Example #1
0
def setup_model_shell(indir,outdir,outname,rin_shell=None,denser_wall=False,tsc=True,idl=False,plot=False,low_res=False,flat=True,scale=1.0):
    import numpy as np
    import astropy.constants as const
    import scipy as sci
    import matplotlib.pyplot as plt
    import matplotlib as mat
    import os
    from matplotlib.colors import LogNorm
    from scipy.optimize import fsolve
    from scipy.optimize import newton
    from scipy.integrate import nquad
    from envelope_func import func
    import hyperion as hp
    from hyperion.model import Model
    from plot_density import plot_density

    # Constants setup
    c         = const.c.cgs.value
    AU        = 1.49598e13     # Astronomical Unit       [cm]
    pc        = 3.08572e18     # Parsec                  [cm]
    MS        = 1.98892e33     # Solar mass              [g]
    LS        = 3.8525e33      # Solar luminosity        [erg/s]
    RS        = 6.96e10        # Solar radius            [cm]
    G         = 6.67259e-8     # Gravitational constant  [cm3/g/s^2]
    yr        = 60*60*24*365   # Years in seconds
    PI        = np.pi          # PI constant
    sigma     = const.sigma_sb.cgs.value  # Stefan-Boltzmann constant 


    m = Model()

    # Create dust properties

    # Hyperion needs nu, albedo, chi, g, p_lin_max
    from hyperion.dust import HenyeyGreensteinDust
    # Read in the dust opacity table used by RADMC-3D
    dust_radmc = dict()
    [dust_radmc['wl'], dust_radmc['abs'], dust_radmc['scat'], dust_radmc['g']] = np.genfromtxt('dustkappa_oh5_extended.inp',skip_header=2).T
    # opacity per mass of dust?
    dust_hy = dict()
    dust_hy['nu'] = c/dust_radmc['wl']*1e4
    ind = np.argsort(dust_hy['nu'])
    dust_hy['nu'] = dust_hy['nu'][ind]
    dust_hy['albedo'] = (dust_radmc['scat']/(dust_radmc['abs']+dust_radmc['scat']))[ind]
    dust_hy['chi'] = (dust_radmc['abs']+dust_radmc['scat'])[ind]
    dust_hy['g'] = dust_radmc['g'][ind]
    dust_hy['p_lin_max'] = 0*dust_radmc['wl'][ind]     # assume no polarization

    d = HenyeyGreensteinDust(dust_hy['nu'], dust_hy['albedo'], dust_hy['chi'], dust_hy['g'], dust_hy['p_lin_max'])
    # dust sublimation does not occur
    # d.set_sublimation_temperature(None)
    d.write(outdir+'oh5.hdf5')
    d.plot(outdir+'oh5.png')

    # Grids and Density
    # Calculation inherited from the script used for RADMC-3D

    # Grid Parameters
    nx        = 300L
    if low_res == True:
        nx    = 100L
    ny        = 400L
    nz        = 50L
    [nx, ny, nz] = [scale*nx, scale*ny, scale*nz]

    if tsc == False:
        # Parameters setup
        # Import the model parameters from another file 
        #
        params     = np.genfromtxt(indir+'/params.dat',dtype=None)
        tstar      = params[0][1]
        mstar      = params[1][1]*MS
        rstar      = params[2][1]*RS
        M_env_dot  = params[3][1]*MS/yr
        M_disk_dot = params[4][1]*MS/yr
        R_env_max  = params[5][1]*AU
        R_env_min  = params[6][1]*AU
        theta_cav  = params[7][1]
        R_disk_max = params[8][1]*AU
        R_disk_min = params[9][1]*AU
        R_cen      = R_disk_max
        M_disk     = params[10][1]*MS
        beta       = params[11][1]
        h100       = params[12][1]*AU
        rho_cav    = params[13][1]
        if denser_wall == True:
            wall       = params[14][1]*AU
            rho_wall   = params[15][1]
        rho_cav_center = params[16][1]
        rho_cav_edge   = params[17][1]*AU

        # Model Parameters
        #
        rin       = rstar
        rout      = R_env_max
        rcen      = R_cen

        # Star Parameters
        #
        mstar    = mstar
        rstar    = rstar*0.9999
        tstar    = tstar
        pstar    = [0.,0.,0.]
    else:
        # TSC model input setting
        params    = np.genfromtxt(indir+'/tsc_params.dat', dtype=None)
        # TSC model parameter
        M_env_dot = params[0][1]*MS/yr
        R_cen     = params[1][1]*AU
        R_inf     = params[2][1]*AU
        # protostar parameter
        tstar     = params[3][1]
        R_env_max = params[4][1]*AU
        theta_cav = params[5][1]
        rho_cav_center = params[6][1]
        rho_cav_edge   = params[7][1]*AU
        rstar     = params[8][1]*RS
        # Calculate the dust sublimation radius
        T_sub = 2000
        a     = 1   #in micron
        d_sub = (306.86*(a/0.1)**-0.4 * (4*np.pi*rstar**2*sigma*tstar**4/LS) / T_sub)**0.5 *AU
        # use the dust sublimation radius as the inner radius of disk and envelope
        R_disk_min = d_sub
        R_env_min  = d_sub
        rin        = rstar
        rout       = R_env_max
        R_disk_max = R_cen
        # mostly fixed parameter
        M_disk    = 0.5*MS
        beta      = 1.093
        h100      = 8.123*AU
        rho_cav   = 1e-21

        # Do the variable conversion
        cs = (G * M_env_dot / 0.975)**(1/3.)  # cm/s
        t = R_inf / cs / yr   # in year
        mstar = M_env_dot * t * yr
        omega = (R_cen * 16*cs**8 / (G**3 * mstar**3))**0.5

    # Make the Coordinates
    #
    ri           = rin * (rout/rin)**(np.arange(nx+1).astype(dtype='float')/float(nx))
    ri           = np.hstack((0.0, ri))
    thetai       = PI*np.arange(ny+1).astype(dtype='float')/float(ny)
    phii         = PI*2.0*np.arange(nz+1).astype(dtype='float')/float(nz)
    # Keep the constant cell size in r-direction
    #
    if flat == True:
        ri_cellsize = ri[1:-1]-ri[0:-2]
        ind = np.where(ri_cellsize/AU > 100.0)[0][0]       # The largest cell size is 100 AU
        ri = np.hstack((ri[0:ind],ri[ind]+np.arange(np.ceil((rout-ri[ind])/100/AU))*100*AU))
        nxx = nx
        nx = len(ri)-1    

    # Assign the coordinates of the center of cell as its coordinates.
    #
    rc           = 0.5*( ri[0:nx]     + ri[1:nx+1] )
    thetac       = 0.5*( thetai[0:ny] + thetai[1:ny+1] )
    phic         = 0.5*( phii[0:nz]   + phii[1:nz+1] )
    # phic         = 0.5*( phii[0:nz-1]   + phii[1:nz] )

    # Make the dust density model
    # Make the density profile of the envelope
    #
    if rin_shell == None:
        rin_shell = 0.3*R_env_max
    if tsc == False:
        print 'Calculating the dust density profile with infall solution...'

        rho_env  = np.zeros([len(rc),len(thetac),len(phic)])
        rho      = np.zeros([len(rc),len(thetac),len(phic)])

