def test_ltm_10(): path = None model_name = "test_ltm_0" def objective_function(opt): score = -opt["x1"] * opt["x1"] return score search_space = { "x1": list(range(0, 3, 1)), } memory = LongTermMemory(model_name, path=path) hyper = Hyperactive() hyper.add_search( objective_function, search_space, n_iter=25, long_term_memory=memory ) hyper.run() hyper = Hyperactive() hyper.add_search( objective_function, search_space, n_iter=25, long_term_memory=memory ) hyper.run() memory.remove_model_data()
def test_ltm_list(): path = "./" model_name = "test_ltm_list" dict_ = {"x1": [[1, 1, 1], [1, 2, 1], [1, 1, 2]]} results1 = pd.DataFrame(dict_) print("\n results1 \n", results1) memory = LongTermMemory(model_name, path=path) memory.save(results1, objective_function) results2 = memory.load() memory.remove_model_data() print("\n results2 \n", results2) for list_1 in list(results2.values.flatten()): assert_ = False for list_2 in list(dict_.values())[0]: print("\n list_1 ", list_1) print("list_2 ", list_2) print(list_1 == list_2) if list_1 == list_2: assert_ = True break assert assert_
def test_ltm_0(objective_function, search_space, path): (search_space, compare) = search_space print("\n objective_function \n", objective_function) print("\n search_space \n", search_space) print("\n compare \n", compare) print("\n path \n", path) model_name = str(objective_function.__name__) hyper = Hyperactive() hyper.add_search(objective_function, search_space, n_iter=10, initialize={"random": 1}) hyper.run() results1 = hyper.results(objective_function) memory = LongTermMemory(model_name, path=path) memory.save(results1, objective_function) results2 = memory.load() print("\n results1 \n", results1) print("\n results2 \n", results2) memory.remove_model_data() compare(results1, results2)
def test_ltm_1(objective_function, search_space, path): (search_space, compare) = search_space print("\n objective_function \n", objective_function) print("\n search_space \n", search_space) print("\n compare \n", compare) print("\n path \n", path) model_name = str(objective_function.__name__) memory = LongTermMemory(model_name, path=path) hyper1 = Hyperactive() hyper1.add_search( objective_function, search_space, n_iter=10, initialize={"random": 1}, long_term_memory=memory, ) hyper1.run() results1 = hyper1.results(objective_function) hyper2 = Hyperactive() hyper2.add_search( objective_function, search_space, n_iter=10, initialize={"random": 1}, long_term_memory=memory, ) hyper2.run() results2 = hyper2.results(objective_function) memory.remove_model_data() print("\n results1 \n", results1) print("\n results2 \n", results2)
def test_ltm_int(): path = "./" model_name = "test_ltm_int" array = np.arange(3 * 10).reshape(10, 3) results1 = pd.DataFrame(array, columns=["x1", "x2", "x3"]) memory = LongTermMemory(model_name, path=path) memory.save(results1, objective_function) results2 = memory.load() memory.remove_model_data() assert results1.equals(results2)
def test_ltm_str(): path = "./" model_name = "test_ltm_str" array = ["str1", "str2", "str3"] results1 = pd.DataFrame( [array, array, array, array, array], columns=["x1", "x2", "x3"] ) memory = LongTermMemory(model_name, path=path) memory.save(results1, objective_function) results2 = memory.load() memory.remove_model_data() assert results1.equals(results2)
def test_ltm_obj(): path = "./" model_name = "test_ltm_obj" array = [class1_(), class2_(), class3_()] results1 = pd.DataFrame( [array, array, array, array, array], columns=["x1", "x2", "x3"] ) memory = LongTermMemory(model_name, path=path) memory.save(results1, objective_function) results2 = memory.load() memory.remove_model_data() for obj_1 in list(results2.values.flatten()): assert_ = False for obj_2 in array: if obj_1.name == obj_2.name: assert_ = True break assert assert_
def test_ltm_func(): path = "./" model_name = "test_ltm_func" array = [func1, func2, func3] results1 = pd.DataFrame( [array, array, array, array, array], columns=["x1", "x2", "x3"] ) memory = LongTermMemory(model_name, path=path) memory.save(results1, objective_function) results2 = memory.load() memory.remove_model_data() func_str_list = [] for func_ in array: func_str_list.append(inspect.getsource(func_)) for func_ in list(results2.values.flatten()): func_str_ = inspect.getsource(func_) if func_str_ not in func_str_list: assert False