def setup_model_shell(indir,outdir,outname,rin_shell=None,denser_wall=False,tsc=True,idl=False,plot=False,low_res=False,flat=True,scale=1.0): import numpy as np import astropy.constants as const import scipy as sci import matplotlib.pyplot as plt import matplotlib as mat import os from matplotlib.colors import LogNorm from scipy.optimize import fsolve from scipy.optimize import newton from scipy.integrate import nquad from envelope_func import func import hyperion as hp from hyperion.model import Model from plot_density import plot_density # Constants setup c = const.c.cgs.value AU = 1.49598e13 # Astronomical Unit [cm] pc = 3.08572e18 # Parsec [cm] MS = 1.98892e33 # Solar mass [g] LS = 3.8525e33 # Solar luminosity [erg/s] RS = 6.96e10 # Solar radius [cm] G = 6.67259e-8 # Gravitational constant [cm3/g/s^2] yr = 60*60*24*365 # Years in seconds PI = np.pi # PI constant sigma = const.sigma_sb.cgs.value # Stefan-Boltzmann constant m = Model() # Create dust properties # Hyperion needs nu, albedo, chi, g, p_lin_max from hyperion.dust import HenyeyGreensteinDust # Read in the dust opacity table used by RADMC-3D dust_radmc = dict() [dust_radmc['wl'], dust_radmc['abs'], dust_radmc['scat'], dust_radmc['g']] = np.genfromtxt('dustkappa_oh5_extended.inp',skip_header=2).T # opacity per mass of dust? dust_hy = dict() dust_hy['nu'] = c/dust_radmc['wl']*1e4 ind = np.argsort(dust_hy['nu']) dust_hy['nu'] = dust_hy['nu'][ind] dust_hy['albedo'] = (dust_radmc['scat']/(dust_radmc['abs']+dust_radmc['scat']))[ind] dust_hy['chi'] = (dust_radmc['abs']+dust_radmc['scat'])[ind] dust_hy['g'] = dust_radmc['g'][ind] dust_hy['p_lin_max'] = 0*dust_radmc['wl'][ind] # assume no polarization d = HenyeyGreensteinDust(dust_hy['nu'], dust_hy['albedo'], dust_hy['chi'], dust_hy['g'], dust_hy['p_lin_max']) # dust sublimation does not occur # d.set_sublimation_temperature(None) d.write(outdir+'oh5.hdf5') d.plot(outdir+'oh5.png') # Grids and Density # Calculation inherited from the script used for RADMC-3D # Grid Parameters nx = 300L if low_res == True: nx = 100L ny = 400L nz = 50L [nx, ny, nz] = [scale*nx, scale*ny, scale*nz] if tsc == False: # Parameters setup # Import the model parameters from another file # params = np.genfromtxt(indir+'/params.dat',dtype=None) tstar = params[0][1] mstar = params[1][1]*MS rstar = params[2][1]*RS M_env_dot = params[3][1]*MS/yr M_disk_dot = params[4][1]*MS/yr R_env_max = params[5][1]*AU R_env_min = params[6][1]*AU theta_cav = params[7][1] R_disk_max = params[8][1]*AU R_disk_min = params[9][1]*AU R_cen = R_disk_max M_disk = params[10][1]*MS beta = params[11][1] h100 = params[12][1]*AU rho_cav = params[13][1] if denser_wall == True: wall = params[14][1]*AU rho_wall = params[15][1] rho_cav_center = params[16][1] rho_cav_edge = params[17][1]*AU # Model Parameters # rin = rstar rout = R_env_max rcen = R_cen # Star Parameters # mstar = mstar rstar = rstar*0.9999 tstar = tstar pstar = [0.,0.,0.] else: # TSC model input setting params = np.genfromtxt(indir+'/tsc_params.dat', dtype=None) # TSC model parameter M_env_dot = params[0][1]*MS/yr R_cen = params[1][1]*AU R_inf = params[2][1]*AU # protostar parameter tstar = params[3][1] R_env_max = params[4][1]*AU theta_cav = params[5][1] rho_cav_center = params[6][1] rho_cav_edge = params[7][1]*AU rstar = params[8][1]*RS # Calculate the dust sublimation radius T_sub = 2000 a = 1 #in micron d_sub = (306.86*(a/0.1)**-0.4 * (4*np.pi*rstar**2*sigma*tstar**4/LS) / T_sub)**0.5 *AU # use the dust sublimation radius as the inner radius of disk and envelope R_disk_min = d_sub R_env_min = d_sub rin = rstar rout = R_env_max R_disk_max = R_cen # mostly fixed parameter M_disk = 0.5*MS beta = 1.093 h100 = 8.123*AU rho_cav = 1e-21 # Do the variable conversion cs = (G * M_env_dot / 0.975)**(1/3.) # cm/s t = R_inf / cs / yr # in year mstar = M_env_dot * t * yr omega = (R_cen * 16*cs**8 / (G**3 * mstar**3))**0.5 # Make the Coordinates # ri = rin * (rout/rin)**(np.arange(nx+1).astype(dtype='float')/float(nx)) ri = np.hstack((0.0, ri)) thetai = PI*np.arange(ny+1).astype(dtype='float')/float(ny) phii = PI*2.0*np.arange(nz+1).astype(dtype='float')/float(nz) # Keep the constant cell size in r-direction # if flat == True: ri_cellsize = ri[1:-1]-ri[0:-2] ind = np.where(ri_cellsize/AU > 100.0)[0][0] # The largest cell size is 100 AU ri = np.hstack((ri[0:ind],ri[ind]+np.arange(np.ceil((rout-ri[ind])/100/AU))*100*AU)) nxx = nx nx = len(ri)-1 # Assign the coordinates of the center of cell as its coordinates. # rc = 0.5*( ri[0:nx] + ri[1:nx+1] ) thetac = 0.5*( thetai[0:ny] + thetai[1:ny+1] ) phic = 0.5*( phii[0:nz] + phii[1:nz+1] ) # phic = 0.5*( phii[0:nz-1] + phii[1:nz] ) # Make the dust density model # Make the density profile of the envelope # if rin_shell == None: rin_shell = 0.3*R_env_max if tsc == False: print 'Calculating the dust density profile with infall solution...' rho_env = np.zeros([len(rc),len(thetac),len(phic)]) rho = np.zeros([len(rc),len(thetac),len(phic)]) for ir in range(0,len(rc)): for itheta in range(0,len(thetac)): for iphi in range(0,len(phic)): if rc[ir] > rin_shell: # Envelope profile mu = abs(np.cos(PI/2 - thetac[itheta])) # Implement new root finding algorithm roots = np.roots(np.array([1.0, 0.0, rc[ir]/rcen-1.0, -mu*rc[ir]/rcen])) if len(roots[roots.imag == 0]) == 1: if (abs(roots[roots.imag == 0]) - 1.0) <= 0.0: mu_o_dum = roots[roots.imag == 0] else: mu_o_dum = -0.5 print 'Problem with cubic solving, cos(theta) = ', mu_o_dum print 'parameters are ', np.array([1.0, 0.0, rc[ir]/rcen-1.0, -mu*rc[ir]/rcen]) else: mu_o_dum = -0.5 for imu in range(0, len(roots)): if roots[imu]*mu >= 0.0: if (abs((abs(roots[imu]) - 1.0)) <= 1e-5): mu_o_dum = 1.0 * np.sign(mu) else: mu_o_dum = roots[imu] if mu_o_dum == -0.5: print 'Problem with cubic solving, roots are: ', roots mu_o = mu_o_dum.real rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*rcen**3)**0.5)*(rc[ir]/rcen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*rcen/rc[ir])**(-1) rho[ir,itheta,iphi] = rho_env[ir,itheta,iphi] else: rho[ir,itheta,iphi] = 1e-25 rho_env = rho_env + 1e-40 rho = rho + 1e-40 # TSC model else: print 'Calculating the dust density profile with TSC solution...' # If needed, calculate the TSC model via IDL # if idl == True: print 'Using IDL to calculate the TSC model. Make sure you are running this on mechine with IDL.' import pidly idl = pidly.IDL('/Applications/exelis/idl82/bin/idl') idl('.r ~/programs/misc/TSC/tsc.pro') idl.pro('tsc_run', outdir=outdir, grid=[nxx,ny,nz], time=t, c_s=cs, omega=omega, rstar=rstar, renv_min=R_env_min, renv_max=R_env_max) else: print 'Read the pre-computed TSC model.' # read in the exist file rho_env_tsc = np.genfromtxt(outdir+'rhoenv.dat').T # extrapolate for the NaN values at the outer radius, usually at radius beyond the infall radius # map the 2d strcuture onto 3d grid def poly(x, y, x0, deg=1): import numpy as np p = np.polyfit(x, y, deg) y0 = 0 for i in range(0, len(p)): y0 = y0 + p[i]*x0**(len(p)-i-1) return y0 rho_env_copy = np.array(rho_env_tsc) for ithetac in range(0, len(thetac)): rho_dum = np.log10(rho_env_copy[(rc > 1.1*R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == False),ithetac]) rc_dum = np.log10(rc[(rc > 1.1*R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == False)]) rc_dum_nan = np.log10(rc[(rc > 1.1*R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == True)]) for i in range(0, len(rc_dum_nan)): rho_extrapol = poly(rc_dum, rho_dum, rc_dum_nan[i]) rho_env_copy[(np.log10(rc) == rc_dum_nan[i]),ithetac] = 10**rho_extrapol rho_env2d = rho_env_copy rho_env = np.empty((nx,ny,nz)) for i in range(0, nz): rho_env[:,:,i] = rho_env2d # create the array of density of disk and the whole structure # rho = np.zeros([len(rc),len(thetac),len(phic)]) # The function for calculating the normalization of disk using the total disk mass # for ir in range(0,len(rc)): for itheta in range(0,len(thetac)): for iphi in range(0,len(phic)): if rc[ir] > rin_shell: # Envelope profile rho[ir,itheta,iphi] = rho_env[ir,itheta,iphi] else: rho[ir,itheta,iphi] = 1e-25 rho_env = rho_env + 1e-40 rho = rho + 1e-40 # Call function to plot the density plot_density(rho, rc, thetac,'/Users/yaolun/bhr71/hyperion/', plotname='shell') # Insert the calculated grid and dust density profile into hyperion m.set_spherical_polar_grid(ri, thetai, phii) m.add_density_grid(rho.T, outdir+'oh5.hdf5') # numpy read the array in reverse order # Define the luminsoity source source = m.add_spherical_source() source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4) # [ergs/s] source.radius = rstar # [cm] source.temperature = tstar # [K] source.position = (0., 0., 0.) print 'L_center = % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS) # Setting up the wavelength for monochromatic radiative transfer lambda0 = 0.1 lambda1 = 2.0 lambda2 = 50.0 lambda3 = 95.0 lambda4 = 200.0 lambda5 = 314.0 lambda6 = 670.0 n01 = 10.0 n12 = 20.0 n23 = (lambda3-lambda2)/0.02 n34 = (lambda4-lambda3)/0.03 n45 = (lambda5-lambda4)/0.1 n56 = (lambda6-lambda5)/0.1 lam01 = lambda0 * (lambda1/lambda0)**(np.arange(n01)/n01) lam12 = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12) lam23 = lambda2 * (lambda3/lambda2)**(np.arange(n23)/n23) lam34 = lambda3 * (lambda4/lambda3)**(np.arange(n34)/n34) lam45 = lambda4 * (lambda5/lambda4)**(np.arange(n45)/n45) lam56 = lambda5 * (lambda6/lambda5)**(np.arange(n56+1)/n56) lam = np.concatenate([lam01,lam12,lam23,lam34,lam45,lam56]) nlam = len(lam) # Create camera wavelength points n12 = 70.0 n23 = 70.0 n34 = 70.0 n45 = 50.0 n56 = 50.0 lam12 = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12) lam23 = lambda2 * (lambda3/lambda2)**(np.arange(n23)/n23) lam34 = lambda3 * (lambda4/lambda3)**(np.arange(n34)/n34) lam45 = lambda4 * (lambda5/lambda4)**(np.arange(n45)/n45) lam56 = lambda5 * (lambda6/lambda5)**(np.arange(n56+1)/n56) lam_cam = np.concatenate([lam12,lam23,lam34,lam45,lam56]) n_lam_cam = len(lam_cam) # Radiative transfer setting # number of photons for temp and image m.set_raytracing(True) m.set_monochromatic(True, wavelengths=[3.6, 4.5, 5.8, 8.0, 24, 70, 100, 160, 250, 350, 500]) m.set_n_photons(initial=1000000, imaging_sources=1000000, imaging_dust=1000000,raytracing_sources=1000000, raytracing_dust=1000000) # imaging=100000, raytracing_sources=100000, raytracing_dust=100000 # number of iteration to compute dust specific energy (temperature) m.set_n_initial_iterations(5) m.set_convergence(True, percentile=99., absolute=1.5, relative=1.02) m.set_mrw(True) # Gamma = 1 by default # m.set_forced_first_scattering(forced_first_scattering=True) # Setting up images and SEDs image = m.add_peeled_images() # image.set_wavelength_range(300, 2.0, 670.0) # use the index of wavelength array used by the monochromatic radiative transfer image.set_wavelength_index_range(2,12) # pixel number image.set_image_size(300, 300) image.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max) image.set_viewing_angles([82.0], [0.0]) image.set_uncertainties(True) # output as 64-bit image.set_output_bytes(8) # Output setting # Density m.conf.output.output_density = 'last' # Density difference (shows where dust was destroyed) m.conf.output.output_density_diff = 'none' # Energy absorbed (using pathlengths) m.conf.output.output_specific_energy = 'last' # Number of unique photons that passed through the cell m.conf.output.output_n_photons = 'last' m.write(outdir+outname+'.rtin')
def setup_model(outdir,record_dir,outname,params,dust_file,tsc=True,idl=False,plot=False,\ low_res=True,flat=True,scale=1,radmc=False,mono=False,record=True,dstar=178.,\ aperture=None,dyn_cav=False,fix_params=None,alma=False,power=2,better_im=False,ellipsoid=False,\ TSC_dir='~/programs/misc/TSC/', IDL_path='/Applications/exelis/idl83/bin/idl',auto_disk=0.25): """ params = dictionary of the model parameters alma keyword is obsoleted outdir: The directory for storing Hyperion input files record_dir: The directory contains "model_list.txt" for recording parameters TSC_dir: Path the TSC-related IDL routines IDL_path: The IDL executable """ import numpy as np import astropy.constants as const import scipy as sci # to avoid X server error import matplotlib as mpl mpl.use('Agg') # import matplotlib.pyplot as plt import os from matplotlib.colors import LogNorm from scipy.integrate import nquad from hyperion.model import Model from record_hyperion import record_hyperion from outflow_inner_edge import outflow_inner_edge from pprint import pprint # import pdb # pdb.set_trace() # Constants setup c = const.c.cgs.value AU = 1.49598e13 # Astronomical Unit [cm] pc = 3.08572e18 # Parsec [cm] MS = 1.98892e33 # Solar mass [g] LS = 3.8525e33 # Solar luminosity [erg/s] RS = 6.96e10 # Solar radius [cm] G = 6.67259e-8 # Gravitational constant [cm3/g/s^2] yr = 60 * 60 * 24 * 365 # Years in seconds PI = np.pi # PI constant sigma = const.sigma_sb.cgs.value # Stefan-Boltzmann constant mh = const.m_p.cgs.value + const.m_e.cgs.value g2d = 100. mmw = 2.37 # Kauffmann 2008 m = Model() # Create dust properties # Hyperion needs nu, albedo, chi, g, p_lin_max from hyperion.dust import HenyeyGreensteinDust # Read in the dust opacity table used by RADMC-3D dust = dict() # [dust_radmc['wl'], dust_radmc['abs'], dust_radmc['scat'], dust_radmc['g']] = np.genfromtxt(dust_file,skip_header=2).T [dust['nu'], dust['albedo'], dust['chi'], dust['g']] = np.genfromtxt(dust_file).T # opacity per mass of dust? # dust_hy = dict() # dust_hy['nu'] = c/dust_radmc['wl']*1e4 # ind = np.argsort(dust_hy['nu']) # dust_hy['nu'] = dust_hy['nu'][ind] # dust_hy['albedo'] = (dust_radmc['scat']/(dust_radmc['abs']+dust_radmc['scat']))[ind] # dust_hy['chi'] = (dust_radmc['abs']+dust_radmc['scat'])[ind] # dust_hy['g'] = dust_radmc['g'][ind] # dust_hy['p_lin_max'] = 0*dust_radmc['wl'][ind] # assume no polarization # d = HenyeyGreensteinDust(dust_hy['nu'], dust_hy['albedo'], dust_hy['chi'], dust_hy['g'], dust_hy['p_lin_max']) d = HenyeyGreensteinDust(dust['nu'], dust['albedo'], dust['chi'], dust['g'], dust['g'] * 0) # dust sublimation option d.set_sublimation_temperature('slow', temperature=1600.0) d.set_lte_emissivities(n_temp=3000, temp_min=0.1, temp_max=2000.) # try to solve the freq. problem d.optical_properties.extrapolate_nu(3.28e15, 4e15) # d.write(outdir + os.path.basename(dust_file).split('.')[0] + '.hdf5') d.plot(outdir + os.path.basename(dust_file).split('.')[0] + '.png') plt.clf() # Grids and Density # Calculation inherited from the script used for RADMC-3D # Grid Parameters nx = 300L if low_res == True: nx = 100L ny = 400L nz = 50L [nx, ny, nz] = [int(scale * nx), int(scale * ny), int(scale * nz)] # TSC model input setting # params = np.genfromtxt(indir+'/tsc_params.dat', dtype=None) dict_params = params # input_reader(params_file) # TSC model parameter cs = dict_params['Cs'] * 1e5 t = dict_params['age'] # year omega = dict_params['Omega0'] # calculate related parameters M_env_dot = 0.975 * cs**3 / G mstar = M_env_dot * t * yr R_cen = omega**2 * G**3 * mstar**3 / (16 * cs**8) R_inf = cs * t * yr # M_env_dot = dict_params['M_env_dot']*MS/yr # R_cen = dict_params['R_cen']*AU # R_inf = dict_params['R_inf']*AU # protostar parameter tstar = dict_params['tstar'] R_env_max = dict_params['R_env_max'] * AU theta_cav = dict_params['theta_cav'] rho_cav_center = dict_params['rho_cav_center'] rho_cav_edge = dict_params['rho_cav_edge'] * AU rstar = dict_params['rstar'] * RS # Mostly fixed parameter M_disk = dict_params['M_disk'] * MS beta = dict_params['beta'] h100 = dict_params['h100'] * AU rho_cav = dict_params['rho_cav'] # make M_disk varies with mstar, which is the mass of star+disk if auto_disk != None: if M_disk != 0: print 'M_disk is reset to %4f of mstar (star+disk)' % auto_disk M_disk = mstar * auto_disk else: print 'M_disk = 0 is found. M_disk is set to 0.' # ellipsoid cavity parameter if ellipsoid == True: a_out = 130 * 178. * AU b_out = 50 * 178. * AU z_out = a_out # a_in = 77.5 * 178. * AU # b_in = 30 * 178. * AU a_in = dict_params['a_in'] * 178. * AU b_in = a_in / a_out * b_out z_in = a_in # rho_cav_out = 1e4 * mh # rho_cav_in = 1e3 * mh rho_cav_out = dict_params['rho_cav_out'] * mh rho_cav_in = dict_params['rho_cav_in'] * mh # Calculate the dust sublimation radius T_sub = 1600 a = 1 #in micron # realistic dust # d_sub = 2.9388e7*(a/0.1)**-0.2 * (4*np.pi*rstar**2*sigma*tstar**4/LS)**0.5 / T_sub**3 *AU # black body dust d_sub = (LS / 16. / np.pi / sigma / AU**2 * (4 * np.pi * rstar**2 * sigma * tstar**4 / LS) / T_sub**4)**0.5 * AU # use the dust sublimation radius as the inner radius of disk and envelope R_disk_min = d_sub R_env_min = d_sub rin = rstar rout = R_env_max R_disk_max = R_cen # Do the variable conversion # cs = (G * M_env_dot / 0.975)**(1/3.) # cm/s # t = R_inf / cs / yr # in year # mstar = M_env_dot * t * yr # omega = (R_cen * 16*cs**8 / (G**3 * mstar**3))**0.5 # print the variables for radmc3d print 'Dust sublimation radius %6f AU' % (d_sub / AU) print 'M_star %4f Solar mass' % (mstar / MS) print 'Infall radius %4f AU' % (R_inf / AU) # if there is any parameter found in fix_params, then fix them if fix_params != None: if 'R_min' in fix_params.keys(): R_disk_min = fix_params['R_min'] * AU R_env_min = fix_params['R_min'] * AU # Make the Coordinates # ri = rin * (rout / rin)**(np.arange(nx + 1).astype(dtype='float') / float(nx)) ri = np.hstack((0.0, ri)) thetai = PI * np.arange(ny + 1).astype(dtype='float') / float(ny) phii = PI * 2.0 * np.arange(nz + 1).astype(dtype='float') / float(nz) # Keep the constant cell size in r-direction at large radii # if flat == True: ri_cellsize = ri[1:-1] - ri[0:-2] ind = np.where( ri_cellsize / AU > 100.0)[0][0] # The largest cell size is 100 AU ri = np.hstack( (ri[0:ind], ri[ind] + np.arange(np.ceil( (rout - ri[ind]) / 100 / AU)) * 100 * AU)) nxx = nx nx = len(ri) - 1 # Assign the coordinates of the center of cell as its coordinates. # rc = 0.5 * (ri[0:nx] + ri[1:nx + 1]) thetac = 0.5 * (thetai[0:ny] + thetai[1:ny + 1]) phic = 0.5 * (phii[0:nz] + phii[1:nz + 1]) # phic = 0.5*( phii[0:nz-1] + phii[1:nz] ) # Make the dust density model # Make the density profile of the envelope # total_mass = 0 if tsc == False: print 'Calculating the dust density profile with infall solution...' if theta_cav != 0: # c0 = R_env_max**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav))) # using R = 10000 AU as the reference point c0 = (10000. * AU)**(-0.5) * np.sqrt(1 / np.sin(np.radians(theta_cav))**3 - 1 / np.sin(np.radians(theta_cav))) else: c0 = 0 rho_env = np.zeros([len(rc), len(thetac), len(phic)]) rho_disk = np.zeros([len(rc), len(thetac), len(phic)]) rho = np.zeros([len(rc), len(thetac), len(phic)]) if dyn_cav == True: print 'WARNING: Calculation of interdependent cavity property has not implemented in infall-only solution!' # Normalization for the total disk mass def f(w, z, beta, rstar, h100): f = 2 * PI * w * (1 - np.sqrt(rstar / w)) * (rstar / w)**( beta + 1) * np.exp(-0.5 * (z / (w**beta * h100 / 100**beta))**2) return f rho_0 = M_disk / (nquad( f, [[R_disk_min, R_disk_max], [-R_env_max, R_env_max]], args=(beta, rstar, h100)))[0] i = 0 j = 0 if 'rho_cav_center' in locals() == False: rho_cav_center = 5.27e-18 # 1.6e-17 # 5.27e-18 print 'Use 5.27e-18 as the default value for cavity center' if 'rho_cav_edge' in locals() == False: rho_cav_edge = 40 * AU print 'Use 40 AU as the default value for size of the inner region' discont = 1 for ir in range(0, len(rc)): for itheta in range(0, len(thetac)): for iphi in range(0, len(phic)): if rc[ir] > R_env_min: # Envelope profile w = abs(rc[ir] * np.cos(np.pi / 2 - thetac[itheta])) z = rc[ir] * np.sin(np.pi / 2 - thetac[itheta]) if ellipsoid == False: z_cav = c0 * abs(w)**1.5 if z_cav == 0: z_cav = R_env_max cav_con = abs(z) > abs(z_cav) else: # condition for the outer ellipsoid cav_con = (2 * (w / b_out)**2 + ((abs(z) - z_out) / a_out)**2) < 1 if cav_con: # open cavity if ellipsoid == False: if rho_cav_edge == 0: rho_cav_edge = R_env_min if (rc[ir] <= rho_cav_edge) & (rc[ir] >= R_env_min): rho_env[ ir, itheta, iphi] = g2d * rho_cav_center #*((rc[ir]/AU)**2) else: rho_env[ ir, itheta, iphi] = g2d * rho_cav_center * discont * ( rho_cav_edge / rc[ir])**power i += 1 else: # condition for the inner ellipsoid if (2 * (w / b_in)**2 + ((abs(z) - z_in) / a_in)**2) > 1: rho_env[ir, itheta, iphi] = rho_cav_out else: rho_env[ir, itheta, iphi] = rho_cav_in i += 1 else: j += 1 mu = abs(np.cos(thetac[itheta])) # Implement new root finding algorithm roots = np.roots( np.array([ 1.0, 0.0, rc[ir] / R_cen - 1.0, -mu * rc[ir] / R_cen ])) if len(roots[roots.imag == 0]) == 1: if (abs(roots[roots.imag == 0]) - 1.0) <= 0.0: mu_o_dum = roots[roots.imag == 0] else: mu_o_dum = -0.5 print 'Problem with cubic solving, cos(theta) = ', mu_o_dum print 'parameters are ', np.array([ 1.0, 0.0, rc[ir] / R_cen - 1.0, -mu * rc[ir] / R_cen ]) else: mu_o_dum = -0.5 for imu in range(0, len(roots)): if roots[imu] * mu >= 0.0: if (abs( (abs(roots[imu]) - 1.0)) <= 1e-5): mu_o_dum = 1.0 * np.sign(mu) else: mu_o_dum = roots[imu] if mu_o_dum == -0.5: print 'Problem with cubic solving, roots are: ', roots mu_o = mu_o_dum.real rho_env[ir, itheta, iphi] = M_env_dot / ( 4 * PI * (G * mstar * R_cen**3)**0.5) * ( rc[ir] / R_cen)**(-3. / 2) * ( 1 + mu / mu_o)**(-0.5) * ( mu / mu_o + 2 * mu_o**2 * R_cen / rc[ir])**(-1) # Disk profile if ((w >= R_disk_min) and (w <= R_disk_max)) == True: h = ((w / (100 * AU))**beta) * h100 rho_disk[ir, itheta, iphi] = rho_0 * (1 - np.sqrt( rstar / w)) * (rstar / w)**(beta + 1) * np.exp( -0.5 * (z / h)**2) # Combine envelope and disk rho[ir, itheta, iphi] = rho_disk[ir, itheta, iphi] + rho_env[ir, itheta, iphi] else: rho[ir, itheta, iphi] = 1e-30 # add the dust mass into the total count cell_mass = rho[ir, itheta, iphi] * (1 / 3.) * ( ri[ir + 1]**3 - ri[ir]**3) * (phii[iphi + 1] - phii[iphi]) * -(np.cos( thetai[itheta + 1]) - np.cos(thetai[itheta])) total_mass = total_mass + cell_mass rho_env = rho_env + 1e-40 rho_disk = rho_disk + 1e-40 rho = rho + 1e-40 # TSC model else: print 'Calculating the dust density profile with TSC solution...' if theta_cav != 0: # c0 = R_env_max**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav))) c0 = (1e4 * AU)**(-0.5) * np.sqrt(1 / np.sin(np.radians(theta_cav))**3 - 1 / np.sin(np.radians(theta_cav))) else: c0 = 0 # If needed, calculate the TSC model via IDL # if idl == True: print 'Using IDL to calculate the TSC model. Make sure you are running this on mechine with IDL.' import pidly # idl = pidly.IDL('/Applications/exelis/idl82/bin/idl') idl = pidly.IDL(IDL_path) idl('.r ' + TSC_dir + 'tsc.pro') # idl.pro('tsc_run', outdir=outdir, grid=[nxx,ny,nz], time=t, c_s=cs, omega=omega, rstar=rstar, renv_min=R_env_min, renv_max=R_env_max) # idl.pro('tsc_run', outdir=outdir, grid=[nxx,ny,nz], time=t, c_s=cs, omega=omega, rstar=rstar, renv_min=R_env_min, renv_max=min([R_inf,max(ri)])) # min([R_inf,max(ri)]) # # only run TSC calculation within infall radius # modify the rc array rc_idl = rc[(rc < min([R_inf, max(ri)]))] idl.pro( 'tsc_run', outdir=outdir, rc=rc_idl, thetac=thetac, time=t, c_s=cs, omega=omega, renv_min=R_env_min ) #, rstar=rstar, renv_min=R_env_min, renv_max=min([R_inf,max(ri)])) # min([R_inf,max(ri)]) else: print 'Read the pre-computed TSC model.' rc_idl = rc[(rc < min([R_inf, max(ri)]))] # read in the exist file rho_env_tsc_idl = np.genfromtxt(outdir + 'rhoenv.dat').T # because only region within infall radius is calculated by IDL program, need to project it to the original grid rho_env_tsc = np.zeros([len(rc), len(thetac)]) for irc in range(len(rc)): if rc[irc] in rc_idl: rho_env_tsc[irc, :] = rho_env_tsc_idl[np.where( rc_idl == rc[irc]), :] # extrapolate for the NaN values at the outer radius, usually at radius beyond the infall radius # using r^-2 profile at radius greater than infall radius # and map the 2d strcuture onto 3d grid def poly(x, y, x0, deg=2): import numpy as np p = np.polyfit(x, y, deg) y0 = 0 for i in range(0, len(p)): y0 = y0 + p[i] * x0**(len(p) - i - 1) return y0 # rho_env_copy = np.array(rho_env_tsc) # if max(rc) > R_inf: # ind_infall = np.where(rc <= R_inf)[0][-1] # print ind_infall # for ithetac in range(0, len(thetac)): # # rho_dum = np.log10(rho_env_copy[(rc > R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == False),ithetac]) # # rc_dum = np.log10(rc[(rc > R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == False)]) # # rc_dum_nan = np.log10(rc[(rc > R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == True)]) # # # print rc_dum # # for i in range(0, len(rc_dum_nan)): # # rho_extrapol = poly(rc_dum, rho_dum, rc_dum_nan[i]) # # rho_env_copy[(np.log10(rc) == rc_dum_nan[i]),ithetac] = 10**rho_extrapol # # # for i in range(ind_infall, len(rc)): # rho_env_copy[i, ithetac] = 10**(np.log10(rho_env_copy[ind_infall, ithetac]) - 2*(np.log10(rc[i]/rc[ind_infall]))) # rho_env2d = rho_env_copy # rho_env = np.empty((nx,ny,nz)) # for i in range(0, nz): # rho_env[:,:,i] = rho_env2d # map TSC solution from IDL to actual 2-D grid rho_env_tsc2d = np.empty((nx, ny)) if max(ri) > R_inf: ind_infall = np.where(rc <= R_inf)[0][-1] for i in range(0, len(rc)): if i <= ind_infall: rho_env_tsc2d[i, :] = rho_env_tsc[i, :] else: rho_env_tsc2d[i, :] = 10**( np.log10(rho_env_tsc[ind_infall, :]) - 2 * (np.log10(rc[i] / rc[ind_infall]))) else: rho_env_tsc2d = rho_env_tsc # map it to 3-D grid rho_env = np.empty((nx, ny, nz)) for i in range(0, nz): rho_env[:, :, i] = rho_env_tsc2d if dyn_cav == True: print 'Calculate the cavity properties using the criteria that swept-up mass = outflowed mass' # using swept-up mass = flow mass to derive the edge of the extended flat density region v_outflow = 1e2 * 1e5 rho_cav_edge = outflow_inner_edge(np.copy(rho_env), (ri, thetai, phii), M_env_dot, v_outflow, theta_cav, R_env_min) dict_params['rho_cav_edge'] = rho_cav_edge # assume gas-to-dust ratio = 100 rho_cav_center = 0.01 * 0.1 * M_env_dot * rho_cav_edge / v_outflow / 2 / ( 2 * np.pi / 3 * rho_cav_edge**3 * (1 - np.cos(np.radians(theta_cav)))) dict_params['rho_cav_center'] = rho_cav_center print 'inner edge is %5f AU and density is %e g/cm3' % ( rho_cav_edge / AU, rho_cav_center) # create the array of density of disk and the whole structure # rho_disk = np.zeros([len(rc), len(thetac), len(phic)]) rho = np.zeros([len(rc), len(thetac), len(phic)]) # Calculate the disk scale height by the normalization of h100 def f(w, z, beta, rstar, h100): f = 2 * PI * w * (1 - np.sqrt(rstar / w)) * (rstar / w)**( beta + 1) * np.exp(-0.5 * (z / (w**beta * h100 / 100**beta))**2) return f # The function for calculating the normalization of disk using the total disk mass # rho_0 = M_disk / (nquad( f, [[R_disk_min, R_disk_max], [-R_env_max, R_env_max]], args=(beta, rstar, h100)))[0] i = 0 j = 0 if 'rho_cav_center' in locals() == False: rho_cav_center = 5.27e-18 # 1.6e-17 # 5.27e-18 print 'Use 5.27e-18 as the default value for cavity center' if 'rho_cav_edge' in locals() == False: rho_cav_edge = 40 * AU print 'Use 40 AU as the default value for size of the inner region' discont = 1 for ir in range(0, len(rc)): for itheta in range(0, len(thetac)): for iphi in range(0, len(phic)): if rc[ir] > R_env_min: # Envelope profile w = abs(rc[ir] * np.cos(np.pi / 2 - thetac[itheta])) z = rc[ir] * np.sin(np.pi / 2 - thetac[itheta]) if ellipsoid == False: z_cav = c0 * abs(w)**1.5 if z_cav == 0: z_cav = R_env_max cav_con = abs(z) > abs(z_cav) else: # condition for the outer ellipsoid cav_con = (2 * (w / b_out)**2 + ((abs(z) - z_out) / a_out)**2) < 1 if cav_con: # open cavity if ellipsoid == False: if rho_cav_edge == 0: rho_cav_edge = R_env_min if (rc[ir] <= rho_cav_edge) & (rc[ir] >= R_env_min): rho_env[ ir, itheta, iphi] = g2d * rho_cav_center #*((rc[ir]/AU)**2) else: rho_env[ ir, itheta, iphi] = g2d * rho_cav_center * discont * ( rho_cav_edge / rc[ir])**power i += 1 else: # condition for the inner ellipsoid if (2 * (w / b_in)**2 + ((abs(z) - z_in) / a_in)**2) > 1: rho_env[ir, itheta, iphi] = rho_cav_out else: rho_env[ir, itheta, iphi] = rho_cav_in i += 1 # Disk profile if ((w >= R_disk_min) and (w <= R_disk_max)) == True: h = ((w / (100 * AU))**beta) * h100 rho_disk[ir, itheta, iphi] = rho_0 * (1 - np.sqrt( rstar / w)) * (rstar / w)**(beta + 1) * np.exp( -0.5 * (z / h)**2) # Combine envelope and disk rho[ir, itheta, iphi] = rho_disk[ir, itheta, iphi] + rho_env[ir, itheta, iphi] else: rho[ir, itheta, iphi] = 1e-40 # add the dust mass into the total count cell_mass = rho[ir, itheta, iphi] * (1 / 3.) * ( ri[ir + 1]**3 - ri[ir]**3) * (phii[iphi + 1] - phii[iphi]) * -(np.cos( thetai[itheta + 1]) - np.cos(thetai[itheta])) total_mass = total_mass + cell_mass # rho_env = rho_env + 1e-40 # rho_disk = rho_disk + 1e-40 # rho = rho + 1e-40 # apply gas-to-dust ratio of 100 rho_dust = rho / g2d total_mass_dust = total_mass / MS / g2d print 'Total dust mass = %f Solar mass' % total_mass_dust if record == True: # Record the input and calculated parameters params = dict_params.copy() params.update({ 'd_sub': d_sub / AU, 'M_env_dot': M_env_dot / MS * yr, 'R_inf': R_inf / AU, 'R_cen': R_cen / AU, 'mstar': mstar / MS, 'M_tot_gas': total_mass / MS }) record_hyperion(params, record_dir) if plot == True: # rc setting # mat.rcParams['text.usetex'] = True # mat.rcParams['font.family'] = 'serif' # mat.rcParams['font.serif'] = 'Times' # mat.rcParams['font.sans-serif'] = 'Computer Modern Sans serif' # Plot the azimuthal averaged density fig = plt.figure(figsize=(8, 6)) ax_env = fig.add_subplot(111, projection='polar') # take the weighted average # rho2d is the 2-D projection of gas density rho2d = np.sum(rho**2, axis=2) / np.sum(rho, axis=2) zmin = 1e-22 / mmw / mh cmap = plt.cm.CMRmap rho2d_exp = np.hstack((rho2d, rho2d, rho2d[:, 0:1])) thetac_exp = np.hstack( (thetac - PI / 2, thetac + PI / 2, thetac[0] - PI / 2)) # plot the gas density img_env = ax_env.pcolormesh( thetac_exp, rc / AU, rho2d_exp / mmw / mh, cmap=cmap, norm=LogNorm(vmin=zmin, vmax=1e9)) # np.nanmax(rho2d_exp/mmw/mh) ax_env.set_xlabel(r'$\rm{Polar\,angle\,(Degree)}$', fontsize=20) ax_env.set_ylabel(r'$\rm{Radius\,(AU)}$', fontsize=20) ax_env.tick_params(labelsize=20) ax_env.set_yticks(np.arange(0, R_env_max / AU, R_env_max / AU / 5)) # ax_env.set_ylim([0,10000]) ax_env.set_xticklabels([r'$\rm{90^{\circ}}$',r'$\rm{45^{\circ}}$',r'$\rm{0^{\circ}}$',r'$\rm{-45^{\circ}}$',\ r'$\rm{-90^{\circ}}$',r'$\rm{-135^{\circ}}$',r'$\rm{180^{\circ}}$',r'$\rm{135^{\circ}}$']) # fix the tick label font ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral', size=20) for label in ax_env.get_yticklabels(): label.set_fontproperties(ticks_font) ax_env.grid(True) cb = fig.colorbar(img_env, pad=0.1) cb.ax.set_ylabel(r'$\rm{Averaged\,Gas\,Density\,(cm^{-3})}$', fontsize=20) cb.set_ticks([1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9]) cb.set_ticklabels([r'$\rm{10^{2}}$',r'$\rm{10^{3}}$',r'$\rm{10^{4}}$',r'$\rm{10^{5}}$',r'$\rm{10^{6}}$',\ r'$\rm{10^{7}}$',r'$\rm{10^{8}}$',r'$\rm{\geq 10^{9}}$']) cb_obj = plt.getp(cb.ax.axes, 'yticklabels') plt.setp(cb_obj, fontsize=20) fig.savefig(outdir + outname + '_gas_density.png', format='png', dpi=300, bbox_inches='tight') fig.clf() # Plot the radial density profile fig = plt.figure(figsize=(12, 9)) ax = fig.add_subplot(111) plot_grid = [0, 49, 99, 149, 199] alpha = np.linspace(0.3, 1.0, len(plot_grid)) for i in plot_grid: rho_rad, = ax.plot(np.log10(rc / AU), np.log10(rho2d[:, i] / g2d / mmw / mh), '-', color='b', linewidth=2, markersize=3, alpha=alpha[plot_grid.index(i)]) tsc_only, = ax.plot(np.log10(rc / AU), np.log10(rho_env_tsc2d[:, i] / mmw / mh), 'o', color='r', linewidth=2, markersize=3, alpha=alpha[plot_grid.index(i)]) rinf = ax.axvline(np.log10(R_inf / AU), linestyle='--', color='k', linewidth=1.5) cen_r = ax.axvline(np.log10(R_cen / AU), linestyle=':', color='k', linewidth=1.5) # sisslope, = ax.plot(np.log10(rc/AU), -2*np.log10(rc/AU)+A-(-2)*np.log10(plot_r_inf), linestyle='--', color='Orange', linewidth=1.5) # gt_R_cen_slope, = ax.plot(np.log10(rc/AU), -1.5*np.log10(rc/AU)+B-(-1.5)*np.log10(plot_r_inf), linestyle='--', color='Orange', linewidth=1.5) # lt_R_cen_slope, = ax.plot(np.log10(rc/AU), -0.5*np.log10(rc/AU)+A-(-0.5)*np.log10(plot_r_inf), linestyle='--', color='Orange', linewidth=1.5) lg = plt.legend([rho_rad, tsc_only, rinf, cen_r],\ [r'$\rm{\rho_{dust}}$',r'$\rm{\rho_{tsc}}$',r'$\rm{infall\,radius}$',r'$\rm{centrifugal\,radius}$'],\ fontsize=20, numpoints=1) ax.set_xlabel(r'$\rm{log(Radius)\,(AU)}$', fontsize=20) ax.set_ylabel(r'$\rm{log(Gas \slash Dust\,Density)\,(cm^{-3})}$', fontsize=20) [ ax.spines[axis].set_linewidth(1.5) for axis in ['top', 'bottom', 'left', 'right'] ] ax.minorticks_on() ax.tick_params('both', labelsize=18, width=1.5, which='major', pad=15, length=5) ax.tick_params('both', labelsize=18, width=1.5, which='minor', pad=15, length=2.5) # fix the tick label font ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral', size=18) for label in ax.get_xticklabels(): label.set_fontproperties(ticks_font) for label in ax.get_yticklabels(): label.set_fontproperties(ticks_font) ax.set_ylim([0, 15]) fig.gca().set_xlim(left=np.log10(0.05)) # ax.set_xlim([np.log10(0.8),np.log10(10000)]) # subplot shows the radial density profile along the midplane ax_mid = plt.axes([0.2, 0.2, 0.2, 0.2], frameon=True) ax_mid.plot(np.log10(rc / AU), np.log10(rho2d[:, 199] / g2d / mmw / mh), 'o', color='b', linewidth=1, markersize=2) ax_mid.plot(np.log10(rc / AU), np.log10(rho_env_tsc2d[:, 199] / mmw / mh), '-', color='r', linewidth=1, markersize=2) # ax_mid.set_ylim([0,10]) # ax_mid.set_xlim([np.log10(0.8),np.log10(10000)]) ax_mid.set_ylim([0, 15]) fig.savefig(outdir + outname + '_gas_radial.pdf', format='pdf', dpi=300, bbox_inches='tight') fig.clf() # Insert the calculated grid and dust density profile into hyperion m.set_spherical_polar_grid(ri, thetai, phii) # temperary for comparing full TSC and infall-only TSC model # import sys # sys.path.append(os.path.expanduser('~')+'/programs/misc/') # from tsc_comparison import tsc_com # rho_tsc, rho_ulrich = tsc_com() m.add_density_grid(rho_dust.T, d) # m.add_density_grid(rho.T, outdir+'oh5.hdf5') # numpy read the array in reverse order # Define the luminsoity source source = m.add_spherical_source() source.luminosity = (4 * PI * rstar**2) * sigma * (tstar**4) # [ergs/s] source.radius = rstar # [cm] source.temperature = tstar # [K] source.position = (0., 0., 0.) print 'L_center = % 5.2f L_sun' % ((4 * PI * rstar**2) * sigma * (tstar**4) / LS) # # add an infrared source at the center # L_IR = 0.04 # ir_source = m.add_spherical_source() # ir_source.luminosity = L_IR*LS # ir_source.radius = rstar # [cm] # ir_source.temperature = 500 # [K] peak at 10 um # ir_source.position = (0., 0., 0.) # print 'Additional IR source, L_IR = %5.2f L_sun' % L_IR # Setting up the wavelength for monochromatic radiative transfer lambda0 = 0.1 lambda1 = 2.0 lambda2 = 50.0 lambda3 = 95.0 lambda4 = 200.0 lambda5 = 314.0 lambda6 = 1000.0 n01 = 10.0 n12 = 20.0 n23 = 50.0 lam01 = lambda0 * (lambda1 / lambda0)**(np.arange(n01) / n01) lam12 = lambda1 * (lambda2 / lambda1)**(np.arange(n12) / n12) lam23 = lambda2 * (lambda6 / lambda2)**(np.arange(n23 + 1) / n23) lam = np.concatenate([lam01, lam12, lam23]) nlam = len(lam) # Create camera wavelength points n12 = 70.0 n23 = 70.0 n34 = 70.0 n45 = 50.0 n56 = 50.0 lam12 = lambda1 * (lambda2 / lambda1)**(np.arange(n12) / n12) lam23 = lambda2 * (lambda3 / lambda2)**(np.arange(n23) / n23) lam34 = lambda3 * (lambda4 / lambda3)**(np.arange(n34) / n34) lam45 = lambda4 * (lambda5 / lambda4)**(np.arange(n45) / n45) lam56 = lambda5 * (lambda6 / lambda5)**(np.arange(n56 + 1) / n56) lam_cam = np.concatenate([lam12, lam23, lam34, lam45, lam56]) n_lam_cam = len(lam_cam) # Radiative transfer setting # number of photons for temp and image lam_list = lam.tolist() # print lam_list m.set_raytracing(True) # option of using more photons for imaging if better_im == False: im_photon = 1e6 else: im_photon = 5e7 if mono == True: # Monechromatic radiative transfer setting m.set_monochromatic(True, wavelengths=lam_list) m.set_n_photons(initial=1000000, imaging_sources=im_photon, imaging_dust=im_photon, raytracing_sources=1000000, raytracing_dust=1000000) else: # regular wavelength grid setting m.set_n_photons(initial=1000000, imaging=im_photon, raytracing_sources=1000000, raytracing_dust=1000000) # number of iteration to compute dust specific energy (temperature) m.set_n_initial_iterations(20) # m.set_convergence(True, percentile=95., absolute=1.5, relative=1.02) m.set_convergence(True, percentile=dict_params['percentile'], absolute=dict_params['absolute'], relative=dict_params['relative']) m.set_mrw(True) # Gamma = 1 by default # m.set_forced_first_scattering(forced_first_scattering=True) # Setting up images and SEDs # SED setting # Infinite aperture syn_inf = m.add_peeled_images(image=False) # use the index of wavelength array used by the monochromatic radiative transfer if mono == False: syn_inf.set_wavelength_range(1400, 2.0, 1400.0) syn_inf.set_viewing_angles([dict_params['view_angle']], [0.0]) syn_inf.set_uncertainties(True) syn_inf.set_output_bytes(8) # aperture # 7.2 in 10 um scaled by lambda / 10 # flatten beyond 20 um # default aperture if aperture == None: aperture = {'wave': [3.6, 4.5, 5.8, 8.0, 8.5, 9, 9.7, 10, 10.5, 11, 16, 20, 24, 35, 70, 100, 160, 250, 350, 500, 1300],\ 'aperture': [7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 20.4, 20.4, 20.4, 20.4, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 101]} # assign wl_aper and aper from dictionary of aperture wl_aper = aperture['wave'] aper = aperture['aperture'] # create the non-repetitive aperture list and index array aper_reduced = list(set(aper)) index_reduced = np.arange(1, len(aper_reduced) + 1) # name = np.arange(1,len(wl_aper)+1) # aper = np.empty_like(wl_aper) # for i in range(0, len(wl_aper)): # if wl_aper[i] < 5: # # aper[i] = 1.2 * 7 # aper[i] = 1.8 * 4 # elif (wl_aper[i] < 14) & (wl_aper[i] >=5): # # aper[i] = 7.2 * wl_aper[i]/10. # aper[i] = 1.8 * 4 # elif (wl_aper[i] >= 14) & (wl_aper[i] <40): # # aper[i] = 7.2 * 2 # aper[i] = 5.1 * 4 # else: # aper[i] = 24.5 # dict_peel_sed = {} # for i in range(0, len(wl_aper)): # aper_dum = aper[i]/2 * (1/3600.