        for ir in range(0,len(rc)):
            for itheta in range(0,len(thetac)):
                for iphi in range(0,len(phic)):
                    if rc[ir] > rin_shell:
                        # Envelope profile
                        mu = abs(np.cos(PI/2 - thetac[itheta]))
                        # Implement new root finding algorithm
                        roots = np.roots(np.array([1.0, 0.0, rc[ir]/rcen-1.0, -mu*rc[ir]/rcen]))
                        if len(roots[roots.imag == 0]) == 1:
                            if (abs(roots[roots.imag == 0]) - 1.0) <= 0.0:
                                mu_o_dum = roots[roots.imag == 0]
                            else:
                                mu_o_dum = -0.5
                                print 'Problem with cubic solving, cos(theta) = ', mu_o_dum
                                print 'parameters are ', np.array([1.0, 0.0, rc[ir]/rcen-1.0, -mu*rc[ir]/rcen])
                        else:
                            mu_o_dum = -0.5
                            for imu in range(0, len(roots)):
                                if roots[imu]*mu >= 0.0:
                                    if (abs((abs(roots[imu]) - 1.0)) <= 1e-5):
                                        mu_o_dum = 1.0 * np.sign(mu)
                                    else:
                                        mu_o_dum = roots[imu]
                            if mu_o_dum == -0.5:
                                print 'Problem with cubic solving, roots are: ', roots
                        mu_o = mu_o_dum.real
                        rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*rcen**3)**0.5)*(rc[ir]/rcen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*rcen/rc[ir])**(-1)
                        rho[ir,itheta,iphi] = rho_env[ir,itheta,iphi]
                    else:
                        rho[ir,itheta,iphi] = 1e-25
        rho_env  = rho_env  + 1e-40
        rho      = rho      + 1e-40
    # TSC model
    else:
        print 'Calculating the dust density profile with TSC solution...'
        # If needed, calculate the TSC model via IDL
        #
        if idl == True:
            print 'Using IDL to calculate the TSC model.  Make sure you are running this on mechine with IDL.'
            import pidly
            idl = pidly.IDL('/Applications/exelis/idl82/bin/idl')
            idl('.r ~/programs/misc/TSC/tsc.pro')
            idl.pro('tsc_run', outdir=outdir, grid=[nxx,ny,nz], time=t, c_s=cs, omega=omega, rstar=rstar, renv_min=R_env_min, renv_max=R_env_max)
        else:
            print 'Read the pre-computed TSC model.'
        # read in the exist file
        rho_env_tsc = np.genfromtxt(outdir+'rhoenv.dat').T
        # extrapolate for the NaN values at the outer radius, usually at radius beyond the infall radius
        # map the 2d strcuture onto 3d grid
        def poly(x, y, x0, deg=1):
            import numpy as np
            p = np.polyfit(x, y, deg)
            y0 = 0
            for i in range(0, len(p)):
                y0 = y0 + p[i]*x0**(len(p)-i-1)
            return y0
        rho_env_copy = np.array(rho_env_tsc)
        for ithetac in range(0, len(thetac)):
            rho_dum = np.log10(rho_env_copy[(rc > 1.1*R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == False),ithetac])
            rc_dum = np.log10(rc[(rc > 1.1*R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == False)])
            rc_dum_nan = np.log10(rc[(rc > 1.1*R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == True)])
            for i in range(0, len(rc_dum_nan)):
                rho_extrapol = poly(rc_dum, rho_dum, rc_dum_nan[i])
                rho_env_copy[(np.log10(rc) == rc_dum_nan[i]),ithetac] = 10**rho_extrapol
        rho_env2d = rho_env_copy
        rho_env = np.empty((nx,ny,nz))
        for i in range(0, nz):
            rho_env[:,:,i] = rho_env2d
        # create the array of density of disk and the whole structure
        #
        rho      = np.zeros([len(rc),len(thetac),len(phic)])
        # The function for calculating the normalization of disk using the total disk mass
        #
        for ir in range(0,len(rc)):
            for itheta in range(0,len(thetac)):
                for iphi in range(0,len(phic)):
                    if rc[ir] > rin_shell:
                        # Envelope profile
                        rho[ir,itheta,iphi] = rho_env[ir,itheta,iphi]
                    else:
                        rho[ir,itheta,iphi] = 1e-25
        rho_env  = rho_env  + 1e-40
        rho      = rho      + 1e-40

    # Call function to plot the density
    plot_density(rho, rc, thetac,'/Users/yaolun/bhr71/hyperion/', plotname='shell')
    # Insert the calculated grid and dust density profile into hyperion
    m.set_spherical_polar_grid(ri, thetai, phii)
    m.add_density_grid(rho.T, outdir+'oh5.hdf5')    # numpy read the array in reverse order

    # Define the luminsoity source
    source = m.add_spherical_source()
    source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4)  # [ergs/s]
    source.radius = rstar  # [cm]
    source.temperature = tstar  # [K]
    source.position = (0., 0., 0.)
    print 'L_center =  % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS)

    # Setting up the wavelength for monochromatic radiative transfer
    lambda0 = 0.1
    lambda1 = 2.0
    lambda2 = 50.0
    lambda3 = 95.0
    lambda4 = 200.0
    lambda5 = 314.0
    lambda6 = 670.0
    n01     = 10.0
    n12     = 20.0
    n23     = (lambda3-lambda2)/0.02
    n34     = (lambda4-lambda3)/0.03
    n45     = (lambda5-lambda4)/0.1
    n56     = (lambda6-lambda5)/0.1

    lam01   = lambda0 * (lambda1/lambda0)**(np.arange(n01)/n01)
    lam12   = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12)
    lam23   = lambda2 * (lambda3/lambda2)**(np.arange(n23)/n23)
    lam34   = lambda3 * (lambda4/lambda3)**(np.arange(n34)/n34)
    lam45   = lambda4 * (lambda5/lambda4)**(np.arange(n45)/n45)
    lam56   = lambda5 * (lambda6/lambda5)**(np.arange(n56+1)/n56)

    lam     = np.concatenate([lam01,lam12,lam23,lam34,lam45,lam56])
    nlam    = len(lam)

    # Create camera wavelength points
    n12     = 70.0
    n23     = 70.0
    n34     = 70.0
    n45     = 50.0
    n56     = 50.0
    
    lam12   = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12)
    lam23   = lambda2 * (lambda3/lambda2)**(np.arange(n23)/n23)
    lam34   = lambda3 * (lambda4/lambda3)**(np.arange(n34)/n34)
    lam45   = lambda4 * (lambda5/lambda4)**(np.arange(n45)/n45)
    lam56   = lambda5 * (lambda6/lambda5)**(np.arange(n56+1)/n56)

    lam_cam = np.concatenate([lam12,lam23,lam34,lam45,lam56])
    n_lam_cam = len(lam_cam)

    # Radiative transfer setting

    # number of photons for temp and image
    m.set_raytracing(True)
    m.set_monochromatic(True, wavelengths=[3.6, 4.5, 5.8, 8.0, 24, 70, 100, 160, 250, 350, 500])
    m.set_n_photons(initial=1000000, imaging_sources=1000000, imaging_dust=1000000,raytracing_sources=1000000, raytracing_dust=1000000)
    # imaging=100000, raytracing_sources=100000, raytracing_dust=100000
    # number of iteration to compute dust specific energy (temperature)
    m.set_n_initial_iterations(5)
    m.set_convergence(True, percentile=99., absolute=1.5, relative=1.02)
    m.set_mrw(True)   # Gamma = 1 by default
    # m.set_forced_first_scattering(forced_first_scattering=True)
    # Setting up images and SEDs
    image = m.add_peeled_images()
    # image.set_wavelength_range(300, 2.0, 670.0)
    # use the index of wavelength array used by the monochromatic radiative transfer
    image.set_wavelength_index_range(2,12)
    # pixel number
    image.set_image_size(300, 300)
    image.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max)
    image.set_viewing_angles([82.0], [0.0])
    image.set_uncertainties(True)
    # output as 64-bit
    image.set_output_bytes(8)

    # Output setting
    # Density
    m.conf.output.output_density = 'last'

    # Density difference (shows where dust was destroyed)
    m.conf.output.output_density_diff = 'none'

    # Energy absorbed (using pathlengths)
    m.conf.output.output_specific_energy = 'last'

    # Number of unique photons that passed through the cell
    m.conf.output.output_n_photons = 'last'

    m.write(outdir+outname+'.rtin')
Example #2
0
def setup_model(outdir,record_dir,outname,params,dust_file,tsc=True,idl=False,plot=False,\
                low_res=True,flat=True,scale=1,radmc=False,mono=False,record=True,dstar=178.,\
                aperture=None,dyn_cav=False,fix_params=None,alma=False,power=2,better_im=False,ellipsoid=False,\
                TSC_dir='~/programs/misc/TSC/', IDL_path='/Applications/exelis/idl83/bin/idl',auto_disk=0.25):
    """
    params = dictionary of the model parameters
    alma keyword is obsoleted 
    outdir: The directory for storing Hyperion input files
    record_dir: The directory contains "model_list.txt" for recording parameters
    TSC_dir: Path the TSC-related IDL routines
    IDL_path: The IDL executable 
    """
    import numpy as np
    import astropy.constants as const
    import scipy as sci
    # to avoid X server error
    import matplotlib as mpl
    mpl.use('Agg')
    #
    import matplotlib.pyplot as plt
    import os
    from matplotlib.colors import LogNorm
    from scipy.integrate import nquad
    from hyperion.model import Model
    from record_hyperion import record_hyperion
    from outflow_inner_edge import outflow_inner_edge
    from pprint import pprint
    # import pdb
    # pdb.set_trace()

