'eval_batch_size': 200,
        'epochs': 20,
        'evaluate_test': True,
        'eval_flexible': False,
        'save_dir': 'temp-sms-spam/model-zoo/example-3-2-{date}-{random_id}',
        'save_accuracy_limit': 0.97,
    }
    data = rnn_model(params)
    solver = hype.TensorflowSolver(data=data,
                                   hyper_params=params,
                                   **solver_params)
    return solver


hyper_params_spec = hype.spec.new(
    max_sequence_length=hype.spec.choice(range(20, 50)),
    min_frequency=hype.spec.choice([1, 3, 5, 10]),
    embedding_size=hype.spec.choice([32, 64, 128]),
    rnn_cell=hype.spec.choice(['basic_rnn', 'lstm', 'gru']),
    rnn_hidden_size=hype.spec.choice([16, 32, 64]),
    dropout_keep_prob=hype.spec.uniform(0.5, 1.0),
    learning_rate=10**hype.spec.uniform(-4, -3),
)

strategy_params = {
    'io_load_dir': 'temp-sms-spam/example-3-2',
    'io_save_dir': 'temp-sms-spam/example-3-2',
}
tuner = hype.HyperTuner(hyper_params_spec, solver_generator, **strategy_params)
tuner.tune()
Example #2
0
    layer = tf.add(tf.matmul(tf.sigmoid(layer), weights[2]), biases[2])
    output = tf.add(tf.matmul(tf.sigmoid(layer), weights['output']),
                    biases['output'])

    cost = tf.reduce_mean(tf.squared_difference(output, y), name='loss')
    optimizer = tf.train.GradientDescentOptimizer(
        learning_rate=params.learning_rate).minimize(cost, name='minimize')
    tf.reduce_mean(tf.cast(tf.abs(output - y) < 0.5, tf.float32),
                   name='accuracy')


def solver_generator(params):
    solver_params = {
        'batch_size': 167,
        'epochs': 50,
        'evaluate_test': True,
        'eval_flexible': True,
    }
    dnn_model(params)
    solver = hype.TensorflowSolver(data=data,
                                   hyper_params=params,
                                   **solver_params)
    return solver


hyper_params_spec = hype.spec.new(learning_rate=10**hype.spec.uniform(-1,
                                                                      -3), )

tuner = hype.HyperTuner(hyper_params_spec, solver_generator)
tuner.tune()