def get_space_categorical_pipeline_complex(): space = HyperSpace() with space.as_default(): input = HyperInput(name='input1') p1 = categorical_pipeline_complex()(input) p3 = DataFrameMapper(input_df=True, df_out=True)([p1]) # passthrough est = LightGBMEstimator(task='binary', fit_kwargs={})(p3) space.set_inputs(input) return space
def get_space_num_cat_pipeline_multi_complex(dataframe_mapper_default=False, lightgbm_fit_kwargs={}, xgb_fit_kwargs={}): space = HyperSpace() with space.as_default(): input = HyperInput(name='input1') p1 = numeric_pipeline_complex()(input) p2 = categorical_pipeline_complex()(input) p3 = DataFrameMapper(default=dataframe_mapper_default, input_df=True, df_out=True, df_out_dtype_transforms=[(column_object, 'category')])([p1, p2]) p4 = numeric_pipeline_complex(seq_no=1)(p3) p5 = categorical_pipeline_complex(seq_no=1)(p3) p6 = DataFrameMapper(default=dataframe_mapper_default, input_df=True, df_out=True, df_out_dtype_transforms=[(column_object, 'category')])([p4, p5]) lightgbm_init_kwargs = { 'boosting_type': Choice(['gbdt', 'dart', 'goss']), 'num_leaves': Choice([11, 31, 101, 301, 501]), 'learning_rate': Real(0.001, 0.1, step=0.005), 'n_estimators': 100, 'max_depth': -1, # subsample_for_bin = 200000, objective = None, class_weight = None, # min_split_gain = 0., min_child_weight = 1e-3, min_child_samples = 20, } lightgbm_est = LightGBMEstimator(task='binary', fit_kwargs=lightgbm_fit_kwargs, **lightgbm_init_kwargs) xgb_init_kwargs = {} xgb_est = XGBoostEstimator(task='binary', fit_kwargs=xgb_fit_kwargs, **xgb_init_kwargs) or_est = ModuleChoice([lightgbm_est, xgb_est])(p6) space.set_inputs(input) return space
def get_space_num_cat_pipeline(default=False): space = HyperSpace() with space.as_default(): input = HyperInput(name='input1') p1 = numeric_pipeline_simple()(input) p2 = categorical_pipeline_simple()(input) p3 = DataFrameMapper(default=default, input_df=True, df_out=True)([p1, p2]) # passthrough est = LightGBMEstimator(task='binary', fit_kwargs={})(p3) space.set_inputs(input) return space