    # Constants setup
    c = const.c.cgs.value
    AU = 1.49598e13  # Astronomical Unit       [cm]
    pc = 3.08572e18  # Parsec                  [cm]
    MS = 1.98892e33  # Solar mass              [g]
    LS = 3.8525e33  # Solar luminosity        [erg/s]
    RS = 6.96e10  # Solar radius            [cm]
    G = 6.67259e-8  # Gravitational constant  [cm3/g/s^2]
    yr = 60 * 60 * 24 * 365  # Years in seconds
    PI = np.pi  # PI constant
    sigma = const.sigma_sb.cgs.value  # Stefan-Boltzmann constant
    mh = const.m_p.cgs.value + const.m_e.cgs.value
    g2d = 100.
    mmw = 2.37  # Kauffmann 2008

    m = Model()

    # Create dust properties

    # Hyperion needs nu, albedo, chi, g, p_lin_max
    from hyperion.dust import HenyeyGreensteinDust
    # Read in the dust opacity table used by RADMC-3D
    dust = dict()
    # [dust_radmc['wl'], dust_radmc['abs'], dust_radmc['scat'], dust_radmc['g']] = np.genfromtxt(dust_file,skip_header=2).T
    [dust['nu'], dust['albedo'], dust['chi'],
     dust['g']] = np.genfromtxt(dust_file).T
    # opacity per mass of dust?
    # dust_hy = dict()
    # dust_hy['nu'] = c/dust_radmc['wl']*1e4
    # ind = np.argsort(dust_hy['nu'])
    # dust_hy['nu'] = dust_hy['nu'][ind]
    # dust_hy['albedo'] = (dust_radmc['scat']/(dust_radmc['abs']+dust_radmc['scat']))[ind]
    # dust_hy['chi'] = (dust_radmc['abs']+dust_radmc['scat'])[ind]
    # dust_hy['g'] = dust_radmc['g'][ind]
    # dust_hy['p_lin_max'] = 0*dust_radmc['wl'][ind]     # assume no polarization

    # d = HenyeyGreensteinDust(dust_hy['nu'], dust_hy['albedo'], dust_hy['chi'], dust_hy['g'], dust_hy['p_lin_max'])
    d = HenyeyGreensteinDust(dust['nu'], dust['albedo'], dust['chi'],
                             dust['g'], dust['g'] * 0)
    # dust sublimation option
    d.set_sublimation_temperature('slow', temperature=1600.0)
    d.set_lte_emissivities(n_temp=3000, temp_min=0.1, temp_max=2000.)
    # try to solve the freq. problem
    d.optical_properties.extrapolate_nu(3.28e15, 4e15)
    #
    d.write(outdir + os.path.basename(dust_file).split('.')[0] + '.hdf5')
    d.plot(outdir + os.path.basename(dust_file).split('.')[0] + '.png')
    plt.clf()

    # Grids and Density
    # Calculation inherited from the script used for RADMC-3D

    # Grid Parameters
    nx = 300L
    if low_res == True:
        nx = 100L
    ny = 400L
    nz = 50L
    [nx, ny, nz] = [int(scale * nx), int(scale * ny), int(scale * nz)]

    # TSC model input setting
    # params    = np.genfromtxt(indir+'/tsc_params.dat', dtype=None)
    dict_params = params  # input_reader(params_file)
    # TSC model parameter
    cs = dict_params['Cs'] * 1e5
    t = dict_params['age']  # year
    omega = dict_params['Omega0']
    # calculate related parameters
    M_env_dot = 0.975 * cs**3 / G
    mstar = M_env_dot * t * yr
    R_cen = omega**2 * G**3 * mstar**3 / (16 * cs**8)
    R_inf = cs * t * yr
    # M_env_dot = dict_params['M_env_dot']*MS/yr
    # R_cen     = dict_params['R_cen']*AU
    # R_inf     = dict_params['R_inf']*AU
    # protostar parameter
    tstar = dict_params['tstar']
    R_env_max = dict_params['R_env_max'] * AU
    theta_cav = dict_params['theta_cav']
    rho_cav_center = dict_params['rho_cav_center']
    rho_cav_edge = dict_params['rho_cav_edge'] * AU
    rstar = dict_params['rstar'] * RS
    # Mostly fixed parameter
    M_disk = dict_params['M_disk'] * MS
    beta = dict_params['beta']
    h100 = dict_params['h100'] * AU
    rho_cav = dict_params['rho_cav']
    # make M_disk varies with mstar, which is the mass of star+disk
    if auto_disk != None:
        if M_disk != 0:
            print 'M_disk is reset to %4f of mstar (star+disk)' % auto_disk
            M_disk = mstar * auto_disk
        else:
            print 'M_disk = 0 is found.  M_disk is set to 0.'

    # ellipsoid cavity parameter
    if ellipsoid == True:
        a_out = 130 * 178. * AU
        b_out = 50 * 178. * AU
        z_out = a_out
        # a_in  = 77.5 * 178. * AU
        # b_in  = 30   * 178. * AU
        a_in = dict_params['a_in'] * 178. * AU
        b_in = a_in / a_out * b_out
        z_in = a_in
        # rho_cav_out = 1e4 * mh
        # rho_cav_in  = 1e3 * mh
        rho_cav_out = dict_params['rho_cav_out'] * mh
        rho_cav_in = dict_params['rho_cav_in'] * mh
    # Calculate the dust sublimation radius
    T_sub = 1600
    a = 1  #in micron
    # realistic dust
    # d_sub = 2.9388e7*(a/0.1)**-0.2 * (4*np.pi*rstar**2*sigma*tstar**4/LS)**0.5 / T_sub**3 *AU
    # black body dust
    d_sub = (LS / 16. / np.pi / sigma / AU**2 *
             (4 * np.pi * rstar**2 * sigma * tstar**4 / LS) /
             T_sub**4)**0.5 * AU
    # use the dust sublimation radius as the inner radius of disk and envelope
    R_disk_min = d_sub
    R_env_min = d_sub
    rin = rstar
    rout = R_env_max
    R_disk_max = R_cen

    # Do the variable conversion
    # cs = (G * M_env_dot / 0.975)**(1/3.)  # cm/s
    # t = R_inf / cs / yr   # in year
    # mstar = M_env_dot * t * yr
    # omega = (R_cen * 16*cs**8 / (G**3 * mstar**3))**0.5

    # print the variables for radmc3d
    print 'Dust sublimation radius %6f AU' % (d_sub / AU)
    print 'M_star %4f Solar mass' % (mstar / MS)
    print 'Infall radius %4f AU' % (R_inf / AU)

    # if there is any parameter found in fix_params, then fix them
    if fix_params != None:
        if 'R_min' in fix_params.keys():
            R_disk_min = fix_params['R_min'] * AU
            R_env_min = fix_params['R_min'] * AU

    # Make the Coordinates
    #
    ri = rin * (rout / rin)**(np.arange(nx + 1).astype(dtype='float') /
                              float(nx))
    ri = np.hstack((0.0, ri))
    thetai = PI * np.arange(ny + 1).astype(dtype='float') / float(ny)
    phii = PI * 2.0 * np.arange(nz + 1).astype(dtype='float') / float(nz)

    # Keep the constant cell size in r-direction at large radii
    #
    if flat == True:
        ri_cellsize = ri[1:-1] - ri[0:-2]
        ind = np.where(
            ri_cellsize / AU > 100.0)[0][0]  # The largest cell size is 100 AU
        ri = np.hstack(
            (ri[0:ind],
             ri[ind] + np.arange(np.ceil(
                 (rout - ri[ind]) / 100 / AU)) * 100 * AU))
        nxx = nx
        nx = len(ri) - 1
    # Assign the coordinates of the center of cell as its coordinates.
    #
    rc = 0.5 * (ri[0:nx] + ri[1:nx + 1])
    thetac = 0.5 * (thetai[0:ny] + thetai[1:ny + 1])
    phic = 0.5 * (phii[0:nz] + phii[1:nz + 1])
    # phic         = 0.5*( phii[0:nz-1]   + phii[1:nz] )