*np.pi/180.)*dstar*pc # dict_peel_sed[str(name[i])] = m.add_peeled_images(image=False) # # use the index of wavelength array used by the monochromatic radiative transfer # if mono == False: # # dict_peel_sed[str(name[i])].set_wavelength_range(1300, 2.0, 1300.0) # dict_peel_sed[str(name[i])].set_wavelength_range(1000, 2.0, 1000.0) # dict_peel_sed[str(name[i])].set_viewing_angles([dict_params['view_angle']], [0.0]) # # aperture should be given in cm # dict_peel_sed[str(name[i])].set_aperture_range(1, aper_dum, aper_dum) # dict_peel_sed[str(name[i])].set_uncertainties(True) # dict_peel_sed[str(name[i])].set_output_bytes(8) dict_peel_sed = {} for i in range(0, len(aper_reduced)): aper_dum = aper_reduced[i] / 2 * (1 / 3600. * np.pi / 180.) * dstar * pc dict_peel_sed[str(index_reduced[i])] = m.add_peeled_images(image=False) # use the index of wavelength array used by the monochromatic radiative transfer if mono == False: dict_peel_sed[str(index_reduced[i])].set_wavelength_range( 1400, 2.0, 1400.0) dict_peel_sed[str(index_reduced[i])].set_viewing_angles( [dict_params['view_angle']], [0.0]) # aperture should be given in cm and its the radius of the aperture dict_peel_sed[str(index_reduced[i])].set_aperture_range( 1, aper_dum, aper_dum) dict_peel_sed[str(index_reduced[i])].set_uncertainties(True) dict_peel_sed[str(index_reduced[i])].set_output_bytes(8) # image setting syn_im = m.add_peeled_images(sed=False) # use the index of wavelength array used by the monochromatic radiative transfer if mono == False: syn_im.set_wavelength_range(1400, 2.0, 1400.0) # pixel number syn_im.set_image_size(300, 300) syn_im.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max) syn_im.set_viewing_angles([dict_params['view_angle']], [0.0]) syn_im.set_uncertainties(True) # output as 64-bit syn_im.set_output_bytes(8) # Output setting # Density m.conf.output.output_density = 'last' # Density difference (shows where dust was destroyed) m.conf.output.output_density_diff = 'none' # Energy absorbed (using pathlengths) m.conf.output.output_specific_energy = 'last' # Number of unique photons that passed through the cell m.conf.output.output_n_photons = 'last' m.write(outdir + outname + '.rtin') if radmc == True: # RADMC-3D still use a pre-defined aperture with lazy for-loop aper = np.zeros([len(lam)]) ind = 0 for wl in lam: if wl < 5: aper[ind] = 8.4 elif wl >= 5 and wl < 14: aper[ind] = 1.8 * 4 elif wl >= 14 and wl < 40: aper[ind] = 5.1 * 4 else: aper[ind] = 24.5 ind += 1 # Write the wavelength_micron.inp file # f_wave = open(outdir + 'wavelength_micron.inp', 'w') f_wave.write('%d \n' % int(nlam)) for ilam in range(0, nlam): f_wave.write('%f \n' % lam[ilam]) f_wave.close() # Write the camera_wavelength_micron.inp file # f_wave_cam = open(outdir + 'camera_wavelength_micron.inp', 'w') f_wave_cam.write('%d \n' % int(nlam)) for ilam in range(0, nlam): f_wave_cam.write('%f \n' % lam[ilam]) f_wave_cam.close() # Write the aperture_info.inp # f_aper = open(outdir + 'aperture_info.inp', 'w') f_aper.write('1 \n') f_aper.write('%d \n' % int(nlam)) for iaper in range(0, len(aper)): f_aper.write('%f \t %f \n' % (lam[iaper], aper[iaper] / 2)) f_aper.close() # Write the stars.inp file # f_star = open(outdir + 'stars.inp', 'w') f_star.write('2\n') f_star.write('1 \t %d \n' % int(nlam)) f_star.write('\n') f_star.write('%e \t %e \t %e \t %e \t %e \n' % (rstar * 0.9999, mstar, 0, 0, 0)) f_star.write('\n') for ilam in range(0, nlam): f_star.write('%f \n' % lam[ilam]) f_star.write('\n') f_star.write('%f \n' % -tstar) f_star.close() # Write the grid file # f_grid = open(outdir + 'amr_grid.inp', 'w') f_grid.write('1\n') # iformat f_grid.write('0\n') # AMR grid style (0=regular grid, no AMR) f_grid.write( '150\n' ) # Coordinate system coordsystem<100: Cartisian; 100<=coordsystem<200: Spherical; 200<=coordsystem<300: Cylindrical f_grid.write('0\n') # gridinfo f_grid.write('1 \t 1 \t 1 \n') # Include x,y,z coordinate f_grid.write('%d \t %d \t %d \n' % (int(nx) - 1, int(ny), int(nz))) # Size of the grid [f_grid.write('%e \n' % ri[ir]) for ir in range(1, len(ri))] [ f_grid.write('%f \n' % thetai[itheta]) for itheta in range(0, len(thetai)) ] [f_grid.write('%f \n' % phii[iphi]) for iphi in range(0, len(phii))] f_grid.close() # Write the density file # f_dust = open(outdir + 'dust_density.inp', 'w') f_dust.write('1 \n') # format number f_dust.write('%d \n' % int((nx - 1) * ny * nz)) # Nr of cells f_dust.write('1 \n') # Nr of dust species for iphi in range(0, len(phic)): for itheta in range(0, len(thetac)): for ir in range(1, len(rc)): f_dust.write('%e \n' % rho_dust[ir, itheta, iphi]) f_dust.close() # Write the dust opacity table f_dustkappa = open(outdir + 'dustkappa_oh5_extended.inp', 'w') f_dustkappa.write('3 \n') # format index for including g-factor f_dustkappa.write( '%d \n' % len(dust['nu'])) # number of wavlength/frequency in the table for i in range(len(dust['nu'])): f_dustkappa.write('%f \t %f \t %f \t %f \n' % (c / dust['nu'][i] * 1e4, dust['chi'][i], dust['chi'][i] * dust['albedo'][i] / (1 - dust['albedo'][i]), dust['g'][i])) f_dustkappa.close() # Write the Dust opacity control file # f_opac = open(outdir + 'dustopac.inp', 'w') f_opac.write('2 Format number of this file\n') f_opac.write('1 Nr of dust species\n') f_opac.write( '============================================================================\n' ) f_opac.write( '1 Way in which this dust species is read\n') f_opac.write('0 0=Thermal grain\n') # f_opac.write('klaus Extension of name of dustkappa_***.inp file\n') f_opac.write( 'oh5_extended Extension of name of dustkappa_***.inp file\n') f_opac.write( '----------------------------------------------------------------------------\n' ) f_opac.close() # In[112]: # Write the radmc3d.inp control file # f_control = open(outdir + 'radmc3d.inp', 'w') f_control.write('nphot = %d \n' % 100000) f_control.write('scattering_mode_max = 2\n') f_control.write('camera_min_drr = 0.1\n') f_control.write('camera_min_dangle = 0.1\n') f_control.write('camera_spher_cavity_relres = 0.1\n') f_control.write('istar_sphere = 1\n') f_control.write('modified_random_walk = 1\n') f_control.close() return m # from input_reader import input_reader_table # from pprint import pprint # filename = '/Users/yaolun/programs/misc/hyperion/test_input.txt' # params = input_reader_table(filename) # pprint(params[0]) # indir = '/Users/yaolun/test/' # outdir = '/Users/yaolun/test/' # dust_file = '/Users/yaolun/programs/misc/oh5_hyperion.txt' # # dust_file = '/Users/yaolun/Copy/dust_model/Ormel2011/hyperion/(ic-sil,gra)3opc.txt' # # fix_params = {'R_min': 0.14} # fix_params = {} # setup_model(indir,outdir,'model_test',params[0],dust_file,plot=True,record=False,\ # idl=False,radmc=False,fix_params=fix_params,ellipsoid=False)
def setup_model(outdir,record_dir,outname,params,dust_file,tsc=True,idl=False,plot=False,\ low_res=True,flat=True,scale=1,radmc=False,mono=False,mono_wave=None, record=True,dstar=200.,aperture=None,dyn_cav=False,fix_params=None, power=2,better_im=False,ellipsoid=False,TSC_dir='~/programs/misc/TSC/', IDL_path='/Applications/exelis/idl83/bin/idl',auto_disk=0.25,fast_plot=False, image_only=False, tsc_com=False, ext_source=None): """ params = dictionary of the model parameters 'alma' keyword is obsoleted outdir: The directory for storing Hyperion input files record_dir: The directory contains "model_list.txt" for recording parameters TSC_dir: Path the TSC-related IDL routines IDL_path: The IDL executable fast_plot: Do not plot the polar plot of the density because the rendering takes quite a lot of time. mono: monochromatic radiative transfer mode (need to specify the wavelength or a list of wavelength with 'mono_wave') image_only: only run for images """ import numpy as np import astropy.constants as const from astropy.io import ascii import scipy as sci # to avoid X server error import matplotlib as mpl mpl.use('Agg') # import matplotlib.pyplot as plt import os from matplotlib.colors import LogNorm from scipy.integrate import nquad from hyperion.model import Model from record_hyperion import record_hyperion from outflow_inner_edge import outflow_inner_edge from pprint import pprint # Constants setup c = const.c.cgs.value AU = const.au.cgs.value # Astronomical Unit [cm] pc = const.pc.cgs.value # Parsec [cm] MS = const.M_sun.cgs.value # Solar mass [g] LS = const.L_sun.cgs.value # Solar luminosity [erg/s] RS = const.R_sun.cgs.value # Solar radius [cm] G = const.G.cgs.value # Gravitational constant [cm3/g/s^2] yr = 60*60*24*365 # Years in seconds PI = np.pi # PI constant sigma = const.sigma_sb.cgs.value # Stefan-Boltzmann constant mh = const.m_p.cgs.value + const.m_e.cgs.value g2d = 100. mmw = 2.37 # Kauffmann 2008 m = Model() # min and max wavelength to compute (need to define them first for checking dust properties) # !!! wav_min = 2.0 wav_max = 1400. wav_num = 1400 # Create dust properties # Hyperion needs nu, albedo, chi, g, p_lin_max from hyperion.dust import HenyeyGreensteinDust # Read in the dust opacity table used by RADMC-3D dust = dict() [dust['nu'], dust['albedo'], dust['chi'], dust['g']] = np.genfromtxt(dust_file).T d = HenyeyGreensteinDust(dust['nu'], dust['albedo'], dust['chi'], dust['g'], dust['g']*0) # dust sublimation option d.set_sublimation_temperature('slow', temperature=1600.0) d.set_lte_emissivities(n_temp=3000, temp_min=0.1, temp_max=2000.) # if the min and/or max wavelength fall out of range if c/wav_min/1e-4 > dust['nu'].max(): d.optical_properties.extrapolate_nu(dust['nu'].min(), c/wav_min/1e-4) print 'minimum wavelength is out of dust model. The dust model is extrapolated.' if c/wav_max/1e-4 < dust['nu'].min(): d.optical_properties.extrapolate_nu(c/wav_max/1e-4, dust['nu'].max()) print 'maximum wavelength is out of dust model. The dust model is extrapolated.' # try to solve the freq. problem d.optical_properties.extrapolate_nu(3.28e15, 5e15) # d.write(outdir+os.path.basename(dust_file).split('.')[0]+'.hdf5') d.plot(outdir+os.path.basename(dust_file).split('.')[0]+'.png') plt.clf() # Grids and Density # Grid Parameters nx = 300L if low_res == True: nx = 100L ny = 400L nz = 50L [nx, ny, nz] = [int(scale*nx), int(scale*ny), int(scale*nz)] # TSC model input setting dict_params = params # TSC model parameter cs = dict_params['Cs']*1e5 t = dict_params['age'] # year omega = dict_params['Omega0'] # calculate related parameters M_env_dot = 0.975*cs**3/G mstar = M_env_dot * t * yr R_cen = omega**2 * G**3 * mstar**3 /(16*cs**8) R_inf = cs * t * yr # protostar parameter tstar = dict_params['tstar'] R_env_max = dict_params['R_env_max']*AU theta_cav = dict_params['theta_cav'] rho_cav_center = dict_params['rho_cav_center'] rho_cav_edge = dict_params['rho_cav_edge']*AU rstar = dict_params['rstar']*RS # Mostly fixed parameter M_disk = dict_params['M_disk']*MS beta = dict_params['beta'] h100 = dict_params['h100']*AU rho_cav = dict_params['rho_cav'] # make M_disk varies with mstar, which is the mass of star+disk if auto_disk != None: if M_disk != 0: print 'M_disk is reset to %4f of mstar (star+disk)' % auto_disk M_disk = mstar * auto_disk else: print 'M_disk = 0 is found. M_disk is set to 0.' # ellipsoid cavity parameter if ellipsoid == True: # the numbers are given in arcsec a_out = 130 * dstar * AU b_out = 50 * dstar * AU z_out = a_out a_in = dict_params['a_in'] * dstar * AU b_in = a_in/a_out*b_out z_in = a_in rho_cav_out = dict_params['rho_cav_out'] * mh rho_cav_in = dict_params['rho_cav_in'] * mh # Calculate the dust sublimation radius T_sub = 1600 a = 1 # in micron # realistic dust # d_sub = 2.9388e7*(a/0.1)**-0.2 * (4*np.pi*rstar**2*sigma*tstar**4/LS)**0.5 / T_sub**3 *AU # black body dust d_sub = (LS/16./np.pi/sigma/AU**2*(4*np.pi*rstar**2*sigma*tstar**4/LS)/T_sub**4)**0.5 *AU # use the dust sublimation radius as the inner radius of disk and envelope R_disk_min = d_sub R_env_min = d_sub rin = rstar rout = R_env_max R_disk_max = R_cen # print the variables print 'Dust sublimation radius %6f AU' % (d_sub/AU) print 'M_star %4f Solar mass' % (mstar/MS) print 'Infall radius %4f AU' % (R_inf / AU) # if there is any parameter found in fix_params, then fix them if fix_params != None: if 'R_min' in fix_params.keys(): R_disk_min = fix_params['R_min']*AU R_env_min = fix_params['R_min']*AU # Make the Coordinates # # if ext_source != None: # rout = R_env_max*1.1 ri = rin * (rout/rin)**(np.arange(nx+1).astype(dtype='float')/float(nx)) ri = np.hstack((0.0, ri)) thetai = PI*np.arange(ny+1).astype(dtype='float')/float(ny) phii = PI*2.0*np.arange(nz+1).astype(dtype='float')/float(nz) # Keep the constant cell size in r-direction at large radii # if flat == True: ri_cellsize = ri[1:-1]-ri[0:-2] ind = np.where(ri_cellsize/AU > 100.0)[0][0] # The largest cell size is 100 AU ri = np.hstack((ri[0:ind],ri[ind]+np.arange(np.ceil((rout-ri[ind])/100/AU))*100*AU)) nxx = nx nx = len(ri)-1 # Assign the coordinates of the center of cell as its coordinates. # rc = 0.5*( ri[0:nx] + ri[1:nx+1] ) thetac = 0.5*( thetai[0:ny] + thetai[1:ny+1] ) phic = 0.5*( phii[0:nz] + phii[1:nz+1] ) # for non-TSC model if tsc_com: import hyperion as hp from hyperion.model import AnalyticalYSOModel non_tsc = AnalyticalYSOModel() # Define the luminsoity source nt_source = non_tsc.add_spherical_source() nt_source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4) # [ergs/s] nt_source.radius = rstar # [cm] nt_source.temperature = tstar # [K] nt_source.position = (0., 0., 0.) nt_source.mass = mstar # Envelope structure # nt_envelope = non_tsc.add_ulrich_envelope() nt_envelope.mdot = M_env_dot # Infall rate nt_envelope.rmin = rin # Inner radius nt_envelope.rc = R_cen # Centrifugal radius nt_envelope.rmax = R_env_max # Outer radius nt_envelope.star = nt_source nt_grid = hp.grid.SphericalPolarGrid(ri, thetai, phii) rho_env_ulrich = nt_envelope.density(nt_grid).T rho_env_ulrich2d = np.sum(rho_env_ulrich**2,axis=2)/np.sum(rho_env_ulrich,axis=2) # Make the dust density model # Make the density profile of the envelope # total_mass = 0 if tsc == False: print 'Calculating the dust density profile with infall solution...' if theta_cav != 0: # using R = 10000 AU as the reference point c0 = (10000.*AU)**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav))) else: c0 = 0 rho_env = np.zeros([len(rc),len(thetac),len(phic)]) rho_disk = np.zeros([len(rc),len(thetac),len(phic)]) rho = np.zeros([len(rc),len(thetac),len(phic)]) if dyn_cav == True: print 'WARNING: Calculation of interdependent cavity property has not implemented in infall-only solution!' # Normalization for the total disk mass def f(w,z,beta,rstar,h100): f = 2*PI*w*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/(w**beta*h100/100**beta))**2) return f rho_0 = M_disk/(nquad(f,[[R_disk_min,R_disk_max],[-R_env_max,R_env_max]], args=(beta,rstar,h100)))[0] i = 0 j = 0 if 'rho_cav_center' in locals() == False: rho_cav_center = 5e-19 print 'Use 5.27e-18 as the default value for cavity center' if 'rho_cav_edge' in locals() == False: rho_cav_edge = 40*AU print 'Use 40 AU as the default value for size of the inner region' discont = 1 for ir in range(0,len(rc)): for itheta in range(0,len(thetac)): for iphi in range(0,len(phic)): if rc[ir] > R_env_min: # Envelope profile w = abs(rc[ir]*np.cos(np.pi/2 - thetac[itheta])) z = rc[ir]*np.sin(np.pi/2 - thetac[itheta]) if ellipsoid == False: z_cav = c0*abs(w)**1.5 if z_cav == 0: z_cav = R_env_max cav_con = abs(z) > abs(z_cav) if theta_cav == 90: cav_con = True else: # condition for the outer ellipsoid cav_con = (2*(w/b_out)**2 + ((abs(z)-z_out)/a_out)**2) < 1 if cav_con: # open cavity if ellipsoid == False: if rho_cav_edge == 0: rho_cav_edge = R_env_min if (rc[ir] <= rho_cav_edge) & (rc[ir] >= R_env_min): rho_env[ir,itheta,iphi] = g2d * rho_cav_center else: rho_env[ir,itheta,iphi] = g2d * rho_cav_center*discont*(rho_cav_edge/rc[ir])**power i += 1 else: # condition for the inner ellipsoid if (2*(w/b_in)**2 + ((abs(z)-z_in)/a_in)**2) > 1: rho_env[ir,itheta,iphi] = rho_cav_out else: rho_env[ir,itheta,iphi] = rho_cav_in i +=1 else: j += 1 mu = abs(np.cos(thetac[itheta])) # Implement new root finding algorithm roots = np.roots(np.array([1.0, 0.0, rc[ir]/R_cen-1.0, -mu*rc[ir]/R_cen])) if len(roots[roots.imag == 0]) == 1: if (abs(roots[roots.imag == 0]) - 1.0) <= 0.0: mu_o_dum = roots[roots.imag == 0] else: mu_o_dum = -0.5 print 'Problem with cubic solving, cos(theta) = ', mu_o_dum print 'parameters are ', np.array([1.0, 0.0, rc[ir]/R_cen-1.0, -mu*rc[ir]/R_cen]) else: mu_o_dum = -0.5 for imu in range(0, len(roots)): if roots[imu]*mu >= 0.0: if (abs((abs(roots[imu]) - 1.0)) <= 1e-5): mu_o_dum = 1.0 * np.sign(mu) else: mu_o_dum = roots[imu] if mu_o_dum == -0.5: print 'Problem with cubic solving, roots are: ', roots mu_o = mu_o_dum.real rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*R_cen**3)**0.5)*(rc[ir]/R_cen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*R_cen/rc[ir])**(-1) # Disk profile if ((w >= R_disk_min) and (w <= R_disk_max)) == True: h = ((w/(100*AU))**beta)*h100 rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2) # Combine envelope and disk rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi] else: rho[ir,itheta,iphi] = 1e-30 # add the dust mass into the total count cell_mass = rho[ir, itheta, iphi] * (1/3.)