def test_feature_tools_transformer(self):
     df = dsutils.load_bank()
     df.drop(['id'], axis=1, inplace=True)
     y = df.pop('y')
     X_train, X_test = train_test_split(df.head(100), test_size=0.2, random_state=42)
     ftt = FeatureGenerationTransformer(task='classification', trans_primitives=['add_numeric', 'divide_numeric'])
     ftt.fit(X_train)
     x_t = ftt.transform(X_train)
     assert x_t is not None
    def test_datetime_derivation(self):

        df = pd.DataFrame(data={"x1": [datetime.now()]})
        ftt = FeatureGenerationTransformer(task='classification', trans_primitives=["year", "month", "week"])
        ftt.fit(df)

        x_t = ftt.transform(df)
        assert "YEAR(x1)" in x_t
        assert "MONTH(x1)" in x_t
        assert "WEEK(x1)" in x_t
 def test_feature_generation_with_selection(self):
     df = dsutils.load_bank().head(1000)
     df.drop(['id'], axis=1, inplace=True)
     y = df.pop('y')
     cross_cat = CrossCategorical()
     ftt = FeatureGenerationTransformer(task='classification',
                                        trans_primitives=['add_numeric', 'divide_numeric', cross_cat],
                                        feature_selection_args={'ratio_select_cols': 0.2})
     with pytest.raises(AssertionError) as err:
         ftt.fit(df)
         assert err.value == '`y` must be provided for feature selection.'
     ftt.fit(df, y)
     x_t = ftt.transform(df)
     assert x_t.shape[1] == 35
    def test_feature_selection(self):
        df = dsutils.load_bank().head(1000)
        df.drop(['id'], axis=1, inplace=True)
        y = df.pop('y')
        cross_cat = CrossCategorical()
        ftt = FeatureGenerationTransformer(task='classification',
                                           trans_primitives=['add_numeric', 'divide_numeric', cross_cat])
        ftt.fit(df)
        x_t = ftt.transform(df)

        fst = FeatureSelectionTransformer('classification', ratio_select_cols=0.2, reserved_cols=ftt.original_cols)
        fst.fit(x_t, y)
        assert len(fst.scores_.items()) == 99
        assert len(fst.columns_) == 35
        x_t2 = fst.transform(x_t)
        assert x_t2.shape[1] == 35
    def test_fix_input(self, fix_input: bool):
        df = pd.DataFrame(data={"x1": [None, 2, 3], 'x2': [4, 5, 6]})

        ftt = FeatureGenerationTransformer(task='classification', trans_primitives=['add_numeric', 'divide_numeric'],
                                           fix_input=fix_input)
        ftt.fit(df)
        x_t = ftt.transform(df)
        assert "x1 + x2" in x_t
        assert "x1 / x2" in x_t

        if fix_input is True:
            # should no NaN value not only input nor output
            assert not math.isnan(x_t["x1"][0])
            assert not math.isnan(x_t["x1 / x2"][0])
        else:
            # x1 is NaN, it's children is NaN too.
            assert math.isnan(x_t["x1"][0])
            assert math.isnan(x_t["x1 / x2"][0])
 def test_feature_tools_categorical_cross(self):
     df = dsutils.load_bank()
     df.drop(['id'], axis=1, inplace=True)
     cross_cat = CrossCategorical()
     X_train, X_test = train_test_split(df.head(100), test_size=0.2, random_state=42)
     ftt = FeatureGenerationTransformer(task='classification', trans_primitives=[cross_cat])
     ftt.fit(X_train)
     x_t = ftt.transform(X_train)
     assert len(set(x_t.columns.to_list()) - set(
         ['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'poutcome', 'y', 'age',
          'balance', 'day', 'duration', 'campaign', 'pdays', 'previous', 'contact__marital', 'job__poutcome',
          'contact__default', 'housing__month', 'housing__marital', 'loan__y', 'housing__job', 'loan__poutcome',
          'month__poutcome', 'default__month', 'default__education', 'education__loan', 'education__housing',
          'housing__loan', 'housing__poutcome', 'contact__housing', 'contact__loan', 'marital__y', 'contact__job',
          'education__poutcome', 'default__marital', 'job__month', 'job__y', 'default__loan', 'education__marital',
          'default__poutcome', 'default__y', 'contact__month', 'education__month', 'contact__education',
          'contact__poutcome', 'job__marital', 'education__job', 'job__loan', 'contact__y', 'month__y',
          'default__housing', 'default__job', 'poutcome__y', 'loan__marital', 'education__y', 'loan__month',
          'marital__month', 'housing__y', 'marital__poutcome'])) == 0