    # Make the dust density model
    # Make the density profile of the envelope
    #
    total_mass = 0
    if tsc == False:
        print 'Calculating the dust density profile with infall solution...'
        if theta_cav != 0:
            # c0 = R_env_max**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav)))
            # using R = 10000 AU as the reference point
            c0 = (10000. *
                  AU)**(-0.5) * np.sqrt(1 / np.sin(np.radians(theta_cav))**3 -
                                        1 / np.sin(np.radians(theta_cav)))
        else:
            c0 = 0
        rho_env = np.zeros([len(rc), len(thetac), len(phic)])
        rho_disk = np.zeros([len(rc), len(thetac), len(phic)])
        rho = np.zeros([len(rc), len(thetac), len(phic)])

        if dyn_cav == True:
            print 'WARNING: Calculation of interdependent cavity property has not implemented in infall-only solution!'
        # Normalization for the total disk mass
        def f(w, z, beta, rstar, h100):
            f = 2 * PI * w * (1 - np.sqrt(rstar / w)) * (rstar / w)**(
                beta + 1) * np.exp(-0.5 * (z /
                                           (w**beta * h100 / 100**beta))**2)
            return f

        rho_0 = M_disk / (nquad(
            f, [[R_disk_min, R_disk_max], [-R_env_max, R_env_max]],
            args=(beta, rstar, h100)))[0]
        i = 0
        j = 0
        if 'rho_cav_center' in locals() == False:
            rho_cav_center = 5.27e-18  # 1.6e-17  # 5.27e-18
            print 'Use 5.27e-18 as the default value for cavity center'
        if 'rho_cav_edge' in locals() == False:
            rho_cav_edge = 40 * AU
            print 'Use 40 AU as the default value for size of the inner region'
        discont = 1
        for ir in range(0, len(rc)):
            for itheta in range(0, len(thetac)):
                for iphi in range(0, len(phic)):
                    if rc[ir] > R_env_min:
                        # Envelope profile
                        w = abs(rc[ir] * np.cos(np.pi / 2 - thetac[itheta]))
                        z = rc[ir] * np.sin(np.pi / 2 - thetac[itheta])

                        if ellipsoid == False:
                            z_cav = c0 * abs(w)**1.5
                            if z_cav == 0:
                                z_cav = R_env_max
                            cav_con = abs(z) > abs(z_cav)
                        else:
                            # condition for the outer ellipsoid
                            cav_con = (2 * (w / b_out)**2 +
                                       ((abs(z) - z_out) / a_out)**2) < 1
                        if cav_con:
                            # open cavity
                            if ellipsoid == False:
                                if rho_cav_edge == 0:
                                    rho_cav_edge = R_env_min
                                if (rc[ir] <= rho_cav_edge) & (rc[ir] >=
                                                               R_env_min):
                                    rho_env[
                                        ir, itheta,
                                        iphi] = g2d * rho_cav_center  #*((rc[ir]/AU)**2)
                                else:
                                    rho_env[
                                        ir, itheta,
                                        iphi] = g2d * rho_cav_center * discont * (
                                            rho_cav_edge / rc[ir])**power
                                i += 1
                            else:
                                # condition for the inner ellipsoid
                                if (2 * (w / b_in)**2 +
                                    ((abs(z) - z_in) / a_in)**2) > 1:
                                    rho_env[ir, itheta, iphi] = rho_cav_out
                                else:
                                    rho_env[ir, itheta, iphi] = rho_cav_in
                                i += 1
                        else:
                            j += 1
                            mu = abs(np.cos(thetac[itheta]))
                            # Implement new root finding algorithm
                            roots = np.roots(
                                np.array([
                                    1.0, 0.0, rc[ir] / R_cen - 1.0,
                                    -mu * rc[ir] / R_cen
                                ]))
                            if len(roots[roots.imag == 0]) == 1:
                                if (abs(roots[roots.imag == 0]) - 1.0) <= 0.0:
                                    mu_o_dum = roots[roots.imag == 0]
                                else:
                                    mu_o_dum = -0.5
                                    print 'Problem with cubic solving, cos(theta) = ', mu_o_dum
                                    print 'parameters are ', np.array([
                                        1.0, 0.0, rc[ir] / R_cen - 1.0,
                                        -mu * rc[ir] / R_cen
                                    ])
                            else:
                                mu_o_dum = -0.5
                                for imu in range(0, len(roots)):
                                    if roots[imu] * mu >= 0.0:
                                        if (abs(
                                            (abs(roots[imu]) - 1.0)) <= 1e-5):
                                            mu_o_dum = 1.0 * np.sign(mu)
                                        else:
                                            mu_o_dum = roots[imu]
                                if mu_o_dum == -0.5:
                                    print 'Problem with cubic solving, roots are: ', roots
                            mu_o = mu_o_dum.real
                            rho_env[ir, itheta, iphi] = M_env_dot / (
                                4 * PI * (G * mstar * R_cen**3)**0.5) * (
                                    rc[ir] / R_cen)**(-3. / 2) * (
                                        1 + mu / mu_o)**(-0.5) * (
                                            mu / mu_o +
                                            2 * mu_o**2 * R_cen / rc[ir])**(-1)
                        # Disk profile
                        if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
                            h = ((w / (100 * AU))**beta) * h100
                            rho_disk[ir, itheta, iphi] = rho_0 * (1 - np.sqrt(
                                rstar / w)) * (rstar / w)**(beta + 1) * np.exp(
                                    -0.5 * (z / h)**2)
                        # Combine envelope and disk
                        rho[ir, itheta,
                            iphi] = rho_disk[ir, itheta,
                                             iphi] + rho_env[ir, itheta, iphi]
                    else:
                        rho[ir, itheta, iphi] = 1e-30
                    # add the dust mass into the total count
                    cell_mass = rho[ir, itheta, iphi] * (1 / 3.) * (
                        ri[ir + 1]**3 -
                        ri[ir]**3) * (phii[iphi + 1] - phii[iphi]) * -(np.cos(
                            thetai[itheta + 1]) - np.cos(thetai[itheta]))
                    total_mass = total_mass + cell_mass

        rho_env = rho_env + 1e-40
        rho_disk = rho_disk + 1e-40
        rho = rho + 1e-40
    # TSC model
    else:
        print 'Calculating the dust density profile with TSC solution...'
        if theta_cav != 0:
            # c0 = R_env_max**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav)))
            c0 = (1e4 *
                  AU)**(-0.5) * np.sqrt(1 / np.sin(np.radians(theta_cav))**3 -
                                        1 / np.sin(np.radians(theta_cav)))
        else:
            c0 = 0
        # If needed, calculate the TSC model via IDL
        #
        if idl == True:
            print 'Using IDL to calculate the TSC model.  Make sure you are running this on mechine with IDL.'
            import pidly
            # idl = pidly.IDL('/Applications/exelis/idl82/bin/idl')
            idl = pidly.IDL(IDL_path)
            idl('.r ' + TSC_dir + 'tsc.pro')
            # idl.pro('tsc_run', outdir=outdir, grid=[nxx,ny,nz], time=t, c_s=cs, omega=omega, rstar=rstar, renv_min=R_env_min, renv_max=R_env_max)
            # idl.pro('tsc_run', outdir=outdir, grid=[nxx,ny,nz], time=t, c_s=cs, omega=omega, rstar=rstar, renv_min=R_env_min, renv_max=min([R_inf,max(ri)])) # min([R_inf,max(ri)])
            #
            # only run TSC calculation within infall radius
            # modify the rc array
            rc_idl = rc[(rc < min([R_inf, max(ri)]))]
            idl.pro(
                'tsc_run',
                outdir=outdir,
                rc=rc_idl,
                thetac=thetac,
                time=t,
                c_s=cs,
                omega=omega,
                renv_min=R_env_min
            )  #, rstar=rstar, renv_min=R_env_min, renv_max=min([R_inf,max(ri)])) # min([R_inf,max(ri)])
        else:
            print 'Read the pre-computed TSC model.'
            rc_idl = rc[(rc < min([R_inf, max(ri)]))]
        # read in the exist file
        rho_env_tsc_idl = np.genfromtxt(outdir + 'rhoenv.dat').T
        # because only region within infall radius is calculated by IDL program, need to project it to the original grid
        rho_env_tsc = np.zeros([len(rc), len(thetac)])
        for irc in range(len(rc)):
            if rc[irc] in rc_idl:
                rho_env_tsc[irc, :] = rho_env_tsc_idl[np.where(
                    rc_idl == rc[irc]), :]

        # extrapolate for the NaN values at the outer radius, usually at radius beyond the infall radius
        # using r^-2 profile at radius greater than infall radius
        # and map the 2d strcuture onto 3d grid
        def poly(x, y, x0, deg=2):
            import numpy as np
            p = np.polyfit(x, y, deg)
            y0 = 0
            for i in range(0, len(p)):
                y0 = y0 + p[i] * x0**(len(p) - i - 1)
            return y0