*(ri[ir+1]**3 - ri[ir]**3) * (phii[iphi+1]-phii[iphi]) * -(np.cos(thetai[itheta+1])-np.cos(thetai[itheta])) total_mass = total_mass + cell_mass rho_env = rho_env + 1e-40 rho_disk = rho_disk + 1e-40 rho = rho + 1e-40 # TSC model else: print 'Calculating the dust density profile with TSC solution...' if theta_cav != 0: c0 = (1e4*AU)**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav))) else: c0 = 0 # If needed, calculate the TSC model via IDL # if idl == True: print 'Using IDL to calculate the TSC model. Make sure you are running this on mechine with IDL.' import pidly idl = pidly.IDL(IDL_path) idl('.r '+TSC_dir+'tsc.pro') idl('.r '+TSC_dir+'tsc_run.pro') # # only run TSC calculation within infall radius # modify the rc array ind_infall = np.where(rc >= R_inf)[0][0] if max(ri) > R_inf: rc_idl = rc[0:ind_infall+1] else: rc_idl = rc[rc < max(ri)] idl.pro('tsc_run', indir=TSC_dir, outdir=outdir, rc=rc_idl, thetac=thetac, time=t, c_s=cs, omega=omega, renv_min=R_env_min) file_idl = 'rhoenv.dat' else: print 'Read the pre-computed TSC model.' ind_infall = np.where(rc >= R_inf)[0][0] if max(ri) > R_inf: rc_idl = rc[0:ind_infall+1] else: rc_idl = rc[rc < max(ri)] if idl != False: file_idl = idl # read in the exist file rho_env_tsc_idl = np.genfromtxt(outdir+file_idl).T # because only region within infall radius is calculated by IDL program, # need to project it to the original grid rho_env_tsc = np.zeros([len(rc), len(thetac)]) for irc in range(len(rc)): if rc[irc] in rc_idl: rho_env_tsc[irc,:] = rho_env_tsc_idl[np.squeeze(np.where(rc_idl == rc[irc])),:] # extrapolate for the NaN values at the outer radius, usually at radius beyond the infall radius # using r^-2 profile at radius greater than infall radius # and map the 2d strcuture onto 3-D grid # map TSC solution from IDL to actual 2-D grid rho_env_tsc2d = np.empty((nx,ny)) if max(ri) > R_inf: for i in range(0, len(rc)): if i <= ind_infall: rho_env_tsc2d[i,:] = rho_env_tsc[i,:] else: rho_env_tsc2d[i,:] = 10**(np.log10(rho_env_tsc[ind_infall,:]) - 2*(np.log10(rc[i]/rc[ind_infall]))) else: rho_env_tsc2d = rho_env_tsc # map it to 3-D grid rho_env = np.empty((nx,ny,nz)) for i in range(0, nz): rho_env[:,:,i] = rho_env_tsc2d # typical no used. Just an approach I tried to make the size of the # constant desnity region self-consistent with the outflow cavity. if dyn_cav == True: print 'Calculate the cavity properties using the criteria that swept-up mass = outflowed mass' # using swept-up mass = flow mass to derive the edge of the extended flat density region v_outflow = 1e2 * 1e5 rho_cav_edge = outflow_inner_edge(np.copy(rho_env), (ri,thetai,phii),M_env_dot,v_outflow,theta_cav, R_env_min) dict_params['rho_cav_edge'] = rho_cav_edge # assume gas-to-dust ratio = 100 rho_cav_center = 0.01 * 0.1*M_env_dot*rho_cav_edge/v_outflow/2 / (2*np.pi/3*rho_cav_edge**3*(1-np.cos(np.radians(theta_cav)))) dict_params['rho_cav_center'] = rho_cav_center print 'inner edge is %5f AU and density is %e g/cm3' % (rho_cav_edge/AU, rho_cav_center) # create the array of density of disk and the whole structure # rho_disk = np.zeros([len(rc),len(thetac),len(phic)]) rho = np.zeros([len(rc),len(thetac),len(phic)]) # non-TSC option if tsc_com: rho_ulrich = np.zeros([len(rc),len(thetac),len(phic)]) # Calculate the disk scale height by the normalization of h100 def f(w,z,beta,rstar,h100): f = 2*PI*w*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/(w**beta*h100/100**beta))**2) return f # The function for calculating the normalization of disk using the total disk mass # rho_0 = M_disk/(nquad(f,[[R_disk_min,R_disk_max],[-R_env_max,R_env_max]], args=(beta,rstar,h100)))[0] i = 0 j = 0 # put in default outflow cavity setting if nothing is specified if 'rho_cav_center' in locals() == False: rho_cav_center = 5e-19 print 'Use 5e-19 as the default value for cavity center' if 'rho_cav_edge' in locals() == False: rho_cav_edge = 40*AU print 'Use 40 AU as the default value for size of the inner region' discont = 1 for ir in range(0,len(rc)): for itheta in range(0,len(thetac)): for iphi in range(0,len(phic)): # for external heating option if (rc[ir] > R_env_min): # Envelope profile w = abs(rc[ir]*np.cos(np.pi/2 - thetac[itheta])) z = rc[ir]*np.sin(np.pi/2 - thetac[itheta]) if ellipsoid == False: z_cav = c0*abs(w)**1.5 if z_cav == 0: z_cav = R_env_max cav_con = abs(z) > abs(z_cav) else: # condition for the outer ellipsoid cav_con = (2*(w/b_out)**2 + ((abs(z)-z_out)/a_out)**2) < 1 if cav_con: # open cavity if ellipsoid == False: if rho_cav_edge == 0: rho_cav_edge = R_env_min if (rc[ir] <= rho_cav_edge) & (rc[ir] >= R_env_min): rho_env[ir,itheta,iphi] = g2d * rho_cav_center#*((rc[ir]/AU)**2) if tsc_com: rho_env_ulrich[ir,itheta,iphi] = rho_env[ir,itheta,iphi] else: rho_env[ir,itheta,iphi] = g2d * rho_cav_center*discont*(rho_cav_edge/rc[ir])**power if tsc_com: rho_env_ulrich[ir,itheta,iphi] = rho_env[ir,itheta,iphi] i += 1 else: # condition for the inner ellipsoid if (2*(w/b_in)**2 + ((abs(z)-z_in)/a_in)**2) > 1: rho_env[ir,itheta,iphi] = rho_cav_out if tsc_com: rho_env_ulrich[ir,itheta,iphi] = rho_env[ir,itheta,iphi] else: rho_env[ir,itheta,iphi] = rho_cav_in if tsc_com: rho_env_ulrich[ir,itheta,iphi] = rho_env[ir,itheta,iphi] i +=1 # Disk profile if ((w >= R_disk_min) and (w <= R_disk_max)) == True: h = ((w/(100*AU))**beta)*h100 rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2) # Combine envelope and disk rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi] if tsc_com: rho_ulrich[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env_ulrich[ir,itheta,iphi] else: rho[ir,itheta,iphi] = 1e-40 if tsc_com: rho[ir,itheta,iphi] = 1e-40 # add the dust mass into the total count cell_mass = rho[ir, itheta, iphi] * (1/3.)*(ri[ir+1]**3 - ri[ir]**3) * (phii[iphi+1]-phii[iphi]) * -(np.cos(thetai[itheta+1])-np.cos(thetai[itheta])) total_mass = total_mass + cell_mass # apply gas-to-dust ratio of 100 rho_dust = rho/g2d if tsc_com: rho_ulrich_dust = rho_ulrich/g2d total_mass_dust = total_mass/MS/g2d print 'Total dust mass = %f Solar mass' % total_mass_dust if record == True: # Record the input and calculated parameters params = dict_params.copy() params.update({'d_sub': d_sub/AU, 'M_env_dot': M_env_dot/MS*yr, 'R_inf': R_inf/AU, 'R_cen': R_cen/AU, 'mstar': mstar/MS, 'M_tot_gas': total_mass/MS}) record_hyperion(params,record_dir) if plot == True: # rho2d is the 2-D projection of gas density # take the weighted average rho2d = np.sum(rho**2,axis=2)/np.sum(rho,axis=2) if tsc_com: rho2d = np.sum(rho_ulrich**2,axis=2)/np.sum(rho_ulrich,axis=2) if fast_plot == False: # Plot the azimuthal averaged density fig = plt.figure(figsize=(8,6)) ax_env = fig.add_subplot(111,projection='polar') zmin = 1e-22/mmw/mh zmin = 1e-1 cmap = plt.cm.CMRmap rho2d_exp = np.hstack((rho2d,rho2d,rho2d[:,0:1])) thetac_exp = np.hstack((thetac-PI/2, thetac+PI/2, thetac[0]-PI/2)) # plot the gas density img_env = ax_env.pcolormesh(thetac_exp,rc/AU,rho2d_exp/mmw/mh,cmap=cmap,norm=LogNorm(vmin=zmin,vmax=1e6)) # np.nanmax(rho2d_exp/mmw/mh) ax_env.set_xlabel(r'$\rm{Polar\,angle\,(Degree)}$',fontsize=20) ax_env.set_ylabel('',fontsize=20, labelpad=-140) ax_env.tick_params(labelsize=18) ax_env.set_yticks(np.hstack((np.arange(0,(int(R_env_max/AU/10000.)+1)*10000, 10000),R_env_max/AU))) ax_env.set_xticklabels([r'$\rm{90^{\circ}}$',r'$\rm{45^{\circ}}$',r'$\rm{0^{\circ}}$',r'$\rm{-45^{\circ}}$',\ r'$\rm{-90^{\circ}}$',r'$\rm{-135^{\circ}}$',r'$\rm{180^{\circ}}$',r'$\rm{135^{\circ}}$']) ax_env.set_yticklabels([]) # fix the tick label font ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=20) for label in ax_env.get_yticklabels(): label.set_fontproperties(ticks_font) ax_env.grid(True, color='LightGray', linewidth=1) cb = fig.colorbar(img_env, pad=0.1) cb.ax.set_ylabel(r'$\rm{Averaged\,Gas\,Density\,(cm^{-3})}$',fontsize=20) # cb.set_ticks([1e2,1e3,1e4,1e5,1e6,1e7,1e8,1e9]) # cb.set_ticklabels([r'$\rm{10^{2}}$',r'$\rm{10^{3}}$',r'$\rm{10^{4}}$',r'$\rm{10^{5}}$',r'$\rm{10^{6}}$',\ # r'$\rm{10^{7}}$',r'$\rm{10^{8}}$',r'$\rm{\geq 10^{9}}$']) # lower density ticks cb.set_ticks([1e-1,1e0,1e1,1e2,1e3,1e4,1e5,1e6]) cb.set_ticklabels([r'$\rm{10^{-1}}$',r'$\rm{10^{0}}$',r'$\rm{10^{1}}$',r'$\rm{10^{2}}$',r'$\rm{10^{3}}$', r'$\rm{10^{4}}$',r'$\rm{10^{5}}$',r'$\rm{\geq 10^{6}}$']) cb_obj = plt.getp(cb.ax.axes, 'yticklabels') plt.setp(cb_obj,fontsize=20) fig.savefig(outdir+outname+'_gas_density.png', format='png', dpi=300, bbox_inches='tight') fig.clf() # Plot the radial density profile fig = plt.figure(figsize=(12,9)) ax = fig.add_subplot(111) plot_grid = [0,49,99,149,199] color_grid = ['#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00'] label = [r'$\rm{\theta='+str(int(np.degrees(thetai[plot_grid[0]])))+'^{\circ}}$',\ r'$\rm{\theta='+str(int(np.degrees(thetai[plot_grid[1]])))+'^{\circ}}$',\ r'$\rm{\theta='+str(1+int(np.degrees(thetai[plot_grid[2]])))+'^{\circ}}$',\ r'$\rm{\theta='+str(int(np.degrees(thetai[plot_grid[3]])))+'^{\circ}}$',\ r'$\rm{\theta='+str(1+int(np.degrees(thetai[plot_grid[4]])))+'^{\circ}}$'] alpha = np.linspace(0.3,1.0,len(plot_grid)) for i in plot_grid: ax.plot(np.log10(rc[rc > 0.14*AU]/AU), np.log10(rho2d[rc > 0.14*AU,i]/g2d/mmw/mh)+plot_grid[::-1].index(i)*-0.2,'-',color=color_grid[plot_grid.index(i)],mec='None',linewidth=2.5, \ markersize=3, label=label[plot_grid.index(i)]) # alpha=alpha[plot_grid.index(i)], ax.axvline(np.log10(R_inf/AU), linestyle='--', color='k', linewidth=1.5, label=r'$\rm{infall\,radius}$') ax.axvline(np.log10(R_cen/AU), linestyle=':', color='k', linewidth=1.5, label=r'$\rm{centrifugal\,radius}$') lg = plt.legend(fontsize=20, numpoints=1, ncol=2, framealpha=0.7, loc='upper right') ax.set_xlabel(r'$\rm{log(Radius)\,(AU)}$',fontsize=20) ax.set_ylabel(r'$\rm{log(Dust\,Density)\,(cm^{-3})}$',fontsize=20) [ax.spines[axis].set_linewidth(1.5) for axis in ['top','bottom','left','right']] ax.minorticks_on() ax.tick_params('both',labelsize=18,width=1.5,which='major',pad=15,length=5) ax.tick_params('both',labelsize=18,width=1.5,which='minor',pad=15,length=2.5) # fix the tick label font ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=18) for label in ax.get_xticklabels(): label.set_fontproperties(ticks_font) for label in ax.get_yticklabels(): label.set_fontproperties(ticks_font) ax.set_ylim([0,11]) fig.gca().set_xlim(left=np.log10(0.05)) fig.savefig(outdir+outname+'_gas_radial.pdf',format='pdf',dpi=300,bbox_inches='tight') fig.clf() # Insert the calculated grid and dust density profile into hyperion m.set_spherical_polar_grid(ri, thetai, phii) m.add_density_grid(rho_dust.T, d) # for non-TSC option if tsc_com: m.add_density_grid(rho_ulrich_dust.T, d) # Define the luminsoity source source = m.add_spherical_source() source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4) # [ergs/s] source.radius = rstar # [cm] source.temperature = tstar # [K] source.position = (0., 0., 0.) print 'L_center = % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS) # if ext_source != None: # # add external heating - ISRF # # use standard receipe from Hyperion doc # isrf = ascii.read(ext_source, names=['wavelength', 'J_lambda']) # isrf_nu = c/(isrf['wavelength']*1e-4) # isrf_jnu = isrf['J_lambda']*isrf['wavelength']/isrf_nu # # if 'mmp83' in ext_source: # FOUR_PI_JNU = 0.0217 # else: # FOUR_PI_JNU = raw_input('What is the FOUR_PI_JNU value?') # # s_isrf = m.add_external_spherical_source() # s_isrf.radius = R_env_max # s_isrf.spectrum = (isrf_nu, isrf_jnu) # s_isrf.luminosity = PI * R_env_max**2 * FOUR_PI_JNU m.set_raytracing(True) # option of using more photons for imaging if better_im == False: im_photon = 1e6 else: im_photon = 5e7 if mono == True: if (type(mono_wave) == int) or (type(mono_wave) == float) or (type(mono_wave) == str): mono_wave = float(mono_wave) mono_wave = [mono_wave] # Monochromatic radiative transfer setting m.set_monochromatic(True, wavelengths=mono_wave) m.set_n_photons(initial=1e6, imaging_sources=im_photon, imaging_dust=im_photon,raytracing_sources=1e6, raytracing_dust=1e6) else: # regular wavelength grid setting m.set_n_photons(initial=1e6, imaging=im_photon,raytracing_sources=1e6, raytracing_dust=1e6) # number of iteration to compute dust specific energy (temperature) m.set_n_initial_iterations(20) m.set_convergence(True, percentile=dict_params['percentile'], absolute=dict_params['absolute'], relative=dict_params['relative']) m.set_mrw(True) # Gamma = 1 by default # Setting up images and SEDs if not image_only: # SED setting # Infinite aperture syn_inf = m.add_peeled_images(image=False) # use the index of wavelength array used by the monochromatic radiative transfer if mono == False: syn_inf.set_wavelength_range(wav_num, wav_min, wav_max) syn_inf.set_viewing_angles([dict_params['view_angle']], [0.0]) syn_inf.set_uncertainties(True) syn_inf.set_output_bytes(8) # aperture # 7.2 in 10 um scaled by lambda / 10 # flatten beyond 20 um # default aperture (should always specify a set of apertures) if aperture == None: aperture = {'wave': [3.6, 4.5, 5.8, 8.0, 8.5, 9, 9.7, 10, 10.5, 11, 16, 20, 24, 30, 70, 100, 160, 250, 350, 500, 1300],\ 'aperture': [7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 20.4, 20.4, 20.4, 20.4, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 101]} # assign wl_aper and aper from dictionary of aperture wl_aper = aperture['wave'] aper = aperture['aperture'] # create the non-repetitive aperture list and index array aper_reduced = list(set(aper)) index_reduced = np.arange(1, len(aper_reduced)+1) dict_peel_sed = {} for i in range(0, len(aper_reduced)): aper_dum = aper_reduced[i]/2 * (1/3600.*np.pi/180.)*dstar*pc dict_peel_sed[str(index_reduced[i])] = m.add_peeled_images(image=False) # use the index of wavelength array used by the monochromatic radiative transfer if mono == False: dict_peel_sed[str(index_reduced[i])].set_wavelength_range(wav_num, wav_min, wav_max) dict_peel_sed[str(index_reduced[i])].set_viewing_angles([dict_params['view_angle']], [0.0]) # aperture should be given in cm and its the radius of the aperture dict_peel_sed[str(index_reduced[i])].set_aperture_range(1, aper_dum, aper_dum) dict_peel_sed[str(index_reduced[i])].set_uncertainties(True) dict_peel_sed[str(index_reduced[i])].set_output_bytes(8) # image setting syn_im = m.add_peeled_images(sed=False) # use the index of wavelength array used by the monochromatic radiative transfer if mono == False: syn_im.set_wavelength_range(wav_num, wav_min, wav_max) # pixel number # !!! if not mono: pix_num = 300 else: pix_num = 8000 # syn_im.set_image_size(pix_num, pix_num) syn_im.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max) syn_im.set_viewing_angles([dict_params['view_angle']], [0.0]) syn_im.set_uncertainties(True) syn_im.set_output_bytes(8) # Output setting # Density m.conf.output.output_density = 'last' # Density difference (shows where dust was destroyed) m.conf.output.output_density_diff = 'none' # Energy absorbed (using pathlengths) m.conf.output.output_specific_energy = 'last' # Number of unique photons that passed through the cell m.conf.output.output_n_photons = 'last' m.write(outdir+outname+'.rtin') if radmc == True: # RADMC-3D still use a pre-defined aperture with lazy for-loop aper = np.zeros([len(lam)]) ind = 0 for wl in lam: if wl < 5: aper[ind] = 8.4 elif wl >= 5 and wl < 14: aper[ind] = 1.8 * 4 elif wl >= 14 and wl < 40: aper[ind] = 5.1 * 4 else: aper[ind] = 24.5 ind += 1 # Write the wavelength_micron.inp file # f_wave = open(outdir+'wavelength_micron.inp','w') f_wave.write('%d \n' % int(nlam)) for ilam in range(0,nlam): f_wave.write('%f \n' % lam[ilam]) f_wave.close() # Write the camera_wavelength_micron.inp file # f_wave_cam = open(outdir+'camera_wavelength_micron.inp','w') f_wave_cam.write('%d \n' % int(nlam)) for ilam in range(0,nlam): f_wave_cam.write('%f \n' % lam[ilam]) f_wave_cam.close() # Write the aperture_info.inp # f_aper = open(outdir+'aperture_info.inp','w') f_aper.write('1 \n') f_aper.write('%d \n' % int(nlam)) for iaper in range(0, len(aper)): f_aper.write('%f \t %f \n' % (lam[iaper],aper[iaper]/2)) f_aper.close() # Write the stars.inp file # f_star = open(outdir+'stars.inp','w') f_star.write('2\n') f_star.write('1 \t %d \n' % int(nlam)) f_star.write('\n') f_star.write('%e \t %e \t %e \t %e \t %e \n' % (rstar*0.9999,mstar,0,0,0)) f_star.write('\n') for ilam in range(0,nlam): f_star.write('%f \n' % lam[ilam]) f_star.write('\n') f_star.write('%f \n' % -tstar) f_star.close() # Write the grid file # f_grid = open(outdir+'amr_grid.inp','w') f_grid.write('1\n') # iformat f_grid.write('0\n') # AMR grid style (0=regular grid, no AMR) f_grid.write('150\n') # Coordinate system coordsystem<100: Cartisian; 100<=coordsystem<200: Spherical; 200<=coordsystem<300: Cylindrical f_grid.write('0\n') # gridinfo f_grid.write('1 \t 1 \t 1 \n') # Include x,y,z coordinate f_grid.write('%d \t %d \t %d \n' % (int(nx)-1,int(ny),int(nz))) # Size of the grid [f_grid.write('%e \n' % ri[ir]) for ir in range(1,len(ri))] [f_grid.write('%f \n' % thetai[itheta]) for itheta in range(0,len(thetai))] [f_grid.write('%f \n' % phii[iphi]) for iphi in range(0,len(phii))] f_grid.close() # Write the density file # f_dust = open(outdir+'dust_density.inp','w') f_dust.write('1 \n') # format number f_dust.write('%d \n' % int((nx-1)*ny*nz)) # Nr of cells f_dust.write('1 \n') # Nr of dust species for iphi in range(0,len(phic)): for itheta in range(0,len(thetac)): for ir in range(1,len(rc)): f_dust.write('%e \n' % rho_dust[ir,itheta,iphi]) f_dust.close() # Write the dust opacity table f_dustkappa = open(outdir+'dustkappa_oh5_extended.inp','w') f_dustkappa.write('3 \n') # format index for including g-factor f_dustkappa.write('%d \n' % len(dust['nu'])) # number of wavlength/frequency in the table for i in range(len(dust['nu'])): f_dustkappa.write('%f \t %f \t %f \t %f \n' % (c/dust['nu'][i]*1e4, dust['chi'][i], dust['chi'][i]*dust['albedo'][i]/(1-dust['albedo'][i]), dust['g'][i])) f_dustkappa.close() # Write the Dust opacity control file # f_opac = open(outdir+'dustopac.inp','w') f_opac.write('2 Format number of this file\n') f_opac.write('1 Nr of dust species\n') f_opac.write('============================================================================\n') f_opac.write('1 Way in which this dust species is read\n') f_opac.write('0 0=Thermal grain\n') # f_opac.write('klaus Extension of name of dustkappa_***.inp file\n') f_opac.write('oh5_extended Extension of name of dustkappa_***.inp file\n') f_opac.write('----------------------------------------------------------------------------\n') f_opac.close() # Write the radmc3d.inp control file # f_control = open(outdir+'radmc3d.inp','w') f_control.write('nphot = %d \n' % 100000) f_control.write('scattering_mode_max = 2\n') f_control.write('camera_min_drr = 0.1\n') f_control.write('camera_min_dangle = 0.1\n') f_control.write('camera_spher_cavity_relres = 0.1\n') f_control.write('istar_sphere = 1\n') f_control.write('modified_random_walk = 1\n') f_control.close() return m
