu().numpy())
        # yP = np.concatenate(yPLst, axis=1)
        ycP = np.concatenate(ycPLst, axis=0)
        # yOut = np.ndarray(yP.shape)
        ycOut = np.ndarray(ycP.shape)
        # yOut = transform.transOut(yP, mtdLstY[0], statLstY[0])
        for k in range(nyc):
            ycOut[:, k] = transform.transOut(ycP[:, k], mtdLstYC[k],
                                             statLstYC[k])

        # save output
        print(2)
        dfOut = info
        dfOut['train'] = np.nan
        dfOut['train'][indTrain] = 1
        dfOut['train'][indTest] = 0
        varC = dictData['varC']
        targetFile = os.path.join(modelFolder, 'target.csv')
        # if not os.path.exists(targetFile):
        targetDf = pd.merge(dfOut,
                            pd.DataFrame(data=yc, columns=varC),
                            left_index=True,
                            right_index=True)
        targetDf.to_csv(targetFile)
Example #7
0
print(type(DF) is hydroDL.data.dbBasin.DataModelBasin)

tempFolder = os.path.join(kPath.dirCode, 'temp')
mtdX = dbBasin.io.extractVarMtd(d1.v)

x = d1.X[:, :, 9]
dataIn = np.repeat(x[:, :, None], 6, axis=2)
mtdLst = ['norm', 'log-norm', 'stan', 'log-stan', 'QT', 'log-QT']

q = d1.X[:, :, -1]

# transIn
a = dataIn.copy()
b, dictTran = transform.transIn(a, mtdLst=mtdLst)
d, dictTran = transform.transIn(a, **dictTran)
c = transform.transOut(b, dictTran)

# check hist
nd = len(mtdLst)
bins = 50
indS = 8
fig, axes = plt.subplots(nd, 2, figsize=(4, 8))
for k, var in enumerate(mtdLst):
    _ = axes[k, 0].hist(a[:, :, k].flatten(), bins=bins)
    _ = axes[k, 1].hist(b[:, :, k].flatten(), bins=bins)
fig.show()

fig, axes = plt.subplots(nd, 2, figsize=(4, 8))
for k, var in enumerate(mtdLst):
    _ = axes[k, 0].hist(a[:, indS, k].flatten(), bins=bins)
    _ = axes[k, 1].hist(b[:, indS, k].flatten(), bins=bins)