        # rho_env_copy = np.array(rho_env_tsc)
        # if max(rc) > R_inf:
        #     ind_infall = np.where(rc <= R_inf)[0][-1]
        #     print ind_infall
        #     for ithetac in range(0, len(thetac)):
        #         # rho_dum = np.log10(rho_env_copy[(rc > R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == False),ithetac])
        #         # rc_dum = np.log10(rc[(rc > R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == False)])
        #         # rc_dum_nan = np.log10(rc[(rc > R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == True)])
        #         # # print rc_dum
        #         # for i in range(0, len(rc_dum_nan)):
        #         #     rho_extrapol = poly(rc_dum, rho_dum, rc_dum_nan[i])
        #         #     rho_env_copy[(np.log10(rc) == rc_dum_nan[i]),ithetac] = 10**rho_extrapol
        #         #
        #         for i in range(ind_infall, len(rc)):
        #             rho_env_copy[i, ithetac] =  10**(np.log10(rho_env_copy[ind_infall, ithetac]) - 2*(np.log10(rc[i]/rc[ind_infall])))
        # rho_env2d = rho_env_copy
        # rho_env = np.empty((nx,ny,nz))
        # for i in range(0, nz):
        #     rho_env[:,:,i] = rho_env2d
        # map TSC solution from IDL to actual 2-D grid
        rho_env_tsc2d = np.empty((nx, ny))
        if max(ri) > R_inf:
            ind_infall = np.where(rc <= R_inf)[0][-1]
            for i in range(0, len(rc)):
                if i <= ind_infall:
                    rho_env_tsc2d[i, :] = rho_env_tsc[i, :]
                else:
                    rho_env_tsc2d[i, :] = 10**(
                        np.log10(rho_env_tsc[ind_infall, :]) - 2 *
                        (np.log10(rc[i] / rc[ind_infall])))
        else:
            rho_env_tsc2d = rho_env_tsc
        # map it to 3-D grid
        rho_env = np.empty((nx, ny, nz))
        for i in range(0, nz):
            rho_env[:, :, i] = rho_env_tsc2d

        if dyn_cav == True:
            print 'Calculate the cavity properties using the criteria that swept-up mass = outflowed mass'
            # using swept-up mass = flow mass to derive the edge of the extended flat density region
            v_outflow = 1e2 * 1e5
            rho_cav_edge = outflow_inner_edge(np.copy(rho_env),
                                              (ri, thetai, phii), M_env_dot,
                                              v_outflow, theta_cav, R_env_min)
            dict_params['rho_cav_edge'] = rho_cav_edge
            # assume gas-to-dust ratio = 100
            rho_cav_center = 0.01 * 0.1 * M_env_dot * rho_cav_edge / v_outflow / 2 / (
                2 * np.pi / 3 * rho_cav_edge**3 *
                (1 - np.cos(np.radians(theta_cav))))
            dict_params['rho_cav_center'] = rho_cav_center
            print 'inner edge is %5f AU and density is %e g/cm3' % (
                rho_cav_edge / AU, rho_cav_center)

        # create the array of density of disk and the whole structure
        #
        rho_disk = np.zeros([len(rc), len(thetac), len(phic)])
        rho = np.zeros([len(rc), len(thetac), len(phic)])

        # Calculate the disk scale height by the normalization of h100
        def f(w, z, beta, rstar, h100):
            f = 2 * PI * w * (1 - np.sqrt(rstar / w)) * (rstar / w)**(
                beta + 1) * np.exp(-0.5 * (z /
                                           (w**beta * h100 / 100**beta))**2)
            return f

        # The function for calculating the normalization of disk using the total disk mass
        #
        rho_0 = M_disk / (nquad(
            f, [[R_disk_min, R_disk_max], [-R_env_max, R_env_max]],
            args=(beta, rstar, h100)))[0]
        i = 0
        j = 0
        if 'rho_cav_center' in locals() == False:
            rho_cav_center = 5.27e-18  # 1.6e-17  # 5.27e-18
            print 'Use 5.27e-18 as the default value for cavity center'
        if 'rho_cav_edge' in locals() == False:
            rho_cav_edge = 40 * AU
            print 'Use 40 AU as the default value for size of the inner region'
        discont = 1
        for ir in range(0, len(rc)):
            for itheta in range(0, len(thetac)):
                for iphi in range(0, len(phic)):
                    if rc[ir] > R_env_min:
                        # Envelope profile
                        w = abs(rc[ir] * np.cos(np.pi / 2 - thetac[itheta]))
                        z = rc[ir] * np.sin(np.pi / 2 - thetac[itheta])

                        if ellipsoid == False:
                            z_cav = c0 * abs(w)**1.5
                            if z_cav == 0:
                                z_cav = R_env_max
                            cav_con = abs(z) > abs(z_cav)
                        else:
                            # condition for the outer ellipsoid
                            cav_con = (2 * (w / b_out)**2 +
                                       ((abs(z) - z_out) / a_out)**2) < 1
                        if cav_con:
                            # open cavity
                            if ellipsoid == False:
                                if rho_cav_edge == 0:
                                    rho_cav_edge = R_env_min
                                if (rc[ir] <= rho_cav_edge) & (rc[ir] >=
                                                               R_env_min):
                                    rho_env[
                                        ir, itheta,
                                        iphi] = g2d * rho_cav_center  #*((rc[ir]/AU)**2)
                                else:
                                    rho_env[
                                        ir, itheta,
                                        iphi] = g2d * rho_cav_center * discont * (
                                            rho_cav_edge / rc[ir])**power
                                i += 1
                            else:
                                # condition for the inner ellipsoid
                                if (2 * (w / b_in)**2 +
                                    ((abs(z) - z_in) / a_in)**2) > 1:
                                    rho_env[ir, itheta, iphi] = rho_cav_out
                                else:
                                    rho_env[ir, itheta, iphi] = rho_cav_in
                                i += 1

                        # Disk profile
                        if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
                            h = ((w / (100 * AU))**beta) * h100
                            rho_disk[ir, itheta, iphi] = rho_0 * (1 - np.sqrt(
                                rstar / w)) * (rstar / w)**(beta + 1) * np.exp(
                                    -0.5 * (z / h)**2)
                        # Combine envelope and disk
                        rho[ir, itheta,
                            iphi] = rho_disk[ir, itheta,
                                             iphi] + rho_env[ir, itheta, iphi]
                    else:
                        rho[ir, itheta, iphi] = 1e-40
                    # add the dust mass into the total count
                    cell_mass = rho[ir, itheta, iphi] * (1 / 3.) * (
                        ri[ir + 1]**3 -
                        ri[ir]**3) * (phii[iphi + 1] - phii[iphi]) * -(np.cos(
                            thetai[itheta + 1]) - np.cos(thetai[itheta]))
                    total_mass = total_mass + cell_mass
        # rho_env  = rho_env  + 1e-40
        # rho_disk = rho_disk + 1e-40
        # rho      = rho      + 1e-40
    # apply gas-to-dust ratio of 100
    rho_dust = rho / g2d
    total_mass_dust = total_mass / MS / g2d
    print 'Total dust mass = %f Solar mass' % total_mass_dust

    if record == True:
        # Record the input and calculated parameters
        params = dict_params.copy()
        params.update({
            'd_sub': d_sub / AU,
            'M_env_dot': M_env_dot / MS * yr,
            'R_inf': R_inf / AU,
            'R_cen': R_cen / AU,
            'mstar': mstar / MS,
            'M_tot_gas': total_mass / MS
        })
        record_hyperion(params, record_dir)

    if plot == True:
        # rc setting
        # mat.rcParams['text.usetex'] = True
        # mat.rcParams['font.family'] = 'serif'
        # mat.rcParams['font.serif'] = 'Times'
        # mat.rcParams['font.sans-serif'] = 'Computer Modern Sans serif'