def setup_model(outdir, record_dir, outname, params, dust_file, wav_range, aperture, tsc=True, idl=False, plot=False, low_res=True, max_rCell=100, scale=1, radmc=False, mono_wave=None, norecord=False, dstar=200., dyn_cav=False, fix_params=None, power=2, mc_photons=1e6, im_photons=1e6, ellipsoid=False, TSC_dir='~/programs/misc/TSC/', IDL_path='/Applications/exelis/idl83/bin/idl', auto_disk=0.25, fast_plot=False, image_only=False, ulrich=False): """ params = dictionary of the model parameters 'alma' keyword is obsoleted outdir: The directory for storing Hyperion input files record_dir: The directory contains "model_list.txt" for recording parameters TSC_dir: Path the TSC-related IDL routines IDL_path: The IDL executable fast_plot: Do not plot the polar plot of the density because the rendering takes quite a lot of time. mono: monochromatic radiative transfer mode (need to specify the wavelength or a list of wavelength with 'mono_wave') image_only: only run for images """ import numpy as np import astropy.constants as const import scipy as sci # to avoid X server error import matplotlib as mpl mpl.use('Agg') # import matplotlib.pyplot as plt import os from matplotlib.colors import LogNorm from scipy.integrate import nquad from hyperion.model import Model from record_hyperion import record_hyperion from pprint import pprint # Constants setup c = const.c.cgs.value AU = const.au.cgs.value # Astronomical Unit [cm] pc = const.pc.cgs.value # Parsec [cm] MS = const.M_sun.cgs.value # Solar mass [g] LS = const.L_sun.cgs.value # Solar luminosity [erg/s] RS = const.R_sun.cgs.value # Solar radius [cm] G = const.G.cgs.value # Gravitational constant [cm3/g/s^2] yr = 60*60*24*365 # Years in seconds PI = np.pi # PI constant sigma = const.sigma_sb.cgs.value # Stefan-Boltzmann constant mh = const.m_p.cgs.value + const.m_e.cgs.value g2d = 100. mmw = 2.37 # Kauffmann 2008 m = Model() # min and max wavelength to compute (need to define them first for checking dust properties) wav_min, wav_max, wav_num = wav_range # Create dust properties # Hyperion needs nu, albedo, chi, g, p_lin_max from hyperion.dust import HenyeyGreensteinDust dust = dict() [dust['nu'], dust['albedo'], dust['chi'], dust['g']] = np.genfromtxt(dust_file).T d = HenyeyGreensteinDust(dust['nu'], dust['albedo'], dust['chi'], dust['g'], dust['g']*0) # dust sublimation option # dust sublimation temperture specified here T_sub = 1600.0 d.set_sublimation_temperature('slow', temperature=T_sub) d.set_lte_emissivities(n_temp=3000, temp_min=0.1, temp_max=2000.) # if the min and/or max wavelength fall out of range if c/wav_min/1e-4 > dust['nu'].max(): d.optical_properties.extrapolate_nu(dust['nu'].min(), c/wav_min/1e-4) print('minimum wavelength is out of dust model. The dust model is extrapolated.') if c/wav_max/1e-4 < dust['nu'].min(): d.optical_properties.extrapolate_nu(c/wav_max/1e-4, dust['nu'].max()) print('maximum wavelength is out of dust model. The dust model is extrapolated.') # try to solve the freq. problem d.optical_properties.extrapolate_nu(3.28e15, 5e15) # d.write(outdir+os.path.basename(dust_file).split('.')[0]+'.hdf5') d.plot(outdir+os.path.basename(dust_file).split('.')[0]+'.png') plt.clf() # Grids and Density # Grid Parameters nx = 300L if low_res == True: nx = 100L ny = 400L nz = 50L [nx, ny, nz] = [int(scale*nx), int(scale*ny), int(scale*nz)] # TSC model input setting dict_params = params # TSC model parameter cs = dict_params['Cs']*1e5 t = dict_params['age'] # year omega = dict_params['Omega0'] # calculate related parameters M_env_dot = 0.975*cs**3/G mstar = M_env_dot * t * yr R_cen = omega**2 * G**3 * mstar**3 /(16*cs**8) R_inf = cs * t * yr # protostar parameter tstar = dict_params['tstar'] R_env_max = dict_params['R_env_max']*AU theta_cav = dict_params['theta_cav'] rho_cav_center = dict_params['rho_cav_center'] rho_cav_edge = dict_params['rho_cav_edge']*AU rstar = dict_params['rstar']*RS # Mostly fixed parameter M_disk = dict_params['M_disk']*MS beta = dict_params['beta'] h100 = dict_params['h100']*AU rho_cav = dict_params['rho_cav'] # make M_disk varies with mstar, which is the mass of star+disk if auto_disk != None: if M_disk != 0: print('M_disk is reset to %4f of mstar (star+disk)' % auto_disk) M_disk = mstar * auto_disk else: print('M_disk = 0 is found. M_disk is set to 0.') # ellipsoid cavity parameter if ellipsoid == True: print('Use ellipsoid cavity (experimental)') # the numbers are given in arcsec a_out = 130 * dstar * AU b_out = 50 * dstar * AU z_out = a_out a_in = dict_params['a_in'] * dstar * AU b_in = a_in/a_out*b_out z_in = a_in rho_cav_out = dict_params['rho_cav_out'] * mh rho_cav_in = dict_params['rho_cav_in'] * mh # Calculate the dust sublimation radius # dust sublimation temperature specified when setting up the dust properties # realistic dust # a = 1 # in micron # d_sub = 2.9388e7*(a/0.1)**-0.2 * (4*np.pi*rstar**2*sigma*tstar**4/LS)**0.5 / T_sub**3 *AU # black body dust d_sub = (LS/16./np.pi/sigma/AU**2*(4*np.pi*rstar**2*sigma*tstar**4/LS)/T_sub**4)**0.5 *AU # use the dust sublimation radius as the inner radius of disk and envelope R_disk_min = d_sub R_env_min = d_sub rin = rstar rout = R_env_max R_disk_max = R_cen # print the variables print('Dust sublimation radius %6f AU' % (d_sub/AU)) print('M_star %4f Solar mass' % (mstar/MS)) print('Infall radius %4f AU' % (R_inf / AU)) # if there is any parameter found in fix_params, then fix them if fix_params != None: if 'R_min' in fix_params.keys(): R_disk_min = fix_params['R_min']*AU R_env_min = fix_params['R_min']*AU # Make the Coordinates # ri = rin * (rout/rin)**(np.arange(nx+1).astype(dtype='float')/float(nx)) ri = np.hstack((0.0, ri)) thetai = PI*np.arange(ny+1).astype(dtype='float')/float(ny) phii = PI*2.0*np.arange(nz+1).astype(dtype='float')/float(nz) # Keep the constant cell size in r-direction at large radii # if max_rCell != None: ri_cellsize = ri[1:-1]-ri[0:-2] ind = np.where(ri_cellsize/AU > max_rCell)[0][0] # The largest cell size is 100 AU ri = np.hstack((ri[0:ind], ri[ind]+np.arange(np.ceil((rout-ri[ind])/max_rCell/AU))*max_rCell*AU)) nxx = nx nx = len(ri)-1 # Assign the coordinates of the center of cell as its coordinates. # rc = 0.5*( ri[0:nx] + ri[1:nx+1] ) thetac = 0.5*( thetai[0:ny] + thetai[1:ny+1] ) phic = 0.5*( phii[0:nz] + phii[1:nz+1] ) # for non-TSC model if ulrich: import hyperion as hp from hyperion.model import AnalyticalYSOModel non_tsc = AnalyticalYSOModel() # Define the luminsoity source nt_source = non_tsc.add_spherical_source() nt_source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4) # [ergs/s] nt_source.radius = rstar # [cm] nt_source.temperature = tstar # [K] nt_source.position = (0., 0., 0.) nt_source.mass = mstar # Envelope structure # nt_envelope = non_tsc.add_ulrich_envelope() nt_envelope.mdot = M_env_dot # Infall rate nt_envelope.rmin = rin # Inner radius nt_envelope.rc = R_cen # Centrifugal radius nt_envelope.rmax = R_env_max # Outer radius nt_envelope.star = nt_source nt_grid = hp.grid.SphericalPolarGrid(ri, thetai, phii) rho_env_ulrich = nt_envelope.density(nt_grid).T rho_env_ulrich2d = np.sum(rho_env_ulrich**2, axis=2)/np.sum(rho_env_ulrich, axis=2) # Make the dust density model # # total mass counter total_mass = 0 # normalization constant for cavity shape if theta_cav != 0: # using R = 10000 AU as the reference point c0 = (10000.*AU)**(-0.5)*\ np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav))) else: c0 = 0 # empty density grid to be filled later rho = np.zeros([len(rc), len(thetac), len(phic)]) # Normalization for the total disk mass def f(w, z, beta, rstar, h100): f = 2*PI*w*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/(w**beta*h100/100**beta))**2) return f rho_0 = M_disk/(nquad(f,[[R_disk_min,R_disk_max],[-R_env_max,R_env_max]], args=(beta,rstar,h100)))[0] # TODO: review if dyn_cav == True: if not tsc: print('WARNING: Calculation of interdependent cavity property has not implemented in infall-only solution!') else: from outflow_inner_edge import outflow_inner_edge # typical no used. Just an approach I tried to make the size of the # constant desnity region self-consistent with the outflow cavity. print 'Calculate the cavity properties using the criteria that swept-up mass = outflowed mass' # using swept-up mass = flow mass to derive the edge of the extended flat density region v_outflow = 1e2 * 1e5 rho_cav_edge = outflow_inner_edge(np.copy(rho_env), (ri,thetai,phii),M_env_dot,v_outflow,theta_cav, R_env_min) dict_params['rho_cav_edge'] = rho_cav_edge # assume gas-to-dust ratio = 100 rho_cav_center = 0.01 * 0.1*M_env_dot*rho_cav_edge/v_outflow/2 / (2*np.pi/3*rho_cav_edge**3*(1-np.cos(np.radians(theta_cav)))) dict_params['rho_cav_center'] = rho_cav_center print 'inner edge is %5f AU and density is %e g/cm3' % (rho_cav_edge/AU, rho_cav_center) # default setting for the density profile in cavity if 'rho_cav_center' in locals() == False: rho_cav_center = 5e-19 print('Use 5e-19 as the default value for cavity center') if 'rho_cav_edge' in locals() == False: rho_cav_edge = 40*AU print('Use 40 AU as the default value for size of the inner region') # discontinuity factor inside and outside of cavity inner edge discont = 1 # determine the edge of constant region in the cavity if rho_cav_edge == 0: rho_cav_edge = R_env_min if not tsc: print('Calculating the dust density profile with infall solution...') for ir in range(0,len(rc)): for itheta in range(0,len(thetac)): for iphi in range(0,len(phic)): if rc[ir] > R_env_min: # related coordinates w = abs(rc[ir]*np.cos(np.pi/2 - thetac[itheta])) z = rc[ir]*np.sin(np.pi/2 - thetac[itheta]) # Disk profile or envelope/cavity if ((w >= R_disk_min) and (w <= R_disk_max)): h = ((w/(100*AU))**beta)*h100 rho_dum = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2) else: # determine whether the current cell is in the cavity if ellipsoid == False: z_cav = c0*abs(w)**1.5 if z_cav == 0: z_cav = R_env_max cav_con = abs(z) > abs(z_cav) if theta_cav == 90: cav_con = True else: # condition for the outer ellipsoid cav_con = (2*(w/b_out)**2 + ((abs(z)-z_out)/a_out)**2) < 1 # cavity density if cav_con: # open cavity if ellipsoid == False: if (rc[ir] <= rho_cav_edge) & (rc[ir] >= R_env_min): rho_dum = g2d * rho_cav_center else: rho_dum = g2d * rho_cav_center*discont*(rho_cav_edge/rc[ir])**power else: # condition for the inner ellipsoid if (2*(w/b_in)**2 + ((abs(z)-z_in)/a_in)**2) > 1: rho_dum = rho_cav_out else: rho_dum = rho_cav_in # envelope density else: mu = abs(np.cos(thetac[itheta])) # Implement new root finding algorithm roots = np.roots(np.array([1.0, 0.0, rc[ir]/R_cen-1.0, -mu*rc[ir]/R_cen])) if len(roots[roots.imag == 0]) == 1: if (abs(roots[roots.imag == 0]) - 1.0) <= 0.0: mu_o_dum = roots[roots.imag == 0] else: mu_o_dum = -0.5 print('Problem with cubic solving, cos(theta) = ', mu_o_dum) print('parameters are ', np.array([1.0, 0.0, rc[ir]/R_cen-1.0, -mu*rc[ir]/R_cen])) else: mu_o_dum = -0.5 for imu in range(0, len(roots)): if roots[imu]*mu >= 0.0: if (abs((abs(roots[imu]) - 1.0)) <= 1e-5): mu_o_dum = 1.0 * np.sign(mu) else: mu_o_dum = roots[imu] if mu_o_dum == -0.5: print('Problem with cubic solving, roots are: ', roots) mu_o = mu_o_dum.real rho_dum = M_env_dot/(4*PI*(G*mstar*R_cen**3)**0.5)*(rc[ir]/R_cen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*R_cen/rc[ir])**(-1) rho[ir,itheta,iphi] = rho_dum else: rho[ir,itheta,iphi] = 1e-30 # add the dust mass into the total count cell_mass = rho[ir, itheta, iphi] * (1/3.)*(ri[ir+1]**3 - ri[ir]**3) * (phii[iphi+1]-phii[iphi]) * -(np.cos(thetai[itheta+1])-np.cos(thetai[itheta])) total_mass = total_mass + cell_mass # TSC model else: print('Calculating the dust density profile with TSC solution...') # If needed, calculate the TSC model via IDL # if idl == True: print('Using IDL to calculate the TSC model. Make sure you are running this on mechine with IDL.') import pidly idl = pidly.IDL(IDL_path) idl('.r '+TSC_dir+'tsc.pro') idl('.r '+TSC_dir+'tsc_run.pro') # # only run TSC calculation within infall radius # modify the rc array ind_infall = np.where(rc >= R_inf)[0][0] if max(ri) > R_inf: rc_idl = rc[0:ind_infall+1] else: rc_idl = rc[rc < max(ri)] idl.pro('tsc_run', indir=TSC_dir, outdir=outdir, rc=rc_idl, thetac=thetac, time=t, c_s=cs, omega=omega, renv_min=R_env_min) file_idl = 'rhoenv.dat' else: print('Read the pre-computed TSC model.') ind_infall = np.where(rc >= R_inf)[0][0] if max(ri) > R_inf: rc_idl = rc[0:ind_infall+1] else: rc_idl = rc[rc < max(ri)] if idl != False: file_idl = idl # read in the exist file rho_env_tsc_idl = np.genfromtxt(outdir+file_idl).T # because only region within infall radius is calculated by IDL program, # need to project it to the original grid rho_env_tsc = np.zeros([len(rc), len(thetac)]) for irc in range(len(rc)): if rc[irc] in rc_idl: rho_env_tsc[irc,:] = rho_env_tsc_idl[np.squeeze(np.where(rc_idl == rc[irc])),:] # extrapolate for the NaN values at the outer radius, usually at radius beyond the infall radius # using r^-2 profile at radius greater than infall radius # and map the 2d strcuture onto 3-D grid # map TSC solution from IDL to actual 2-D grid rho_env_tsc2d = np.empty((nx,ny)) if max(ri) > R_inf: for i in range(0, len(rc)): if i <= ind_infall: rho_env_tsc2d[i,:] = rho_env_tsc[i,:] else: rho_env_tsc2d[i,:] = 10**(np.log10(rho_env_tsc[ind_infall,:]) - 2*(np.log10(rc[i]/rc[ind_infall]))) else: rho_env_tsc2d = rho_env_tsc # map it to 3-D grid rho_env = np.repeat(rho_env_tsc2d[:,:,np.newaxis], nz, axis=2) for ir in range(0,len(rc)): for itheta in range(0,len(thetac)): for iphi in range(0,len(phic)): if rc[ir] > R_env_min: # related coordinates w = abs(rc[ir]*np.cos(np.pi/2 - thetac[itheta])) z = rc[ir]*np.sin(np.pi/2 - thetac[itheta]) # initialize dummer rho for disk and cavity rho_dum = 0 # Disk profile if ((w >= R_disk_min) and (w <= R_disk_max)) == True: h = ((w/(100*AU))**beta)*h100 rho_dum = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2) else: # determine whether the current cell is in the cavity if ellipsoid == False: z_cav = c0*abs(w)**1.5 if z_cav == 0: z_cav = R_env_max cav_con = abs(z) > abs(z_cav) else: # condition for the outer ellipsoid cav_con = (2*(w/b_out)**2 + ((abs(z)-z_out)/a_out)**2) < 1 if cav_con: # open cavity if ellipsoid == False: if (rc[ir] <= rho_cav_edge) & (rc[ir] >= R_env_min): rho_dum = g2d * rho_cav_center else: rho_dum = g2d * rho_cav_center*discont*(rho_cav_edge/rc[ir])**power else: # condition for the inner ellipsoid if (2*(w/b_in)**2 + ((abs(z)-z_in)/a_in)**2) > 1: rho_dum = rho_cav_out else: rho_dum = rho_cav_in rho[ir, itheta, iphi] = rho_env[ir, itheta, iphi] + rho_dum else: rho[ir,itheta,iphi] = 1e-40 # add the dust mass into the total count cell_mass = rho[ir, itheta, iphi] * (1/3.)*(ri[ir+1]**3 - ri[ir]**3) * (phii[iphi+1]-phii[iphi]) * -(np.cos(thetai[itheta+1])-np.cos(thetai[itheta])) total_mass = total_mass + cell_mass # apply gas-to-dust ratio of 100 rho_dust = rho/g2d total_mass_dust = total_mass/MS/g2d print('Total dust mass = %f Solar mass' % total_mass_dust) # Insert the calculated grid and dust density profile into hyperion m.set_spherical_polar_grid(ri, thetai, phii) m.add_density_grid(rho_dust.T, d) # Define the luminsoity source source = m.add_spherical_source() source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4) # [ergs/s] source.radius = rstar # [cm] source.temperature = tstar # [K] source.position = (0., 0., 0.) print('L_center = % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS)) # radiative transfer settigs m.set_raytracing(True) # determine the number of photons for imaging # the case of monochromatic if mono_wave != None: if (type(mono_wave) == int) or (type(mono_wave) == float) or (type(mono_wave) == str): mono_wave = float(mono_wave) mono_wave = [mono_wave] # Monochromatic radiative transfer setting m.set_monochromatic(True, wavelengths=mono_wave) m.set_n_photons(initial=mc_photons, imaging_sources=im_photon, imaging_dust=im_photon, raytracing_sources=im_photon, raytracing_dust=im_photon) # regular SED else: m.set_n_photons(initial=mc_photons, imaging=im_photon * wav_num, raytracing_sources=im_photon, raytracing_dust=im_photon) # number of iteration to compute dust specific energy (temperature) m.set_n_initial_iterations(20) m.set_convergence(True, percentile=dict_params['percentile'], absolute=dict_params['absolute'], relative=dict_params['relative']) m.set_mrw(True) # Gamma = 1 by default # Setting up images and SEDs if not image_only: # SED setting # Infinite aperture syn_inf = m.add_peeled_images(image=False) # use the index of wavelength array used by the monochromatic radiative transfer if mono_wave == None: syn_inf.set_wavelength_range(wav_num, wav_min, wav_max) syn_inf.set_viewing_angles([dict_params['view_angle']], [0.0]) syn_inf.set_uncertainties(True) syn_inf.set_output_bytes(8) # aperture # 7.2 in 10 um scaled by lambda / 10 # flatten beyond 20 um # default aperture (should always specify a set of apertures) # assign wl_aper and aper from dictionary of aperture wl_aper = aperture['wave'] aper = aperture['aperture'] # create the non-repetitive aperture list and index array aper_reduced = sorted(list(set(aper))) index_reduced = np.arange(1, len(aper_reduced)+1) dict_peel_sed = {} for i in range(0, len(aper_reduced)): aper_dum = aper_reduced[i]/2 * (1/3600.*np.pi/180.)*dstar*pc dict_peel_sed[str(index_reduced[i])] = m.add_peeled_images(image=False) # use the index of wavelength array used by the monochromatic radiative transfer if mono == False: dict_peel_sed[str(index_reduced[i])].set_wavelength_range(wav_num, wav_min, wav_max) dict_peel_sed[str(index_reduced[i])].set_viewing_angles([dict_params['view_angle']], [0.0]) # aperture should be given in cm and its the radius of the aperture dict_peel_sed[str(index_reduced[i])].set_aperture_range(1, aper_dum, aper_dum) dict_peel_sed[str(index_reduced[i])].set_uncertainties(True) dict_peel_sed[str(index_reduced[i])].set_output_bytes(8) # image setting syn_im = m.add_peeled_images(sed=False) # use the index of wavelength array used by the monochromatic radiative transfer if mono_wave == None: syn_im.set_wavelength_range(wav_num, wav_min, wav_max) pix_num = 300 else: pix_num = 8000 # syn_im.set_image_size(pix_num, pix_num) syn_im.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max) syn_im.set_viewing_angles([dict_params['view_angle']], [0.0]) syn_im.set_uncertainties(True) syn_im.set_output_bytes(8) # Output setting # Density m.conf.output.output_density = 'last' # Density difference (shows where dust was destroyed) m.conf.output.output_density_diff = 'none' # Energy absorbed (using pathlengths) m.conf.output.output_specific_energy = 'last' # Number of unique photons that passed through the cell m.conf.output.output_n_photons = 'last' m.write(outdir+outname+'.rtin') if plot: # rho2d is the 2-D projection of gas density # take the weighted average rho2d = np.sum(rho**2, axis=2)/np.sum(rho, axis=2) if fast_plot == False: # Plot the azimuthal averaged density fig = plt.figure(figsize=(8,6)) ax_env = fig.add_subplot(111, projection='polar') # zmin = 1e-22/mmw/mh zmin = 1e-1 cmap = plt.cm.CMRmap rho2d_exp = np.hstack((rho2d, rho2d, rho2d[:,0:1])) thetac_exp = np.hstack((thetac-PI/2, thetac+PI/2, thetac[0]-PI/2)) # plot the gas density img_env = ax_env.pcolormesh(thetac_exp, rc/AU, rho2d_exp/mmw/mh, cmap=cmap, norm=LogNorm(vmin=zmin,vmax=1e6)) ax_env.set_xlabel(r'$\rm{Polar\,angle\,(Degree)}$',fontsize=20) ax_env.set_ylabel('', fontsize=20, labelpad=-140) ax_env.tick_params(labelsize=18) ax_env.set_yticks(np.hstack((np.arange(0,(int(R_env_max/AU/10000.)+1)*10000, 10000),R_env_max/AU))) ax_env.set_xticklabels([r'$\rm{90^{\circ}}$',r'$\rm{45^{\circ}}$',r'$\rm{0^{\circ}}$',r'$\rm{-45^{\circ}}$',\ r'$\rm{-90^{\circ}}$',r'$\rm{-135^{\circ}}$',r'$\rm{180^{\circ}}$',r'$\rm{135^{\circ}}$']) ax_env.set_yticklabels([]) # fix the tick label font ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=20) for label in ax_env.get_yticklabels(): label.set_fontproperties(ticks_font) ax_env.grid(True, color='LightGray', linewidth=1.5) cb = fig.colorbar(img_env, pad=0.1) cb.ax.set_ylabel(r'$\rm{Averaged\,Gas\,Density\,(cm^{-3})}$',fontsize=20) cb.set_ticks([1e-1,1e0,1e1,1e2,1e3,1e4,1e5,1e6]) cb.set_ticklabels([r'$\rm{10^{-1}}$',r'$\rm{10^{0}}$',r'$\rm{10^{1}}$',r'$\rm{10^{2}}$',r'$\rm{10^{3}}$', r'$\rm{10^{4}}$',r'$\rm{10^{5}}$',r'$\rm{\geq 10^{6}}$']) cb_obj = plt.getp(cb.ax.axes, 'yticklabels') plt.setp(cb_obj, fontsize=20) fig.savefig(outdir+outname+'_gas_density.png', format='png', dpi=300, bbox_inches='tight') fig.clf() # Plot the radial density profile fig = plt.figure(figsize=(12,9)) ax = fig.add_subplot(111) plot_grid = [0, 49, 99, 149, 199] color_grid = ['#e41a1c', '#377eb8', '#4daf4a', '#984ea3', '#ff7f00'] label = [r'$\rm{\theta='+str(int(np.degrees(thetai[plot_grid[0]])))+'^{\circ}}$', r'$\rm{\theta='+str(int(np.degrees(thetai[plot_grid[1]])))+'^{\circ}}$', r'$\rm{\theta='+str(1+int(np.degrees(thetai[plot_grid[2]])))+'^{\circ}}$', r'$\rm{\theta='+str(int(np.degrees(thetai[plot_grid[3]])))+'^{\circ}}$', r'$\rm{\theta='+str(1+int(np.degrees(thetai[plot_grid[4]])))+'^{\circ}}$'] alpha = np.linspace(0.3, 1.0, len(plot_grid)) for i in plot_grid: ax.plot(np.log10(rc[rc > 0.14*AU]/AU), np.log10(rho2d[rc > 0.14*AU,i]/g2d/mmw/mh)+plot_grid[::-1].index(i)*-0.2,'-',color=color_grid[plot_grid.index(i)],mec='None',linewidth=2.5, \ markersize=3, label=label[plot_grid.index(i)]) ax.axvline(np.log10(R_inf/AU), linestyle='--', color='k', linewidth=1.5, label=r'$\rm{infall\,radius}$') ax.axvline(np.log10(R_cen/AU), linestyle=':', color='k', linewidth=1.5, label=r'$\rm{centrifugal\,radius}$') lg = plt.legend(fontsize=20, numpoints=1, ncol=2, framealpha=0.7, loc='upper right') ax.set_xlabel(r'$\rm{log(Radius)\,(AU)}$', fontsize=20) ax.set_ylabel(r'$\rm{log(Dust\,Density)\,(cm^{-3})}$', fontsize=20) [ax.spines[axis].set_linewidth(1.5) for axis in ['top','bottom','left','right']] ax.minorticks_on() ax.tick_params('both', labelsize=18, width=1.5, which='major', pad=15, length=5) ax.tick_params('both', labelsize=18, width=1.5, which='minor', pad=15, length=2.5) # fix the tick label font ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=18) for label in ax.get_xticklabels(): label.set_fontproperties(ticks_font) for label in ax.get_yticklabels(): label.set_fontproperties(ticks_font) ax.set_ylim([0,11]) fig.gca().set_xlim(left=np.log10(0.05)) fig.savefig(outdir+outname+'_gas_radial.pdf',format='pdf',dpi=300,bbox_inches='tight') fig.clf() # Record the input and calculated parameters if not norecord == True: params = dict_params.copy() params.update({'d_sub': d_sub/AU, 'M_env_dot': M_env_dot/MS*yr, 'R_inf': R_inf/AU, 'R_cen': R_cen/AU, 'mstar': mstar/MS, 'M_tot_gas': total_mass/MS}) record_hyperion(params,record_dir) return m