        # Plot the azimuthal averaged density
        fig = plt.figure(figsize=(8, 6))
        ax_env = fig.add_subplot(111, projection='polar')
        # take the weighted average
        # rho2d is the 2-D projection of gas density
        rho2d = np.sum(rho**2, axis=2) / np.sum(rho, axis=2)

        zmin = 1e-22 / mmw / mh
        cmap = plt.cm.CMRmap
        rho2d_exp = np.hstack((rho2d, rho2d, rho2d[:, 0:1]))
        thetac_exp = np.hstack(
            (thetac - PI / 2, thetac + PI / 2, thetac[0] - PI / 2))
        # plot the gas density
        img_env = ax_env.pcolormesh(
            thetac_exp,
            rc / AU,
            rho2d_exp / mmw / mh,
            cmap=cmap,
            norm=LogNorm(vmin=zmin, vmax=1e9))  # np.nanmax(rho2d_exp/mmw/mh)

        ax_env.set_xlabel(r'$\rm{Polar\,angle\,(Degree)}$', fontsize=20)
        ax_env.set_ylabel(r'$\rm{Radius\,(AU)}$', fontsize=20)
        ax_env.tick_params(labelsize=20)
        ax_env.set_yticks(np.arange(0, R_env_max / AU, R_env_max / AU / 5))
        # ax_env.set_ylim([0,10000])
        ax_env.set_xticklabels([r'$\rm{90^{\circ}}$',r'$\rm{45^{\circ}}$',r'$\rm{0^{\circ}}$',r'$\rm{-45^{\circ}}$',\
                                r'$\rm{-90^{\circ}}$',r'$\rm{-135^{\circ}}$',r'$\rm{180^{\circ}}$',r'$\rm{135^{\circ}}$'])
        # fix the tick label font
        ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',
                                                     size=20)
        for label in ax_env.get_yticklabels():
            label.set_fontproperties(ticks_font)

        ax_env.grid(True)
        cb = fig.colorbar(img_env, pad=0.1)
        cb.ax.set_ylabel(r'$\rm{Averaged\,Gas\,Density\,(cm^{-3})}$',
                         fontsize=20)
        cb.set_ticks([1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9])
        cb.set_ticklabels([r'$\rm{10^{2}}$',r'$\rm{10^{3}}$',r'$\rm{10^{4}}$',r'$\rm{10^{5}}$',r'$\rm{10^{6}}$',\
                           r'$\rm{10^{7}}$',r'$\rm{10^{8}}$',r'$\rm{\geq 10^{9}}$'])
        cb_obj = plt.getp(cb.ax.axes, 'yticklabels')
        plt.setp(cb_obj, fontsize=20)
        fig.savefig(outdir + outname + '_gas_density.png',
                    format='png',
                    dpi=300,
                    bbox_inches='tight')
        fig.clf()

        # Plot the radial density profile
        fig = plt.figure(figsize=(12, 9))
        ax = fig.add_subplot(111)

        plot_grid = [0, 49, 99, 149, 199]
        alpha = np.linspace(0.3, 1.0, len(plot_grid))
        for i in plot_grid:
            rho_rad, = ax.plot(np.log10(rc / AU),
                               np.log10(rho2d[:, i] / g2d / mmw / mh),
                               '-',
                               color='b',
                               linewidth=2,
                               markersize=3,
                               alpha=alpha[plot_grid.index(i)])
            tsc_only, = ax.plot(np.log10(rc / AU),
                                np.log10(rho_env_tsc2d[:, i] / mmw / mh),
                                'o',
                                color='r',
                                linewidth=2,
                                markersize=3,
                                alpha=alpha[plot_grid.index(i)])
        rinf = ax.axvline(np.log10(R_inf / AU),
                          linestyle='--',
                          color='k',
                          linewidth=1.5)
        cen_r = ax.axvline(np.log10(R_cen / AU),
                           linestyle=':',
                           color='k',
                           linewidth=1.5)
        # sisslope, = ax.plot(np.log10(rc/AU), -2*np.log10(rc/AU)+A-(-2)*np.log10(plot_r_inf), linestyle='--', color='Orange', linewidth=1.5)
        # gt_R_cen_slope, = ax.plot(np.log10(rc/AU), -1.5*np.log10(rc/AU)+B-(-1.5)*np.log10(plot_r_inf), linestyle='--', color='Orange', linewidth=1.5)
        # lt_R_cen_slope, = ax.plot(np.log10(rc/AU), -0.5*np.log10(rc/AU)+A-(-0.5)*np.log10(plot_r_inf), linestyle='--', color='Orange', linewidth=1.5)

        lg = plt.legend([rho_rad, tsc_only, rinf, cen_r],\
                        [r'$\rm{\rho_{dust}}$',r'$\rm{\rho_{tsc}}$',r'$\rm{infall\,radius}$',r'$\rm{centrifugal\,radius}$'],\
                        fontsize=20, numpoints=1)
        ax.set_xlabel(r'$\rm{log(Radius)\,(AU)}$', fontsize=20)
        ax.set_ylabel(r'$\rm{log(Gas \slash Dust\,Density)\,(cm^{-3})}$',
                      fontsize=20)
        [
            ax.spines[axis].set_linewidth(1.5)
            for axis in ['top', 'bottom', 'left', 'right']
        ]
        ax.minorticks_on()
        ax.tick_params('both',
                       labelsize=18,
                       width=1.5,
                       which='major',
                       pad=15,
                       length=5)
        ax.tick_params('both',
                       labelsize=18,
                       width=1.5,
                       which='minor',
                       pad=15,
                       length=2.5)

        # fix the tick label font
        ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',
                                                     size=18)
        for label in ax.get_xticklabels():
            label.set_fontproperties(ticks_font)
        for label in ax.get_yticklabels():
            label.set_fontproperties(ticks_font)

        ax.set_ylim([0, 15])
        fig.gca().set_xlim(left=np.log10(0.05))
        # ax.set_xlim([np.log10(0.8),np.log10(10000)])

        # subplot shows the radial density profile along the midplane
        ax_mid = plt.axes([0.2, 0.2, 0.2, 0.2], frameon=True)
        ax_mid.plot(np.log10(rc / AU),
                    np.log10(rho2d[:, 199] / g2d / mmw / mh),
                    'o',
                    color='b',
                    linewidth=1,
                    markersize=2)
        ax_mid.plot(np.log10(rc / AU),
                    np.log10(rho_env_tsc2d[:, 199] / mmw / mh),
                    '-',
                    color='r',
                    linewidth=1,
                    markersize=2)
        # ax_mid.set_ylim([0,10])
        # ax_mid.set_xlim([np.log10(0.8),np.log10(10000)])
        ax_mid.set_ylim([0, 15])
        fig.savefig(outdir + outname + '_gas_radial.pdf',
                    format='pdf',
                    dpi=300,
                    bbox_inches='tight')
        fig.clf()

    # Insert the calculated grid and dust density profile into hyperion
    m.set_spherical_polar_grid(ri, thetai, phii)
    # temperary for comparing full TSC and infall-only TSC model
    # import sys
    # sys.path.append(os.path.expanduser('~')+'/programs/misc/')
    # from tsc_comparison import tsc_com
    # rho_tsc, rho_ulrich = tsc_com()
    m.add_density_grid(rho_dust.T, d)
    # m.add_density_grid(rho.T, outdir+'oh5.hdf5')    # numpy read the array in reverse order

    # Define the luminsoity source
    source = m.add_spherical_source()
    source.luminosity = (4 * PI * rstar**2) * sigma * (tstar**4)  # [ergs/s]
    source.radius = rstar  # [cm]
    source.temperature = tstar  # [K]
    source.position = (0., 0., 0.)
    print 'L_center =  % 5.2f L_sun' % ((4 * PI * rstar**2) * sigma *
                                        (tstar**4) / LS)

    # # add an infrared source at the center
    # L_IR = 0.04
    # ir_source = m.add_spherical_source()
    # ir_source.luminosity = L_IR*LS
    # ir_source.radius = rstar      # [cm]
    # ir_source.temperature = 500 # [K]  peak at 10 um
    # ir_source.position = (0., 0., 0.)
    # print 'Additional IR source, L_IR = %5.2f L_sun' % L_IR

    # Setting up the wavelength for monochromatic radiative transfer
    lambda0 = 0.1
    lambda1 = 2.0
    lambda2 = 50.0
    lambda3 = 95.0
    lambda4 = 200.0
    lambda5 = 314.0
    lambda6 = 1000.0
    n01 = 10.0
    n12 = 20.0
    n23 = 50.0

    lam01 = lambda0 * (lambda1 / lambda0)**(np.arange(n01) / n01)
    lam12 = lambda1 * (lambda2 / lambda1)**(np.arange(n12) / n12)
    lam23 = lambda2 * (lambda6 / lambda2)**(np.arange(n23 + 1) / n23)

    lam = np.concatenate([lam01, lam12, lam23])
    nlam = len(lam)