def setup_model(indir,outdir,model=False,denser_wall=False,plot=False,low_res=False,flat=True,scale=1.0): import numpy as np import astropy.constants as const import scipy as sci import matplotlib.pyplot as plt import matplotlib as mat import os from matplotlib.colors import LogNorm from scipy.optimize import fsolve from scipy.integrate import nquad from envelope_func import func from hyperion.model import Model # Constants setup c = const.c.cgs.value AU = 1.49598e13 # Astronomical Unit [cm] pc = 3.08572e18 # Parsec [cm] MS = 1.98892e33 # Solar mass [g] LS = 3.8525e33 # Solar luminosity [erg/s] RS = 6.96e10 # Solar radius [cm] G = 6.67259e-8 # Gravitational constant [cm3/g/s^2] yr = 60*60*24*365 # Years in seconds PI = np.pi # PI constant sigma = const.sigma_sb.cgs.value # Stefan-Boltzmann constant m = Model() # Create dust properties # Hyperion needs nu, albedo, chi, g, p_lin_max from hyperion.dust import HenyeyGreensteinDust # Read in the dust opacity table used by RADMC-3D dust_radmc = dict() [dust_radmc['wl'], dust_radmc['abs'], dust_radmc['scat'], dust_radmc['g']] = np.genfromtxt('dustkappa_oh5_extended.inp',skip_header=2).T # opacity per mass of dust? dust_hy = dict() dust_hy['nu'] = c/dust_radmc['wl']*1e4 ind = np.argsort(dust_hy['nu']) dust_hy['nu'] = dust_hy['nu'][ind] dust_hy['albedo'] = (dust_radmc['scat']/(dust_radmc['abs']+dust_radmc['scat']))[ind] dust_hy['chi'] = (dust_radmc['abs']+dust_radmc['scat'])[ind] dust_hy['g'] = dust_radmc['g'][ind] dust_hy['p_lin_max'] = 0*dust_radmc['wl'][ind] # assume no polarization d = HenyeyGreensteinDust(dust_hy['nu'], dust_hy['albedo'], dust_hy['chi'], dust_hy['g'], dust_hy['p_lin_max']) # dust sublimation does not occur # d.set_sublimation_temperature(None) d.write(outdir+'oh5.hdf5') d.plot(outdir+'oh5.png') # Grids and Density # Calculation inherited from the script used for RADMC-3D # Parameters setup # Import the model parameters from another file # params = np.genfromtxt(indir+'/params.dat',dtype=None) tstar = params[0][1] mstar = params[1][1]*MS rstar = params[2][1]*RS M_env_dot = params[3][1]*MS/yr M_disk_dot = params[4][1]*MS/yr R_env_max = params[5][1]*AU R_env_min = params[6][1]*AU theta_cav = params[7][1] R_disk_max = params[8][1]*AU R_disk_min = params[9][1]*AU R_cen = R_disk_max M_disk = params[10][1]*MS beta = params[11][1] h100 = params[12][1]*AU rho_cav = params[13][1] if denser_wall == True: wall = params[14][1]*AU rho_wall = params[15][1] rho_cav_center = params[16][1] rho_cav_edge = params[17][1]*AU # Grid Parameters nx = 300L if low_res == True: nx = 100L ny = 400L nz = 50L [nx, ny, nz] = [scale*nx, scale*ny, scale*nz] # nx = 20 # ny = 40 # nz = 5 # Model Parameters # rin = rstar rout = R_env_max rcen = R_cen # Star Parameters # mstar = mstar rstar = rstar*0.9999 tstar = tstar pstar = [0.,0.,0.] # Make the Coordinates # ri = rin * (rout/rin)**(np.arange(nx+1).astype(dtype='float')/float(nx)) ri = np.hstack((0.0, ri)) thetai = PI*np.arange(ny+1).astype(dtype='float')/float(ny) phii = PI*2.0*np.arange(nz+1).astype(dtype='float')/float(nz) # Keep the constant cell size in r-direction # if flat == True: ri_cellsize = ri[1:-1]-ri[0:-2] ind = np.where(ri_cellsize/AU > 100.0)[0][0] # The largest cell size is 100 AU ri = np.hstack((ri[0:ind],ri[ind]+np.arange(np.ceil((rout-ri[ind])/100/AU))*100*AU)) nxx = nx nx = len(ri)-1 # Assign the coordinates of the center of cell as its coordinates. # rc = 0.5*( ri[0:nx] + ri[1:nx+1] ) thetac = 0.5*( thetai[0:ny] + thetai[1:ny+1] ) phic = 0.5*( phii[0:nz] + phii[1:nz+1] ) # phic = 0.5*( phii[0:nz-1] + phii[1:nz] ) # Make the dust density model # Make the density profile of the envelope # print 'Calculating the dust density profile...' if theta_cav != 0: c0 = R_env_max**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav))) else: c0 = 0 rho_env = np.zeros([len(rc),len(thetac),len(phic)]) rho_disk = np.zeros([len(rc),len(thetac),len(phic)]) rho = np.zeros([len(rc),len(thetac),len(phic)]) def f(w,z,beta,rstar,h100): f = 2*PI*w*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/(w**beta*h100/100**beta))**2) return f rho_0 = M_disk/(nquad(f,[[R_disk_min,R_disk_max],[-R_env_max,R_env_max]], args=(beta,rstar,h100)))[0] i = 0 j = 0 if 'rho_cav_center' in locals() == False: rho_cav_center = 5.27e-18 # 1.6e-17 # 5.27e-18 print 'Use 5.27e-18 as the default value for cavity center' if 'rho_cav_edge' in locals() == False: rho_cav_edge = 40*AU print 'Use 40 AU as the default value for size of the inner region' discont = 1 if denser_wall == False: for ir in range(0,len(rc)): for itheta in range(0,len(thetac)): for iphi in range(0,len(phic)): if rc[ir] > R_env_min: # Envelope profile w = abs(rc[ir]*np.cos(np.pi/2-thetac[itheta])) z = rc[ir]*np.sin(np.pi/2-thetac[itheta]) z_cav = c0*abs(w)**1.5 if z_cav == 0: z_cav = R_env_max if abs(z) > abs(z_cav): # rho_env[ir,itheta,iphi] = rho_cav # Modification for using density gradient in the cavity if rc[ir] <= rho_cav_edge: rho_env[ir,itheta,iphi] = rho_cav_center#*((rc[ir]/AU)**2) else: rho_env[ir,itheta,iphi] = rho_cav_center*discont*(rho_cav_edge/rc[ir])**2 i += 1 else: j += 1 mu = abs(np.cos(thetac[itheta])) mu_o = np.abs(fsolve(func,[0.5,0.5,0.5],args=(rc[ir],rcen,mu))[0]) rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*rcen**3)**0.5)*(rc[ir]/rcen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*rcen/rc[ir])**(-1) # Disk profile if ((w >= R_disk_min) and (w <= R_disk_max)) == True: h = ((w/(100*AU))**beta)*h100 rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2) # Combine envelope and disk rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi] # # testing the effect of new solver # # Envelope profile # w = abs(rc[ir]*np.cos(np.pi/2 - thetac[itheta])) # z = rc[ir]*np.sin(np.pi/2 - thetac[itheta]) # z_cav = c0*abs(w)**1.5 # if z_cav == 0: # z_cav = R_env_max # if abs(z) > abs(z_cav): # # rho_env[ir,itheta,iphi] = rho_cav # # Modification for using density gradient in the cavity # if rc[ir] <= rho_cav_edge: # rho_env[ir,itheta,iphi] = rho_cav_center#*((rc[ir]/AU)**2) # else: # rho_env[ir,itheta,iphi] = rho_cav_center*discont*(rho_cav_edge/rc[ir])**2 # i += 1 # else: # j += 1 # mu = abs(np.cos(thetac[itheta])) # # Implement new root finding algorithm # roots = np.roots(np.array([1.0, 0.0, rc[ir]/rcen-1.0, -mu*rc[ir]/rcen])) # if len(roots[roots.imag == 0]) == 1: # if (abs(roots[roots.imag == 0]) - 1.0) <= 0.0: # mu_o_dum = roots[roots.imag == 0] # else: # mu_o_dum = -0.5 # print 'Problem with cubic solving, cos(theta) = ', mu_o_dum # print 'parameters are ', np.array([1.0, 0.0, rc[ir]/rcen-1.0, -mu*rc[ir]/rcen]) # else: # mu_o_dum = -0.5 # for imu in range(0, len(roots)): # if roots[imu]*mu >= 0.0: # if (abs((abs(roots[imu]) - 1.0)) <= 1e-5): # mu_o_dum = 1.0 * np.sign(mu) # else: # mu_o_dum = roots[imu] # if mu_o_dum == -0.5: # print 'Problem with cubic solving, roots are: ', roots # mu_o = mu_o_dum.real # rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*rcen**3)**0.5)*(rc[ir]/rcen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*rcen/rc[ir])**(-1) # # Disk profile # if ((w >= R_disk_min) and (w <= R_disk_max)) == True: # h = ((w/(100*AU))**beta)*h100 # rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2) # # Combine envelope and disk # rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi] else: rho[ir,itheta,iphi] = 1e-30 rho_env = rho_env + 1e-40 rho_disk = rho_disk + 1e-40 rho = rho + 1e-40 else: for ir in range(0,len(rc)): for itheta in range(0,len(thetac)): for iphi in range(0,len(phic)): # Envelope profile w = abs(rc[ir]*np.cos(thetac[itheta])) z = rc[ir]*np.sin(thetac[itheta]) z_cav = c*abs(w)**1.5 z_cav_wall = c*abs(w-wall)**1.5 if z_cav == 0: z_cav = R_env_max if abs(z) > abs(z_cav): # rho_env[ir,itheta,iphi] = rho_cav # Modification for using density gradient in the cavity if rc[ir] <= 20*AU: rho_env[ir,itheta,iphi] = rho_cav_center*((rc[ir]/AU)**2) else: rho_env[ir,itheta,iphi] = rho_cav_center*discont*(20*AU/rc[ir])**2 i += 1 elif (abs(z) > abs(z_cav_wall)) and (abs(z) < abs(z_cav)): rho_env[ir,itheta,iphi] = rho_wall else: j += 1 mu = abs(np.cos(thetac[itheta])) mu_o = np.abs(fsolve(func,[0.5,0.5,0.5],args=(rc[ir],rcen,mu))[0]) rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*rcen**3)**0.5)*(rc[ir]/rcen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*rcen/rc[ir])**(-1) # Disk profile if ((w >= R_disk_min) and (w <= R_disk_max)) == True: h = ((w/(100*AU))**beta)*h100 rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2) # Combine envelope and disk rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi] rho_env = rho_env + 1e-40 rho_disk = rho_disk + 1e-40 rho = rho + 1e-40 # Insert the calculated grid and dust density profile into hyperion m.set_spherical_polar_grid(ri, thetai, phii) m.add_density_grid(rho.T, outdir+'oh5.hdf5') # numpy read the array in reverse order # Define the luminsoity source source = m.add_spherical_source() source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4) # [ergs/s] source.radius = rstar # [cm] source.temperature = tstar # [K] source.position = (0., 0., 0.) print 'L_center = % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS) # Setting up images and SEDs image = m.add_peeled_images() image.set_wavelength_range(300, 2.0, 670.0) # pixel number image.set_image_size(300, 300) image.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max) image.set_viewing_angles([82.0], [0.0]) image.set_uncertainties(True) # output as 64-bit image.set_output_bytes(8) # Radiative transfer setting # number of photons for temp and image m.set_raytracing(True) m.set_n_photons(initial=1000000, imaging=1000000, raytracing_sources=1000000, raytracing_dust=1000000) # number of iteration to compute dust specific energy (temperature) m.set_n_initial_iterations(5) m.set_convergence(True, percentile=99., absolute=1.5, relative=1.02) m.set_mrw(True) # Gamma = 1 by default # Output setting # Density m.conf.output.output_density = 'last' # Density difference (shows where dust was destroyed) m.conf.output.output_density_diff = 'none' # Energy absorbed (using pathlengths) m.conf.output.output_specific_energy = 'last' # Number of unique photons that passed through the cell m.conf.output.output_n_photons = 'last' m.write(outdir+'old_setup2.rtin')
def setup_model(outdir,record_dir,outname,params,dust_file,tsc=True,idl=False,plot=False,\ low_res=True,flat=True,scale=1,radmc=False,mono=False,record=True,dstar=178.,\ aperture=None,dyn_cav=False,fix_params=None,alma=False,power=2,better_im=False,ellipsoid=False,\ TSC_dir='~/programs/misc/TSC/', IDL_path='/Applications/exelis/idl83/bin/idl',auto_disk=0.25): """ params = dictionary of the model parameters alma keyword is obsoleted outdir: The directory for storing Hyperion input files record_dir: The directory contains "model_list.txt" for recording parameters TSC_dir: Path the TSC-related IDL routines IDL_path: The IDL executable """ import numpy as np import astropy.constants as const import scipy as sci # to avoid X server error import matplotlib as mpl mpl.use('Agg') # import matplotlib.pyplot as plt import os from matplotlib.colors import LogNorm from scipy.integrate import nquad from hyperion.model import Model from record_hyperion import record_hyperion from outflow_inner_edge import outflow_inner_edge from pprint import pprint # import pdb # pdb.set_trace() # Constants setup c = const.c.cgs.value AU = 1.49598e13 # Astronomical Unit [cm] pc = 3.08572e18 # Parsec [cm] MS = 1.98892e33 # Solar mass [g] LS = 3.8525e33 # Solar luminosity [erg/s] RS = 6.96e10 # Solar radius [cm] G = 6.67259e-8 # Gravitational constant [cm3/g/s^2] yr = 60*60*24*365 # Years in seconds PI = np.pi # PI constant sigma = const.sigma_sb.cgs.value # Stefan-Boltzmann constant mh = const.m_p.cgs.value + const.m_e.cgs.value g2d = 100. mmw = 2.37 # Kauffmann 2008 m = Model() # Create dust properties # Hyperion needs nu, albedo, chi, g, p_lin_max from hyperion.dust import HenyeyGreensteinDust # Read in the dust opacity table used by RADMC-3D dust = dict() # [dust_radmc['wl'], dust_radmc['abs'], dust_radmc['scat'], dust_radmc['g']] = np.genfromtxt(dust_file,skip_header=2).T [dust['nu'], dust['albedo'], dust['chi'], dust['g']] = np.genfromtxt(dust_file).T # opacity per mass of dust? # dust_hy = dict() # dust_hy['nu'] = c/dust_radmc['wl']*1e4 # ind = np.argsort(dust_hy['nu']) # dust_hy['nu'] = dust_hy['nu'][ind] # dust_hy['albedo'] = (dust_radmc['scat']/(dust_radmc['abs']+dust_radmc['scat']))[ind] # dust_hy['chi'] = (dust_radmc['abs']+dust_radmc['scat'])[ind] # dust_hy['g'] = dust_radmc['g'][ind] # dust_hy['p_lin_max'] = 0*dust_radmc['wl'][ind] # assume no polarization # d = HenyeyGreensteinDust(dust_hy['nu'], dust_hy['albedo'], dust_hy['chi'], dust_hy['g'], dust_hy['p_lin_max']) d = HenyeyGreensteinDust(dust['nu'], dust['albedo'], dust['chi'], dust['g'], dust['g']*0) # dust sublimation option d.set_sublimation_temperature('slow', temperature=1600.0) d.set_lte_emissivities(n_temp=3000, temp_min=0.1, temp_max=2000.) # try to solve the freq. problem d.optical_properties.extrapolate_nu(3.28e15, 4e15) # d.write(outdir+os.path.basename(dust_file).split('.')[0]+'.hdf5') d.plot(outdir+os.path.basename(dust_file).split('.')[0]+'.png') plt.clf() # Grids and Density # Calculation inherited from the script used for RADMC-3D # Grid Parameters nx = 300L if low_res == True: nx = 100L ny = 400L nz = 50L [nx, ny, nz] = [int(scale*nx), int(scale*ny), int(scale*nz)] # TSC model input setting # params = np.genfromtxt(indir+'/tsc_params.dat', dtype=None) dict_params = params # input_reader(params_file) # TSC model parameter cs = dict_params['Cs']*1e5 t = dict_params['age'] # year omega = dict_params['Omega0'] # calculate related parameters M_env_dot = 0.975*cs**3/G mstar = M_env_dot * t * yr R_cen = omega**2 * G**3 * mstar**3 /(16*cs**8) R_inf = cs * t * yr # M_env_dot = dict_params['M_env_dot']*MS/yr # R_cen = dict_params['R_cen']*AU # R_inf = dict_params['R_inf']*AU # protostar parameter tstar = dict_params['tstar'] R_env_max = dict_params['R_env_max']*AU theta_cav = dict_params['theta_cav'] rho_cav_center = dict_params['rho_cav_center'] rho_cav_edge = dict_params['rho_cav_edge']*AU rstar = dict_params['rstar']*RS # Mostly fixed parameter M_disk = dict_params['M_disk']*MS beta = dict_params['beta'] h100 = dict_params['h100']*AU rho_cav = dict_params['rho_cav'] # make M_disk varies with mstar, which is the mass of star+disk if auto_disk != None: if M_disk != 0: print 'M_disk is reset to %4f of mstar (star+disk)' % auto_disk M_disk = mstar * auto_disk else: print 'M_disk = 0 is found. M_disk is set to 0.' # ellipsoid cavity parameter if ellipsoid == True: a_out = 130 * 178. * AU b_out = 50 * 178. * AU z_out = a_out # a_in = 77.5 * 178. * AU # b_in = 30 * 178. * AU a_in = dict_params['a_in'] * 178. * AU b_in = a_in/a_out*b_out z_in = a_in # rho_cav_out = 1e4 * mh # rho_cav_in = 1e3 * mh rho_cav_out = dict_params['rho_cav_out'] * mh rho_cav_in = dict_params['rho_cav_in'] * mh # Calculate the dust sublimation radius T_sub = 1600 a = 1 #in micron # realistic dust # d_sub = 2.9388e7*(a/0.1)**-0.2 * (4*np.pi*rstar**2*sigma*tstar**4/LS)**0.5 / T_sub**3 *AU # black body dust d_sub = (LS/16./np.pi/sigma/AU**2*(4*np.pi*rstar**2*sigma*tstar**4/LS)/T_sub**4)**0.5 *AU # use the dust sublimation radius as the inner radius of disk and envelope R_disk_min = d_sub R_env_min = d_sub rin = rstar rout = R_env_max R_disk_max = R_cen # Do the variable conversion # cs = (G * M_env_dot / 0.975)**(1/3.) # cm/s # t = R_inf / cs / yr # in year # mstar = M_env_dot * t * yr # omega = (R_cen * 16*cs**8 / (G**3 * mstar**3))**0.5 # print the variables for radmc3d print 'Dust sublimation radius %6f AU' % (d_sub/AU) print 'M_star %4f Solar mass' % (mstar/MS) print 'Infall radius %4f AU' % (R_inf / AU) # if there is any parameter found in fix_params, then fix them if fix_params != None: if 'R_min' in fix_params.keys(): R_disk_min = fix_params['R_min']*AU R_env_min = fix_params['R_min']*AU # Make the Coordinates # ri = rin * (rout/rin)**(np.arange(nx+1).astype(dtype='float')/float(nx)) ri = np.hstack((0.0, ri)) thetai = PI*np.arange(ny+1).astype(dtype='float')/float(ny) phii = PI*2.0*np.arange(nz+1).astype(dtype='float')/float(nz) # Keep the constant cell size in r-direction at large radii # if flat == True: ri_cellsize = ri[1:-1]-ri[0:-2] ind = np.where(ri_cellsize/AU > 100.0)[0][0] # The largest cell size is 100 AU ri = np.hstack((ri[0:ind],ri[ind]+np.arange(np.ceil((rout-ri[ind])/100/AU))*100*AU)) nxx = nx nx = len(ri)-1 # Assign the coordinates of the center of cell as its coordinates. # rc = 0.5*( ri[0:nx] + ri[1:nx+1] ) thetac = 0.5*( thetai[0:ny] + thetai[1:ny+1] ) phic = 0.5*( phii[0:nz] + phii[1:nz+1] ) # phic = 0.5*( phii[0:nz-1] + phii[1:nz] ) # Make the dust density model # Make the density profile of the envelope # total_mass = 0 if tsc == False: print 'Calculating the dust density profile with infall solution...' if theta_cav != 0: # c0 = R_env_max**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav))) # using R = 10000 AU as the reference point c0 = (10000.