    # Create camera wavelength points
    n12 = 70.0
    n23 = 70.0
    n34 = 70.0
    n45 = 50.0
    n56 = 50.0

    lam12 = lambda1 * (lambda2 / lambda1)**(np.arange(n12) / n12)
    lam23 = lambda2 * (lambda3 / lambda2)**(np.arange(n23) / n23)
    lam34 = lambda3 * (lambda4 / lambda3)**(np.arange(n34) / n34)
    lam45 = lambda4 * (lambda5 / lambda4)**(np.arange(n45) / n45)
    lam56 = lambda5 * (lambda6 / lambda5)**(np.arange(n56 + 1) / n56)

    lam_cam = np.concatenate([lam12, lam23, lam34, lam45, lam56])
    n_lam_cam = len(lam_cam)

    # Radiative transfer setting

    # number of photons for temp and image
    lam_list = lam.tolist()
    # print lam_list
    m.set_raytracing(True)
    # option of using more photons for imaging
    if better_im == False:
        im_photon = 1e6
    else:
        im_photon = 5e7

    if mono == True:
        # Monechromatic radiative transfer setting
        m.set_monochromatic(True, wavelengths=lam_list)
        m.set_n_photons(initial=1000000,
                        imaging_sources=im_photon,
                        imaging_dust=im_photon,
                        raytracing_sources=1000000,
                        raytracing_dust=1000000)
    else:
        # regular wavelength grid setting
        m.set_n_photons(initial=1000000,
                        imaging=im_photon,
                        raytracing_sources=1000000,
                        raytracing_dust=1000000)
    # number of iteration to compute dust specific energy (temperature)
    m.set_n_initial_iterations(20)
    # m.set_convergence(True, percentile=95., absolute=1.5, relative=1.02)
    m.set_convergence(True,
                      percentile=dict_params['percentile'],
                      absolute=dict_params['absolute'],
                      relative=dict_params['relative'])
    m.set_mrw(True)  # Gamma = 1 by default
    # m.set_forced_first_scattering(forced_first_scattering=True)

    # Setting up images and SEDs
    # SED setting

    # Infinite aperture
    syn_inf = m.add_peeled_images(image=False)
    # use the index of wavelength array used by the monochromatic radiative transfer
    if mono == False:
        syn_inf.set_wavelength_range(1400, 2.0, 1400.0)
    syn_inf.set_viewing_angles([dict_params['view_angle']], [0.0])
    syn_inf.set_uncertainties(True)
    syn_inf.set_output_bytes(8)

    # aperture
    # 7.2 in 10 um scaled by lambda / 10
    # flatten beyond 20 um
    # default aperture
    if aperture == None:
        aperture = {'wave': [3.6, 4.5, 5.8, 8.0, 8.5, 9, 9.7, 10, 10.5, 11, 16, 20, 24, 35, 70, 100, 160, 250, 350, 500, 1300],\
                    'aperture': [7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 20.4, 20.4, 20.4, 20.4, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 101]}
    # assign wl_aper and aper from dictionary of aperture
    wl_aper = aperture['wave']
    aper = aperture['aperture']
    # create the non-repetitive aperture list and index array
    aper_reduced = list(set(aper))
    index_reduced = np.arange(1, len(aper_reduced) + 1)

    # name = np.arange(1,len(wl_aper)+1)
    # aper = np.empty_like(wl_aper)
    # for i in range(0, len(wl_aper)):
    #     if wl_aper[i] < 5:
    #         # aper[i] = 1.2 * 7
    #         aper[i] = 1.8 * 4
    #     elif (wl_aper[i] < 14) & (wl_aper[i] >=5):
    #         # aper[i] = 7.2 * wl_aper[i]/10.
    #         aper[i] = 1.8 * 4
    #     elif (wl_aper[i] >= 14) & (wl_aper[i] <40):
    #         # aper[i] = 7.2 * 2
    #         aper[i] = 5.1 * 4
    #     else:
    #         aper[i] = 24.5

    # dict_peel_sed = {}
    # for i in range(0, len(wl_aper)):
    #     aper_dum = aper[i]/2 * (1/3600.*np.pi/180.)*dstar*pc
    #     dict_peel_sed[str(name[i])] = m.add_peeled_images(image=False)
    #     # use the index of wavelength array used by the monochromatic radiative transfer
    #     if mono == False:
    #         # dict_peel_sed[str(name[i])].set_wavelength_range(1300, 2.0, 1300.0)
    #         dict_peel_sed[str(name[i])].set_wavelength_range(1000, 2.0, 1000.0)
    #     dict_peel_sed[str(name[i])].set_viewing_angles([dict_params['view_angle']], [0.0])
    #     # aperture should be given in cm
    #     dict_peel_sed[str(name[i])].set_aperture_range(1, aper_dum, aper_dum)
    #     dict_peel_sed[str(name[i])].set_uncertainties(True)
    #     dict_peel_sed[str(name[i])].set_output_bytes(8)

    dict_peel_sed = {}
    for i in range(0, len(aper_reduced)):
        aper_dum = aper_reduced[i] / 2 * (1 / 3600. * np.pi /
                                          180.) * dstar * pc
        dict_peel_sed[str(index_reduced[i])] = m.add_peeled_images(image=False)
        # use the index of wavelength array used by the monochromatic radiative transfer
        if mono == False:
            dict_peel_sed[str(index_reduced[i])].set_wavelength_range(
                1400, 2.0, 1400.0)
        dict_peel_sed[str(index_reduced[i])].set_viewing_angles(
            [dict_params['view_angle']], [0.0])
        # aperture should be given in cm and its the radius of the aperture
        dict_peel_sed[str(index_reduced[i])].set_aperture_range(
            1, aper_dum, aper_dum)
        dict_peel_sed[str(index_reduced[i])].set_uncertainties(True)
        dict_peel_sed[str(index_reduced[i])].set_output_bytes(8)

    # image setting
    syn_im = m.add_peeled_images(sed=False)
    # use the index of wavelength array used by the monochromatic radiative transfer
    if mono == False:
        syn_im.set_wavelength_range(1400, 2.0, 1400.0)
    # pixel number
    syn_im.set_image_size(300, 300)
    syn_im.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max)
    syn_im.set_viewing_angles([dict_params['view_angle']], [0.0])
    syn_im.set_uncertainties(True)
    # output as 64-bit
    syn_im.set_output_bytes(8)

    # Output setting
    # Density
    m.conf.output.output_density = 'last'

    # Density difference (shows where dust was destroyed)
    m.conf.output.output_density_diff = 'none'

    # Energy absorbed (using pathlengths)
    m.conf.output.output_specific_energy = 'last'

    # Number of unique photons that passed through the cell
    m.conf.output.output_n_photons = 'last'

    m.write(outdir + outname + '.rtin')

    if radmc == True:
        # RADMC-3D still use a pre-defined aperture with lazy for-loop
        aper = np.zeros([len(lam)])
        ind = 0
        for wl in lam:
            if wl < 5:
                aper[ind] = 8.4
            elif wl >= 5 and wl < 14:
                aper[ind] = 1.8 * 4
            elif wl >= 14 and wl < 40:
                aper[ind] = 5.1 * 4
            else:
                aper[ind] = 24.5
            ind += 1

        # Write the wavelength_micron.inp file
        #
        f_wave = open(outdir + 'wavelength_micron.inp', 'w')
        f_wave.write('%d \n' % int(nlam))
        for ilam in range(0, nlam):
            f_wave.write('%f \n' % lam[ilam])
        f_wave.close()

        # Write the camera_wavelength_micron.inp file
        #
        f_wave_cam = open(outdir + 'camera_wavelength_micron.inp', 'w')
        f_wave_cam.write('%d \n' % int(nlam))
        for ilam in range(0, nlam):
            f_wave_cam.write('%f \n' % lam[ilam])
        f_wave_cam.close()

        # Write the aperture_info.inp
        #
        f_aper = open(outdir + 'aperture_info.inp', 'w')
        f_aper.write('1 \n')
        f_aper.write('%d \n' % int(nlam))
        for iaper in range(0, len(aper)):
            f_aper.write('%f \t %f \n' % (lam[iaper], aper[iaper] / 2))
        f_aper.close()

        # Write the stars.inp file
        #
        f_star = open(outdir + 'stars.inp', 'w')
        f_star.write('2\n')
        f_star.write('1 \t %d \n' % int(nlam))
        f_star.write('\n')
        f_star.write('%e \t %e \t %e \t %e \t %e \n' %
                     (rstar * 0.9999, mstar, 0, 0, 0))
        f_star.write('\n')
        for ilam in range(0, nlam):
            f_star.write('%f \n' % lam[ilam])
        f_star.write('\n')
        f_star.write('%f \n' % -tstar)
        f_star.close()