*AU)**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav))) else: c0 = 0 rho_env = np.zeros([len(rc),len(thetac),len(phic)]) rho_disk = np.zeros([len(rc),len(thetac),len(phic)]) rho = np.zeros([len(rc),len(thetac),len(phic)]) if dyn_cav == True: print 'WARNING: Calculation of interdependent cavity property has not implemented in infall-only solution!' # Normalization for the total disk mass def f(w,z,beta,rstar,h100): f = 2*PI*w*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/(w**beta*h100/100**beta))**2) return f rho_0 = M_disk/(nquad(f,[[R_disk_min,R_disk_max],[-R_env_max,R_env_max]], args=(beta,rstar,h100)))[0] i = 0 j = 0 if 'rho_cav_center' in locals() == False: rho_cav_center = 5.27e-18 # 1.6e-17 # 5.27e-18 print 'Use 5.27e-18 as the default value for cavity center' if 'rho_cav_edge' in locals() == False: rho_cav_edge = 40*AU print 'Use 40 AU as the default value for size of the inner region' discont = 1 for ir in range(0,len(rc)): for itheta in range(0,len(thetac)): for iphi in range(0,len(phic)): if rc[ir] > R_env_min: # Envelope profile w = abs(rc[ir]*np.cos(np.pi/2 - thetac[itheta])) z = rc[ir]*np.sin(np.pi/2 - thetac[itheta]) if ellipsoid == False: z_cav = c0*abs(w)**1.5 if z_cav == 0: z_cav = R_env_max cav_con = abs(z) > abs(z_cav) else: # condition for the outer ellipsoid cav_con = (2*(w/b_out)**2 + ((abs(z)-z_out)/a_out)**2) < 1 if cav_con: # open cavity if ellipsoid == False: if rho_cav_edge == 0: rho_cav_edge = R_env_min if (rc[ir] <= rho_cav_edge) & (rc[ir] >= R_env_min): rho_env[ir,itheta,iphi] = g2d * rho_cav_center#*((rc[ir]/AU)**2) else: rho_env[ir,itheta,iphi] = g2d * rho_cav_center*discont*(rho_cav_edge/rc[ir])**power i += 1 else: # condition for the inner ellipsoid if (2*(w/b_in)**2 + ((abs(z)-z_in)/a_in)**2) > 1: rho_env[ir,itheta,iphi] = rho_cav_out else: rho_env[ir,itheta,iphi] = rho_cav_in i +=1 else: j += 1 mu = abs(np.cos(thetac[itheta])) # Implement new root finding algorithm roots = np.roots(np.array([1.0, 0.0, rc[ir]/R_cen-1.0, -mu*rc[ir]/R_cen])) if len(roots[roots.imag == 0]) == 1: if (abs(roots[roots.imag == 0]) - 1.0) <= 0.0: mu_o_dum = roots[roots.imag == 0] else: mu_o_dum = -0.5 print 'Problem with cubic solving, cos(theta) = ', mu_o_dum print 'parameters are ', np.array([1.0, 0.0, rc[ir]/R_cen-1.0, -mu*rc[ir]/R_cen]) else: mu_o_dum = -0.5 for imu in range(0, len(roots)): if roots[imu]*mu >= 0.0: if (abs((abs(roots[imu]) - 1.0)) <= 1e-5): mu_o_dum = 1.0 * np.sign(mu) else: mu_o_dum = roots[imu] if mu_o_dum == -0.5: print 'Problem with cubic solving, roots are: ', roots mu_o = mu_o_dum.real rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*R_cen**3)**0.5)*(rc[ir]/R_cen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*R_cen/rc[ir])**(-1) # Disk profile if ((w >= R_disk_min) and (w <= R_disk_max)) == True: h = ((w/(100*AU))**beta)*h100 rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2) # Combine envelope and disk rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi] else: rho[ir,itheta,iphi] = 1e-30 # add the dust mass into the total count cell_mass = rho[ir, itheta, iphi] * (1/3.)*(ri[ir+1]**3 - ri[ir]**3) * (phii[iphi+1]-phii[iphi]) * -(np.cos(thetai[itheta+1])-np.cos(thetai[itheta])) total_mass = total_mass + cell_mass rho_env = rho_env + 1e-40 rho_disk = rho_disk + 1e-40 rho = rho + 1e-40 # TSC model else: print 'Calculating the dust density profile with TSC solution...' if theta_cav != 0: # c0 = R_env_max**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav))) c0 = (1e4*AU)**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav))) else: c0 = 0 # If needed, calculate the TSC model via IDL # if idl == True: print 'Using IDL to calculate the TSC model. Make sure you are running this on mechine with IDL.' import pidly # idl = pidly.IDL('/Applications/exelis/idl82/bin/idl') idl = pidly.IDL(IDL_path) idl('.r '+TSC_dir+'tsc.pro') # idl.pro('tsc_run', outdir=outdir, grid=[nxx,ny,nz], time=t, c_s=cs, omega=omega, rstar=rstar, renv_min=R_env_min, renv_max=R_env_max) # idl.pro('tsc_run', outdir=outdir, grid=[nxx,ny,nz], time=t, c_s=cs, omega=omega, rstar=rstar, renv_min=R_env_min, renv_max=min([R_inf,max(ri)])) # min([R_inf,max(ri)]) # # only run TSC calculation within infall radius # modify the rc array rc_idl = rc[(rc < min([R_inf,max(ri)]))] idl.pro('tsc_run', outdir=outdir, rc=rc_idl, thetac=thetac, time=t, c_s=cs, omega=omega, renv_min=R_env_min)#, rstar=rstar, renv_min=R_env_min, renv_max=min([R_inf,max(ri)])) # min([R_inf,max(ri)]) else: print 'Read the pre-computed TSC model.' rc_idl = rc[(rc < min([R_inf,max(ri)]))] # read in the exist file rho_env_tsc_idl = np.genfromtxt(outdir+'rhoenv.dat').T # because only region within infall radius is calculated by IDL program, need to project it to the original grid rho_env_tsc = np.zeros([len(rc), len(thetac)]) for irc in range(len(rc)): if rc[irc] in rc_idl: rho_env_tsc[irc,:] = rho_env_tsc_idl[np.where(rc_idl == rc[irc]),:] # extrapolate for the NaN values at the outer radius, usually at radius beyond the infall radius # using r^-2 profile at radius greater than infall radius # and map the 2d strcuture onto 3d grid def poly(x, y, x0, deg=2): import numpy as np p = np.polyfit(x, y, deg) y0 = 0 for i in range(0, len(p)): y0 = y0 + p[i]*x0**(len(p)-i-1) return y0 # rho_env_copy = np.array(rho_env_tsc) # if max(rc) > R_inf: # ind_infall = np.where(rc <= R_inf)[0][-1] # print ind_infall # for ithetac in range(0, len(thetac)): # # rho_dum = np.log10(rho_env_copy[(rc > R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == False),ithetac]) # # rc_dum = np.log10(rc[(rc > R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == False)]) # # rc_dum_nan = np.log10(rc[(rc > R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == True)]) # # # print rc_dum # # for i in range(0, len(rc_dum_nan)): # # rho_extrapol = poly(rc_dum, rho_dum, rc_dum_nan[i]) # # rho_env_copy[(np.log10(rc) == rc_dum_nan[i]),ithetac] = 10**rho_extrapol # # # for i in range(ind_infall, len(rc)): # rho_env_copy[i, ithetac] = 10**(np.log10(rho_env_copy[ind_infall, ithetac]) - 2*(np.log10(rc[i]/rc[ind_infall]))) # rho_env2d = rho_env_copy # rho_env = np.empty((nx,ny,nz)) # for i in range(0, nz): # rho_env[:,:,i] = rho_env2d # map TSC solution from IDL to actual 2-D grid rho_env_tsc2d = np.empty((nx,ny)) if max(ri) > R_inf: ind_infall = np.where(rc <= R_inf)[0][-1] for i in range(0, len(rc)): if i <= ind_infall: rho_env_tsc2d[i,:] = rho_env_tsc[i,:] else: rho_env_tsc2d[i,:] = 10**(np.log10(rho_env_tsc[ind_infall,:]) - 2*(np.log10(rc[i]/rc[ind_infall]))) else: rho_env_tsc2d = rho_env_tsc # map it to 3-D grid rho_env = np.empty((nx,ny,nz)) for i in range(0, nz): rho_env[:,:,i] = rho_env_tsc2d if dyn_cav == True: print 'Calculate the cavity properties using the criteria that swept-up mass = outflowed mass' # using swept-up mass = flow mass to derive the edge of the extended flat density region v_outflow = 1e2 * 1e5 rho_cav_edge = outflow_inner_edge(np.copy(rho_env), (ri,thetai,phii),M_env_dot,v_outflow,theta_cav, R_env_min) dict_params['rho_cav_edge'] = rho_cav_edge # assume gas-to-dust ratio = 100 rho_cav_center = 0.01 * 0.1*M_env_dot*rho_cav_edge/v_outflow/2 / (2*np.pi/3*rho_cav_edge**3*(1-np.cos(np.radians(theta_cav)))) dict_params['rho_cav_center'] = rho_cav_center print 'inner edge is %5f AU and density is %e g/cm3' % (rho_cav_edge/AU, rho_cav_center) # create the array of density of disk and the whole structure # rho_disk = np.zeros([len(rc),len(thetac),len(phic)]) rho = np.zeros([len(rc),len(thetac),len(phic)]) # Calculate the disk scale height by the normalization of h100 def f(w,z,beta,rstar,h100): f = 2*PI*w*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/(w**beta*h100/100**beta))**2) return f # The function for calculating the normalization of disk using the total disk mass # rho_0 = M_disk/(nquad(f,[[R_disk_min,R_disk_max],[-R_env_max,R_env_max]], args=(beta,rstar,h100)))[0] i = 0 j = 0 if 'rho_cav_center' in locals() == False: rho_cav_center = 5.27e-18 # 1.6e-17 # 5.27e-18 print 'Use 5.27e-18 as the default value for cavity center' if 'rho_cav_edge' in locals() == False: rho_cav_edge = 40*AU print 'Use 40 AU as the default value for size of the inner region' discont = 1 for ir in range(0,len(rc)): for itheta in range(0,len(thetac)): for iphi in range(0,len(phic)): if rc[ir] > R_env_min: # Envelope profile w = abs(rc[ir]*np.cos(np.pi/2 - thetac[itheta])) z = rc[ir]*np.sin(np.pi/2 - thetac[itheta]) if ellipsoid == False: z_cav = c0*abs(w)**1.5 if z_cav == 0: z_cav = R_env_max cav_con = abs(z) > abs(z_cav) else: # condition for the outer ellipsoid cav_con = (2*(w/b_out)**2 + ((abs(z)-z_out)/a_out)**2) < 1 if cav_con: # open cavity if ellipsoid == False: if rho_cav_edge == 0: rho_cav_edge = R_env_min if (rc[ir] <= rho_cav_edge) & (rc[ir] >= R_env_min): rho_env[ir,itheta,iphi] = g2d * rho_cav_center#*((rc[ir]/AU)**2) else: rho_env[ir,itheta,iphi] = g2d * rho_cav_center*discont*(rho_cav_edge/rc[ir])**power i += 1 else: # condition for the inner ellipsoid if (2*(w/b_in)**2 + ((abs(z)-z_in)/a_in)**2) > 1: rho_env[ir,itheta,iphi] = rho_cav_out else: rho_env[ir,itheta,iphi] = rho_cav_in i +=1 # Disk profile if ((w >= R_disk_min) and (w <= R_disk_max)) == True: h = ((w/(100*AU))**beta)*h100 rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2) # Combine envelope and disk rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi] else: rho[ir,itheta,iphi] = 1e-40 # add the dust mass into the total count cell_mass = rho[ir, itheta, iphi] * (1/3.)*(ri[ir+1]**3 - ri[ir]**3) * (phii[iphi+1]-phii[iphi]) * -(np.cos(thetai[itheta+1])-np.cos(thetai[itheta])) total_mass = total_mass + cell_mass # rho_env = rho_env + 1e-40 # rho_disk = rho_disk + 1e-40 # rho = rho + 1e-40 # apply gas-to-dust ratio of 100 rho_dust = rho/g2d total_mass_dust = total_mass/MS/g2d print 'Total dust mass = %f Solar mass' % total_mass_dust if record == True: # Record the input and calculated parameters params = dict_params.copy() params.update({'d_sub': d_sub/AU, 'M_env_dot': M_env_dot/MS*yr, 'R_inf': R_inf/AU, 'R_cen': R_cen/AU, 'mstar': mstar/MS, 'M_tot_gas': total_mass/MS}) record_hyperion(params,record_dir) if plot == True: # rc setting # mat.rcParams['text.usetex'] = True # mat.rcParams['font.family'] = 'serif' # mat.rcParams['font.serif'] = 'Times' # mat.rcParams['font.sans-serif'] = 'Computer Modern Sans serif' # Plot the azimuthal averaged density fig = plt.figure(figsize=(8,6)) ax_env = fig.add_subplot(111,projection='polar') # take the weighted average # rho2d is the 2-D projection of gas density rho2d = np.sum(rho**2,axis=2)/np.sum(rho,axis=2) zmin = 1e-22/mmw/mh cmap = plt.cm.CMRmap rho2d_exp = np.hstack((rho2d,rho2d,rho2d[:,0:1])) thetac_exp = np.hstack((thetac-PI/2, thetac+PI/2, thetac[0]-PI/2)) # plot the gas density img_env = ax_env.pcolormesh(thetac_exp,rc/AU,rho2d_exp/mmw/mh,cmap=cmap,norm=LogNorm(vmin=zmin,vmax=1e9)) # np.nanmax(rho2d_exp/mmw/mh) ax_env.set_xlabel(r'$\rm{Polar\,angle\,(Degree)}$',fontsize=20) ax_env.set_ylabel(r'$\rm{Radius\,(AU)}$',fontsize=20) ax_env.tick_params(labelsize=20) ax_env.set_yticks(np.arange(0,R_env_max/AU,R_env_max/AU/5)) # ax_env.set_ylim([0,10000]) ax_env.set_xticklabels([r'$\rm{90^{\circ}}$',r'$\rm{45^{\circ}}$',r'$\rm{0^{\circ}}$',r'$\rm{-45^{\circ}}$',\ r'$\rm{-90^{\circ}}$',r'$\rm{-135^{\circ}}$',r'$\rm{180^{\circ}}$',r'$\rm{135^{\circ}}$']) # fix the tick label font ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=20) for label in ax_env.get_yticklabels(): label.set_fontproperties(ticks_font) ax_env.grid(True) cb = fig.colorbar(img_env, pad=0.1) cb.ax.set_ylabel(r'$\rm{Averaged\,Gas\,Density\,(cm^{-3})}$',fontsize=20) cb.set_ticks([1e2,1e3,1e4,1e5,1e6,1e7,1e8,1e9]) cb.set_ticklabels([r'$\rm{10^{2}}$',r'$\rm{10^{3}}$',r'$\rm{10^{4}}$',r'$\rm{10^{5}}$',r'$\rm{10^{6}}$',\ r'$\rm{10^{7}}$',r'$\rm{10^{8}}$',r'$\rm{\geq 10^{9}}$']) cb_obj = plt.getp(cb.ax.axes, 'yticklabels') plt.setp(cb_obj,fontsize=20) fig.savefig(outdir+outname+'_gas_density.png', format='png', dpi=300, bbox_inches='tight') fig.clf() # Plot the radial density profile fig = plt.figure(figsize=(12,9)) ax = fig.add_subplot(111) plot_grid = [0,49,99,149,199] alpha = np.linspace(0.3,1.0,len(plot_grid)) for i in plot_grid: rho_rad, = ax.plot(np.log10(rc/AU), np.log10(rho2d[:,i]/g2d/mmw/mh),'-',color='b',linewidth=2, markersize=3,alpha=alpha[plot_grid.index(i)]) tsc_only, = ax.plot(np.log10(rc/AU), np.log10(rho_env_tsc2d[:,i]/mmw/mh),'o',color='r',linewidth=2, markersize=3,alpha=alpha[plot_grid.index(i)]) rinf = ax.axvline(np.log10(R_inf/AU), linestyle='--', color='k', linewidth=1.5) cen_r = ax.axvline(np.log10(R_cen/AU), linestyle=':', color='k', linewidth=1.5) # sisslope, = ax.plot(np.log10(rc/AU), -2*np.log10(rc/AU)+A-(-2)*np.log10(plot_r_inf), linestyle='--', color='Orange', linewidth=1.5) # gt_R_cen_slope, = ax.plot(np.log10(rc/AU), -1.5*np.log10(rc/AU)+B-(-1.5)*np.log10(plot_r_inf), linestyle='--', color='Orange', linewidth=1.5) # lt_R_cen_slope, = ax.plot(np.log10(rc/AU), -0.5*np.log10(rc/AU)+A-(-0.5)*np.log10(plot_r_inf), linestyle='--', color='Orange', linewidth=1.5) lg = plt.legend([rho_rad, tsc_only, rinf, cen_r],\ [r'$\rm{\rho_{dust}}$',r'$\rm{\rho_{tsc}}$',r'$\rm{infall\,radius}$',r'$\rm{centrifugal\,radius}$'],\ fontsize=20, numpoints=1) ax.set_xlabel(r'$\rm{log(Radius)\,(AU)}$',fontsize=20) ax.set_ylabel(r'$\rm{log(Gas \slash Dust\,Density)\,(cm^{-3})}$',fontsize=20) [ax.spines[axis].set_linewidth(1.5) for axis in ['top','bottom','left','right']] ax.minorticks_on() ax.tick_params('both',labelsize=18,width=1.5,which='major',pad=15,length=5) ax.tick_params('both',labelsize=18,width=1.5,which='minor',pad=15,length=2.5) # fix the tick label font ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=18) for label in ax.get_xticklabels(): label.set_fontproperties(ticks_font) for label in ax.get_yticklabels(): label.set_fontproperties(ticks_font) ax.set_ylim([0,15]) fig.gca().set_xlim(left=np.log10(0.05)) # ax.set_xlim([np.log10(0.8),np.log10(10000)]) # subplot shows the radial density profile along the midplane ax_mid = plt.axes([0.2,0.2,0.2,0.2], frameon=True) ax_mid.plot(np.log10(rc/AU), np.log10(rho2d[:,199]/g2d/mmw/mh),'o',color='b',linewidth=1, markersize=2) ax_mid.plot(np.log10(rc/AU), np.log10(rho_env_tsc2d[:,199]/mmw/mh),'-',color='r',linewidth=1, markersize=2) # ax_mid.set_ylim([0,10]) # ax_mid.set_xlim([np.log10(0.8),np.log10(10000)]) ax_mid.set_ylim([0,15]) fig.savefig(outdir+outname+'_gas_radial.pdf',format='pdf',dpi=300,bbox_inches='tight') fig.clf() # Insert the calculated grid and dust density profile into hyperion m.set_spherical_polar_grid(ri, thetai, phii) # temperary for comparing full TSC and infall-only TSC model # import sys # sys.path.append(os.path.expanduser('~')+'/programs/misc/') # from tsc_comparison import tsc_com # rho_tsc, rho_ulrich = tsc_com() m.add_density_grid(rho_dust.T, d) # m.add_density_grid(rho.T, outdir+'oh5.hdf5') # numpy read the array in reverse order # Define the luminsoity source source = m.add_spherical_source() source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4) # [ergs/s] source.radius = rstar # [cm] source.temperature = tstar # [K] source.position = (0., 0., 0.) print 'L_center = % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS) # # add an infrared source at the center # L_IR = 0.04 # ir_source = m.add_spherical_source() # ir_source.luminosity = L_IR*LS # ir_source.radius = rstar # [cm] # ir_source.temperature = 500 # [K] peak at 10 um # ir_source.position = (0., 0., 0.) # print 'Additional IR source, L_IR = %5.2f L_sun' % L_IR # Setting up the wavelength for monochromatic radiative transfer lambda0 = 0.1 lambda1 = 2.0 lambda2 = 50.0 lambda3 = 95.0 lambda4 = 200.0 lambda5 = 314.0 lambda6 = 1000.0 n01 = 10.0 n12 = 20.0 n23 = 50.0 lam01 = lambda0 * (lambda1/lambda0)**(np.arange(n01)/n01) lam12 = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12) lam23 = lambda2 * (lambda6/lambda2)**(np.arange(n23+1)/n23) lam = np.concatenate([lam01,lam12,lam23]) nlam = len(lam) # Create camera wavelength points n12 = 70.0 n23 = 70.0 n34 = 70.0 n45 = 50.0 n56 = 50.0 lam12 = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12) lam23 = lambda2 * (lambda3/lambda2)**(np.arange(n23)/n23) lam34 = lambda3 * (lambda4/lambda3)**(np.arange(n34)/n34) lam45 = lambda4 * (lambda5/lambda4)**(np.arange(n45)/n45) lam56 = lambda5 * (lambda6/lambda5)**(np.arange(n56+1)/n56) lam_cam = np.concatenate([lam12,lam23,lam34,lam45,lam56]) n_lam_cam = len(lam_cam) # Radiative transfer setting # number of photons for temp and image lam_list = lam.tolist() # print lam_list m.set_raytracing(True) # option of using more photons for imaging if better_im == False: im_photon = 1e6 else: im_photon = 5e7 if mono == True: # Monechromatic radiative transfer setting m.set_monochromatic(True, wavelengths=lam_list) m.set_n_photons(initial=1000000, imaging_sources=im_photon, imaging_dust=im_photon,raytracing_sources=1000000, raytracing_dust=1000000) else: # regular wavelength grid setting m.set_n_photons(initial=1000000, imaging=im_photon,raytracing_sources=1000000, raytracing_dust=1000000) # number of iteration to compute dust specific energy (temperature) m.set_n_initial_iterations(20) # m.set_convergence(True, percentile=95., absolute=1.5, relative=1.02) m.set_convergence(True, percentile=dict_params['percentile'], absolute=dict_params['absolute'], relative=dict_params['relative']) m.set_mrw(True) # Gamma = 1 by default # m.set_forced_first_scattering(forced_first_scattering=True) # Setting up images and SEDs # SED setting # Infinite aperture syn_inf = m.add_peeled_images(image=False) # use the index of wavelength array used by the monochromatic radiative transfer if mono == False: syn_inf.set_wavelength_range(1400, 2.0, 1400.0) syn_inf.set_viewing_angles([dict_params['view_angle']], [0.0]) syn_inf.set_uncertainties(True) syn_inf.set_output_bytes(8) # aperture # 7.2 in 10 um scaled by lambda / 10 # flatten beyond 20 um # default aperture if aperture == None: aperture = {'wave': [3.6, 4.5, 5.8, 8.0, 8.5, 9, 9.7, 10, 10.5, 11, 16, 20, 24, 35, 70, 100, 160, 250, 350, 500, 1300],\ 'aperture': [7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 20.4, 20.4, 20.4, 20.4, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 101]} # assign wl_aper and aper from dictionary of aperture wl_aper = aperture['wave'] aper = aperture['aperture'] # create the non-repetitive aperture list and index array aper_reduced = list(set(aper)) index_reduced = np.arange(1, len(aper_reduced)+1) # name = np.arange(1,len(wl_aper)+1) # aper = np.empty_like(wl_aper) # for i in range(0, len(wl_aper)): # if wl_aper[i] < 5: # # aper[i] = 1.2 * 7 # aper[i] = 1.8 * 4 # elif (wl_aper[i] < 14) & (wl_aper[i] >=5): # # aper[i] = 7.2 * wl_aper[i]/10. # aper[i] = 1.8 * 4 # elif (wl_aper[i] >= 14) & (wl_aper[i] <40): # # aper[i] = 7.2 * 2 # aper[i] = 5.1 * 4 # else: # aper[i] = 24.5 # dict_peel_sed = {} # for i in range(0, len(wl_aper)): # aper_dum = aper[i]/2 * (1/3600.*np.pi/180.)*dstar*pc # dict_peel_sed[str(name[i])] = m.add_peeled_images(image=False) # # use the index of wavelength array used by the monochromatic radiative transfer # if mono == False: # # dict_peel_sed[str(name[i])].set_wavelength_range(1300, 2.0, 1300.0) # dict_peel_sed[str(name[i])].set_wavelength_range(1000, 2.0, 1000.0) # dict_peel_sed[str(name[i])].set_viewing_angles([dict_params['view_angle']], [0.0]) # # aperture should be given in cm # dict_peel_sed[str(name[i])].set_aperture_range(1, aper_dum, aper_dum) # dict_peel_sed[str(name[i])].set_uncertainties(True) # dict_peel_sed[str(name[i])].set_output_bytes(8) dict_peel_sed = {} for i in range(0, len(aper_reduced)): aper_dum = aper_reduced[i]/2 * (1/3600.*np.pi/180.)*dstar*pc dict_peel_sed[str(index_reduced[i])] = m.add_peeled_images(image=False) # use the index of wavelength array used by the monochromatic radiative transfer if mono == False: dict_peel_sed[str(index_reduced[i])].set_wavelength_range(1400, 2.0, 1400.0) dict_peel_sed[str(index_reduced[i])].set_viewing_angles([dict_params['view_angle']], [0.0]) # aperture should be given in cm and its the radius of the aperture dict_peel_sed[str(index_reduced[i])].set_aperture_range(1, aper_dum, aper_dum) dict_peel_sed[str(index_reduced[i])].set_uncertainties(True) dict_peel_sed[str(index_reduced[i])].set_output_bytes(8) # image setting syn_im = m.add_peeled_images(sed=False) # use the index of wavelength array used by the monochromatic radiative transfer if mono == False: syn_im.set_wavelength_range(1400, 2.0, 1400.0) # pixel number syn_im.set_image_size(300, 300) syn_im.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max) syn_im.set_viewing_angles([dict_params['view_angle']], [0.0]) syn_im.set_uncertainties(True) # output as 64-bit syn_im.set_output_bytes(8) # Output setting # Density m.conf.output.output_density = 'last' # Density difference (shows where dust was destroyed) m.conf.output.output_density_diff = 'none' # Energy absorbed (using pathlengths) m.conf.output.output_specific_energy = 'last' # Number of unique photons that passed through the cell m.conf.output.output_n_photons = 'last' m.write(outdir+outname+'.rtin') if radmc == True: # RADMC-3D still use a pre-defined aperture with lazy for-loop aper = np.zeros([len(lam)]) ind = 0 for wl in lam: if wl < 5: aper[ind] = 8.4 elif wl >= 5 and wl < 14: aper[ind] = 1.8 * 4 elif wl >= 14 and wl < 40: aper[ind] = 5.1 * 4 else: aper[ind] = 24.5 ind += 1 # Write the wavelength_micron.inp file # f_wave = open(outdir+'wavelength_micron.inp','w') f_wave.write('%d \n' % int(nlam)) for ilam in range(0,nlam): f_wave.write('%f \n' % lam[ilam]) f_wave.close() # Write the camera_wavelength_micron.inp file # f_wave_cam = open(outdir+'camera_wavelength_micron.inp','w') f_wave_cam.write('%d \n' % int(nlam)) for ilam in range(0,nlam): f_wave_cam.write('%f \n' % lam[ilam]) f_wave_cam.close() # Write the aperture_info.inp # f_aper = open(outdir+'aperture_info.inp','w') f_aper.write('1 \n') f_aper.write('%d \n' % int(nlam)) for iaper in range(0, len(aper)): f_aper.write('%f \t %f \n' % (lam[iaper],aper[iaper]/2)) f_aper.close() # Write the stars.inp file # f_star = open(outdir+'stars.inp','w') f_star.write('2\n') f_star.write('1 \t %d \n' % int(nlam)) f_star.write('\n') f_star.write('%e \t %e \t %e \t %e \t %e \n' % (rstar*0.9999,mstar,0,0,0)) f_star.write('\n') for ilam in range(0,nlam): f_star.write('%f \n' % lam[ilam]) f_star.write('\n') f_star.write('%f \n' % -tstar) f_star.close() # Write the grid file # f_grid = open(outdir+'amr_grid.inp','w') f_grid.write('1\n') # iformat f_grid.write('0\n') # AMR grid style (0=regular grid, no AMR) f_grid.write('150\n') # Coordinate system coordsystem<100: Cartisian; 100<=coordsystem<200: Spherical; 200<=coordsystem<300: Cylindrical f_grid.write('0\n') # gridinfo f_grid.write('1 \t 1 \t 1 \n') # Include x,y,z coordinate f_grid.write('%d \t %d \t %d \n' % (int(nx)-1,int(ny),int(nz))) # Size of the grid [f_grid.write('%e \n' % ri[ir]) for ir in range(1,len(ri))] [f_grid.write('%f \n' % thetai[itheta]) for itheta in range(0,len(thetai))] [f_grid.write('%f \n' % phii[iphi]) for iphi in range(0,len(phii))] f_grid.close() # Write the density file # f_dust = open(outdir+'dust_density.inp','w') f_dust.write('1 \n') # format number f_dust.write('%d \n' % int((nx-1)*ny*nz)) # Nr of cells f_dust.write('1 \n') # Nr of dust species for iphi in range(0,len(phic)): for itheta in range(0,len(thetac)): for ir in range(1,len(rc)): f_dust.write('%e \n' % rho_dust[ir,itheta,iphi]) f_dust.close() # Write the dust opacity table f_dustkappa = open(outdir+'dustkappa_oh5_extended.inp','w') f_dustkappa.write('3 \n') # format index for including g-factor f_dustkappa.write('%d \n' % len(dust['nu'])) # number of wavlength/frequency in the table for i in range(len(dust['nu'])): f_dustkappa.write('%f \t %f \t %f \t %f \n' % (c/dust['nu'][i]*1e4, dust['chi'][i], dust['chi'][i]*dust['albedo'][i]/(1-dust['albedo'][i]), dust['g'][i])) f_dustkappa.close() # Write the Dust opacity control file # f_opac = open(outdir+'dustopac.inp','w') f_opac.write('2 Format number of this file\n') f_opac.write('1 Nr of dust species\n') f_opac.write('============================================================================\n') f_opac.write('1 Way in which this dust species is read\n') f_opac.write('0 0=Thermal grain\n') # f_opac.write('klaus Extension of name of dustkappa_***.inp file\n') f_opac.write('oh5_extended Extension of name of dustkappa_***.inp file\n') f_opac.write('----------------------------------------------------------------------------\n') f_opac.close() # In[112]: # Write the radmc3d.inp control file # f_control = open(outdir+'radmc3d.inp','w') f_control.write('nphot = %d \n' % 100000) f_control.write('scattering_mode_max = 2\n') f_control.write('camera_min_drr = 0.1\n') f_control.write('camera_min_dangle = 0.1\n') f_control.write('camera_spher_cavity_relres = 0.1\n') f_control.write('istar_sphere = 1\n') f_control.write('modified_random_walk = 1\n') f_control.close() return m # from input_reader import input_reader_table # from pprint import pprint # filename = '/Users/yaolun/programs/misc/hyperion/test_input.txt' # params = input_reader_table(filename) # pprint(params[0]) # indir = '/Users/yaolun/test/' # outdir = '/Users/yaolun/test/' # dust_file = '/Users/yaolun/programs/misc/oh5_hyperion.txt' # # dust_file = '/Users/yaolun/Copy/dust_model/Ormel2011/hyperion/(ic-sil,gra)3opc.txt' # # fix_params = {'R_min': 0.14} # fix_params = {} # setup_model(indir,outdir,'model_test',params[0],dust_file,plot=True,record=False,\ # idl=False,radmc=False,fix_params=fix_params,ellipsoid=False)
def setup_model(indir, outdir, model=False, denser_wall=False, plot=False, low_res=False, flat=True, scale=1.0): import numpy as np import astropy.constants as const import scipy as sci import matplotlib.pyplot as plt import matplotlib as mat import os from matplotlib.colors import LogNorm from scipy.optimize import fsolve from scipy.integrate import nquad from envelope_func import func from hyperion.model import Model # Constants setup c = const.c.cgs.value AU = 1.49598e13 # Astronomical Unit [cm] pc = 3.08572e18 # Parsec [cm] MS = 1.98892e33 # Solar mass [g] LS = 3.8525e33 # Solar luminosity [erg/s] RS = 6.96e10 # Solar radius [cm] G = 6.67259e-8 # Gravitational constant [cm3/g/s^2] yr = 60 * 60 * 24 * 365 # Years in seconds PI = np.pi # PI constant sigma = const.sigma_sb.cgs.value # Stefan-Boltzmann constant m = Model() # Create dust properties # Hyperion needs nu, albedo, chi, g, p_lin_max from hyperion.dust import HenyeyGreensteinDust # Read in the dust opacity table used by RADMC-3D dust_radmc = dict() [dust_radmc['wl'], dust_radmc['abs'], dust_radmc['scat'], dust_radmc['g']] = np.genfromtxt('dustkappa_oh5_extended.inp', skip_header=2).T # opacity per mass of dust? dust_hy = dict() dust_hy['nu'] = c / dust_radmc['wl'] * 1e4 ind = np.argsort(dust_hy['nu']) dust_hy['nu'] = dust_hy['nu'][ind] dust_hy['albedo'] = (dust_radmc['scat'] / (dust_radmc['abs'] + dust_radmc['scat']))[ind] dust_hy['chi'] = (dust_radmc['abs'] + dust_radmc['scat'])[ind] dust_hy['g'] = dust_radmc['g'][ind] dust_hy['p_lin_max'] = 0 * dust_radmc['wl'][ind] # assume no polarization d = HenyeyGreensteinDust(dust_hy['nu'], dust_hy['albedo'], dust_hy['chi'], dust_hy['g'], dust_hy['p_lin_max']) # dust sublimation does not occur # d.set_sublimation_temperature(None) d.write(outdir + 'oh5.hdf5') d.plot(outdir + 'oh5.png') # Grids and Density # Calculation inherited from the script used for RADMC-3D # Parameters setup # Import the model parameters from another file # params = np.genfromtxt(indir + '/params.dat', dtype=None) tstar = params[0][1] mstar = params[1][1] * MS rstar = params[2][1] * RS M_env_dot = params[3][1] * MS / yr M_disk_dot = params[4][1] * MS / yr R_env_max = params[5][1] * AU R_env_min = params[6][1] * AU theta_cav = params[7][1] R_disk_max = params[8][1] * AU R_disk_min = params[9][1] * AU R_cen = R_disk_max M_disk = params[10][1] * MS beta = params[11][1] h100 = params[12][1] * AU rho_cav = params[13][1] if denser_wall == True: wall = params[14][1] * AU rho_wall = params[15][1] rho_cav_center = params[16][1] rho_cav_edge = params[17][1] * AU # Grid Parameters nx = 300L if low_res == True: nx = 100L ny = 400L nz = 50L [nx, ny, nz] = [scale * nx, scale * ny, scale * nz] # nx = 20 # ny = 40 # nz = 5 # Model Parameters # rin = rstar rout = R_env_max rcen = R_cen # Star Parameters # mstar = mstar rstar = rstar * 0.9999 tstar = tstar pstar = [0., 0., 0.] # Make the Coordinates # ri = rin * (rout / rin)**(np.arange(nx + 1).astype(dtype='float') / float(nx)) ri = np.hstack((0.0, ri)) thetai = PI * np.arange(ny + 1).astype(dtype='float') / float(ny) phii = PI * 2.0 * np.arange(nz + 1).astype(dtype='float') / float(nz) # Keep the constant cell size in r-direction # if flat == True: ri_cellsize = ri[1:-1] - ri[0:-2] ind = np.where( ri_cellsize / AU > 100.0)[0][0] # The largest cell size is 100 AU ri = np.hstack( (ri[0:ind], ri[ind] + np.arange(np.ceil( (rout - ri[ind]) / 100 / AU)) * 100 * AU)) nxx = nx nx = len(ri) - 1 # Assign the coordinates of the center of cell as its coordinates. # rc = 0.5 * (ri[0:nx] + ri[1:nx + 1]) thetac = 0.5 * (thetai[0:ny] + thetai[1:ny + 1]) phic = 0.5 * (phii[0:nz] + phii[1:nz + 1]) # phic = 0.5*( phii[0:nz-1] + phii[1:nz] ) # Make the dust density model # Make the density profile of the envelope # print 'Calculating the dust density profile...' if theta_cav != 0: c0 = R_env_max**(-0.5) * np.sqrt(1 / np.sin(np.radians(theta_cav))**3 - 1 / np.sin(np.radians(theta_cav))) else: c0 = 0 rho_env = np.zeros([len(rc), len(thetac), len(phic)]) rho_disk = np.zeros([len(rc), len(thetac), len(phic)]) rho = np.zeros([len(rc), len(thetac), len(phic)]) def f(w, z, beta, rstar, h100): f = 2 * PI * w * (1 - np.sqrt(rstar / w)) * (rstar / w)**( beta + 1) * np.exp(-0.5 * (z / (w**beta * h100 / 100**beta))**2) return f rho_0 = M_disk / (nquad( f, [[R_disk_min, R_disk_max], [-R_env_max, R_env_max]], args=(beta, rstar, h100)))[0] i = 0 j = 0 if 'rho_cav_center' in locals() == False: rho_cav_center = 5.27e-18 # 1.6e-17 # 5.27e-18 print 'Use 5.27e-18 as the default value for cavity center' if 'rho_cav_edge' in locals() == False: rho_cav_edge = 40 * AU print 'Use 40 AU as the default value for size of the inner region' discont = 1 if denser_wall == False: for ir in range(0, len(rc)): for itheta in range(0, len(thetac)): for iphi in range(0, len(phic)): if rc[ir] > R_env_min: # Envelope profile w = abs(rc[ir] * np.cos(np.pi / 2 - thetac[itheta])) z = rc[ir] * np.sin(np.pi / 2 - thetac[itheta]) z_cav = c0 * abs(w)**1.5 if z_cav == 0: z_cav = R_env_max if abs(z) > abs(z_cav): # rho_env[ir,itheta,iphi] = rho_cav # Modification for using density gradient in the cavity if rc[ir] <= rho_cav_edge: rho_env[ ir, itheta, iphi] = rho_cav_center #*((rc[ir]/AU)**2) else: rho_env[ir, itheta, iphi] = rho_cav_center * discont * ( rho_cav_edge / rc[ir])**2 i += 1 else: j += 1 mu = abs(np.cos(thetac[itheta])) mu_o = np.abs( fsolve(func, [0.5, 0.5, 0.5], args=(rc[ir], rcen, mu))[0]) rho_env[ir, itheta, iphi] = M_env_dot / ( 4 * PI * (G * mstar * rcen**3)**0.5 ) * (rc[ir] / rcen)**(-3. / 2) * (1 + mu / mu_o)**( -0.5) * (mu / mu_o + 2 * mu_o**2 * rcen / rc[ir])**(-1) # Disk profile if ((w >= R_disk_min) and (w <= R_disk_max)) == True: h = ((w / (100 * AU))**beta) * h100 rho_disk[ir, itheta, iphi] = rho_0 * (1 - np.sqrt( rstar / w)) * (rstar / w)**(beta + 1) * np.exp( -0.5 * (z / h)**2) # Combine envelope and disk rho[ir, itheta, iphi] = rho_disk[ir, itheta, iphi] + rho_env[ir, itheta, iphi] # # testing the effect of new solver # # Envelope profile # w = abs(rc[ir]*np.cos(np.pi/2 - thetac[itheta])) # z = rc[ir]*np.sin(np.pi/2 - thetac[itheta]) # z_cav = c0*abs(w)**1.5 # if z_cav == 0: # z_cav = R_env_max # if abs(z) > abs(z_cav): # # rho_env[ir,itheta,iphi] = rho_cav # # Modification for using density gradient in the cavity # if rc[ir] <= rho_cav_edge: # rho_env[ir,itheta,iphi] = rho_cav_center#*((rc[ir]/AU)**2) # else: # rho_env[ir,itheta,iphi] = rho_cav_center*discont*(rho_cav_edge/rc[ir])**2 # i += 1 # else: # j += 1 # mu = abs(np.cos(thetac[itheta])) # # Implement new root finding algorithm # roots = np.roots(np.array([1.0, 0.0, rc[ir]/rcen-1.0, -mu*rc[ir]/rcen])) # if len(roots[roots.imag == 0]) == 1: # if (abs(roots[roots.imag == 0]) - 1.0) <= 0.0: # mu_o_dum = roots[roots.imag == 0] # else: # mu_o_dum = -0.5 # print 'Problem with cubic solving, cos(theta) = ', mu_o_dum # print 'parameters are ', np.array([1.0, 0.0, rc[ir]/rcen-1.0, -mu*rc[ir]/rcen]) # else: # mu_o_dum = -0.5 # for imu in range(0, len(roots)): # if roots[imu]*mu >= 0.0: # if (abs((abs(roots[imu]) - 1.0)) <= 1e-5): # mu_o_dum = 1.0 * np.sign(mu) # else: # mu_o_dum = roots[imu] # if mu_o_dum == -0.5: # print 'Problem with cubic solving, roots are: ', roots # mu_o = mu_o_dum.real # rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*rcen**3)**0.5)*(rc[ir]/rcen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*rcen/rc[ir])**(-1) # # Disk profile # if ((w >= R_disk_min) and (w <= R_disk_max)) == True: # h = ((w/(100*AU))**beta)*h100 # rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2) # # Combine envelope and disk # rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi] else: rho[ir, itheta, iphi] = 1e-30 rho_env = rho_env + 1e-40 rho_disk = rho_disk + 1e-40 rho = rho + 1e-40 else: for ir in range(0, len(rc)): for itheta in range(0, len(thetac)): for iphi in range(0, len(phic)): # Envelope profile w = abs(rc[ir] * np.cos(thetac[itheta])) z = rc[ir] * np.sin(thetac[itheta]) z_cav = c * abs(w)**1.5 z_cav_wall = c * abs(w - wall)**1.5 if z_cav == 0: z_cav = R_env_max if abs(z) > abs(z_cav): # rho_env[ir,itheta,iphi] = rho_cav # Modification for using density gradient in the cavity if rc[ir] <= 20 * AU: rho_env[ir, itheta, iphi] = rho_cav_center * ((rc[ir] / AU)**2) else: rho_env[ir, itheta, iphi] = rho_cav_center * discont * ( 20 * AU / rc[ir])**2 i += 1 elif (abs(z) > abs(z_cav_wall)) and (abs(z) < abs(z_cav)): rho_env[ir, itheta, iphi] = rho_wall else: j += 1 mu = abs(np.cos(thetac[itheta])) mu_o = np.abs( fsolve(func, [0.5, 0.5, 0.5], args=(rc[ir], rcen, mu))[0]) rho_env[ir, itheta, iphi] = M_env_dot / ( 4 * PI * (G * mstar * rcen**3)**0.5) * ( rc[ir] / rcen)**(-3. / 2) * (1 + mu / mu_o)**( -0.5) * (mu / mu_o + 2 * mu_o**2 * rcen / rc[ir])**(-1) # Disk profile if ((w >= R_disk_min) and (w <= R_disk_max)) == True: h = ((w / (100 * AU))**beta) * h100 rho_disk[ir, itheta, iphi] = rho_0 * (1 - np.sqrt(rstar / w)) * ( rstar / w)**(beta + 1) * np.exp( -0.5 * (z / h)**2) # Combine envelope and disk rho[ir, itheta, iphi] = rho_disk[ir, itheta, iphi] + rho_env[ir, itheta, iphi] rho_env = rho_env + 1e-40 rho_disk = rho_disk + 1e-40 rho = rho + 1e-40 # Insert the calculated grid and dust density profile into hyperion m.set_spherical_polar_grid(ri, thetai, phii) m.add_density_grid(rho.T, outdir + 'oh5.hdf5') # numpy read the array in reverse order # Define the luminsoity source source = m.add_spherical_source() source.luminosity = (4 * PI * rstar**2) * sigma * (tstar**4) # [ergs/s] source.radius = rstar # [cm] source.temperature = tstar # [K] source.position = (0., 0., 0.) print 'L_center = % 5.2f L_sun' % ((4 * PI * rstar**2) * sigma * (tstar**4) / LS) # Setting up images and SEDs image = m.add_peeled_images() image.set_wavelength_range(300, 2.0, 670.0) # pixel number image.set_image_size(300, 300) image.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max) image.set_viewing_angles([82.0], [0.0]) image.set_uncertainties(True) # output as 64-bit image.set_output_bytes(8) # Radiative transfer setting # number of photons for temp and image m.set_raytracing(True) m.set_n_photons(initial=1000000, imaging=1000000, raytracing_sources=1000000, raytracing_dust=1000000) # number of iteration to compute dust specific energy (temperature) m.set_n_initial_iterations(5) m.set_convergence(True, percentile=99., absolute=1.5, relative=1.02) m.set_mrw(True) # Gamma = 1 by default # Output setting # Density m.conf.output.output_density = 'last' # Density difference (shows where dust was destroyed) m.conf.output.output_density_diff = 'none' # Energy absorbed (using pathlengths) m.conf.output.output_specific_energy = 'last' # Number of unique photons that passed through the cell m.conf.output.output_n_photons = 'last' m.write(outdir + 'old_setup2.rtin')
# Read in the dust opacity table used by RADMC-3D dust_radmc = dict() [dust_radmc['wl'],dust_radmc['abs'],dust_radmc['scat'],dust_radmc['g']] = np.genfromtxt('dustkappa_oh5_extended.inp',skip_header=2).T # opacity per mass of dust? dust_hy = dict() dust_hy['nu'] = c/dust_radmc['wl']*1e4 ind = np.argsort(dust_hy['nu']) dust_hy['nu'] = dust_hy['nu'][ind] dust_hy['albedo'] = (dust_radmc['scat']/(dust_radmc['abs']+dust_radmc['scat']))[ind] dust_hy['chi'] = (dust_radmc['abs']+dust_radmc['scat'])[ind] dust_hy['g'] = dust_radmc['g'][ind] dust_hy['p_lin_max'] = 0*dust_radmc['wl'][ind] # assume no polarization d = HenyeyGreensteinDust(dust_hy['nu'], dust_hy['albedo'], dust_hy['chi'], dust_hy['g'], dust_hy['p_lin_max']) # use 'slow' method to do dust sublimation d.set_sublimation_temperature('slow', temperature=1600.0) d.write(outdir+'oh5.hdf5') d.plot(outdir+'oh5.png') # Grids and Density # Calculation inherited from the script used for RADMC-3D # Grid Parameters nx = 300L if low_res == True: nx = 100L ny = 400L nz = 50L [nx, ny, nz] = [int(scale*nx), int(scale*ny), int(scale*nz)]