        # Write the grid file
        #
        f_grid = open(outdir + 'amr_grid.inp', 'w')
        f_grid.write('1\n')  # iformat
        f_grid.write('0\n')  # AMR grid style  (0=regular grid, no AMR)
        f_grid.write(
            '150\n'
        )  # Coordinate system  coordsystem<100: Cartisian; 100<=coordsystem<200: Spherical; 200<=coordsystem<300: Cylindrical
        f_grid.write('0\n')  # gridinfo
        f_grid.write('1 \t 1 \t 1 \n')  # Include x,y,z coordinate
        f_grid.write('%d \t %d \t %d \n' %
                     (int(nx) - 1, int(ny), int(nz)))  # Size of the grid
        [f_grid.write('%e \n' % ri[ir]) for ir in range(1, len(ri))]
        [
            f_grid.write('%f \n' % thetai[itheta])
            for itheta in range(0, len(thetai))
        ]
        [f_grid.write('%f \n' % phii[iphi]) for iphi in range(0, len(phii))]
        f_grid.close()

        # Write the density file
        #
        f_dust = open(outdir + 'dust_density.inp', 'w')
        f_dust.write('1 \n')  # format number
        f_dust.write('%d \n' % int((nx - 1) * ny * nz))  # Nr of cells
        f_dust.write('1 \n')  # Nr of dust species
        for iphi in range(0, len(phic)):
            for itheta in range(0, len(thetac)):
                for ir in range(1, len(rc)):
                    f_dust.write('%e \n' % rho_dust[ir, itheta, iphi])
        f_dust.close()

        # Write the dust opacity table
        f_dustkappa = open(outdir + 'dustkappa_oh5_extended.inp', 'w')
        f_dustkappa.write('3 \n')  # format index for including g-factor
        f_dustkappa.write(
            '%d \n' %
            len(dust['nu']))  # number of wavlength/frequency in the table
        for i in range(len(dust['nu'])):
            f_dustkappa.write('%f \t %f \t %f \t %f \n' %
                              (c / dust['nu'][i] * 1e4, dust['chi'][i],
                               dust['chi'][i] * dust['albedo'][i] /
                               (1 - dust['albedo'][i]), dust['g'][i]))
        f_dustkappa.close()

        # Write the Dust opacity control file
        #
        f_opac = open(outdir + 'dustopac.inp', 'w')
        f_opac.write('2               Format number of this file\n')
        f_opac.write('1               Nr of dust species\n')
        f_opac.write(
            '============================================================================\n'
        )
        f_opac.write(
            '1               Way in which this dust species is read\n')
        f_opac.write('0               0=Thermal grain\n')
        # f_opac.write('klaus           Extension of name of dustkappa_***.inp file\n')
        f_opac.write(
            'oh5_extended    Extension of name of dustkappa_***.inp file\n')
        f_opac.write(
            '----------------------------------------------------------------------------\n'
        )
        f_opac.close()

        # In[112]:

        # Write the radmc3d.inp control file
        #
        f_control = open(outdir + 'radmc3d.inp', 'w')
        f_control.write('nphot = %d \n' % 100000)
        f_control.write('scattering_mode_max = 2\n')
        f_control.write('camera_min_drr = 0.1\n')
        f_control.write('camera_min_dangle = 0.1\n')
        f_control.write('camera_spher_cavity_relres = 0.1\n')
        f_control.write('istar_sphere = 1\n')
        f_control.write('modified_random_walk = 1\n')
        f_control.close()

    return m


# from input_reader import input_reader_table
# from pprint import pprint
# filename = '/Users/yaolun/programs/misc/hyperion/test_input.txt'
# params = input_reader_table(filename)
# pprint(params[0])
# indir = '/Users/yaolun/test/'
# outdir = '/Users/yaolun/test/'
# dust_file = '/Users/yaolun/programs/misc/oh5_hyperion.txt'
# # dust_file = '/Users/yaolun/Copy/dust_model/Ormel2011/hyperion/(ic-sil,gra)3opc.txt'
# # fix_params = {'R_min': 0.14}
# fix_params = {}
# setup_model(indir,outdir,'model_test',params[0],dust_file,plot=True,record=False,\
#     idl=False,radmc=False,fix_params=fix_params,ellipsoid=False)
Example #3
0
def setup_model(outdir,record_dir,outname,params,dust_file,tsc=True,idl=False,plot=False,\
                low_res=True,flat=True,scale=1,radmc=False,mono=False,mono_wave=None,
                record=True,dstar=200.,aperture=None,dyn_cav=False,fix_params=None,
                power=2,better_im=False,ellipsoid=False,TSC_dir='~/programs/misc/TSC/',
                IDL_path='/Applications/exelis/idl83/bin/idl',auto_disk=0.25,fast_plot=False,
                image_only=False, tsc_com=False, ext_source=None):
    """
    params = dictionary of the model parameters
    'alma' keyword is obsoleted
    outdir: The directory for storing Hyperion input files
    record_dir: The directory contains "model_list.txt" for recording parameters
    TSC_dir: Path the TSC-related IDL routines
    IDL_path: The IDL executable
    fast_plot: Do not plot the polar plot of the density because the rendering
               takes quite a lot of time.
    mono: monochromatic radiative transfer mode (need to specify the wavelength
          or a list of wavelength with 'mono_wave')
    image_only: only run for images
    """
    import numpy as np
    import astropy.constants as const
    from astropy.io import ascii
    import scipy as sci
    # to avoid X server error
    import matplotlib as mpl
    mpl.use('Agg')
    #
    import matplotlib.pyplot as plt
    import os
    from matplotlib.colors import LogNorm
    from scipy.integrate import nquad
    from hyperion.model import Model
    from record_hyperion import record_hyperion
    from outflow_inner_edge import outflow_inner_edge
    from pprint import pprint

    # Constants setup
    c         = const.c.cgs.value
    AU        = const.au.cgs.value     # Astronomical Unit       [cm]
    pc        = const.pc.cgs.value     # Parsec                  [cm]
    MS        = const.M_sun.cgs.value  # Solar mass              [g]
    LS        = const.L_sun.cgs.value  # Solar luminosity        [erg/s]
    RS        = const.R_sun.cgs.value  # Solar radius            [cm]
    G         = const.G.cgs.value      # Gravitational constant  [cm3/g/s^2]
    yr        = 60*60*24*365           # Years in seconds
    PI        = np.pi                  # PI constant
    sigma     = const.sigma_sb.cgs.value  # Stefan-Boltzmann constant
    mh        = const.m_p.cgs.value + const.m_e.cgs.value
    g2d       = 100.
    mmw       = 2.37                   # Kauffmann 2008

    m = Model()

    # min and max wavelength to compute (need to define them first for checking dust properties)
    # !!!
    wav_min = 2.0
    wav_max = 1400.
    wav_num = 1400

    # Create dust properties
    # Hyperion needs nu, albedo, chi, g, p_lin_max
    from hyperion.dust import HenyeyGreensteinDust
    # Read in the dust opacity table used by RADMC-3D
    dust = dict()
    [dust['nu'], dust['albedo'], dust['chi'], dust['g']] = np.genfromtxt(dust_file).T
    d = HenyeyGreensteinDust(dust['nu'], dust['albedo'], dust['chi'], dust['g'], dust['g']*0)
    # dust sublimation option
    d.set_sublimation_temperature('slow', temperature=1600.0)
    d.set_lte_emissivities(n_temp=3000,
                           temp_min=0.1,
                           temp_max=2000.)
    # if the min and/or max wavelength fall out of range
    if c/wav_min/1e-4 > dust['nu'].max():
        d.optical_properties.extrapolate_nu(dust['nu'].min(), c/wav_min/1e-4)
        print 'minimum wavelength is out of dust model.  The dust model is extrapolated.'
    if c/wav_max/1e-4 < dust['nu'].min():
        d.optical_properties.extrapolate_nu(c/wav_max/1e-4, dust['nu'].max())
        print 'maximum wavelength is out of dust model.  The dust model is extrapolated.'

    # try to solve the freq. problem
    d.optical_properties.extrapolate_nu(3.28e15, 5e15)
    #
    d.write(outdir+os.path.basename(dust_file).split('.')[0]+'.hdf5')
    d.plot(outdir+os.path.basename(dust_file).split('.')[0]+'.png')
    plt.clf()

    # Grids and Density

    # Grid Parameters
    nx        = 300L
    if low_res == True:
        nx    = 100L
    ny        = 400L
    nz        = 50L
    [nx, ny, nz] = [int(scale*nx), int(scale*ny), int(scale*nz)]

    # TSC model input setting
    dict_params = params
    # TSC model parameter
    cs        = dict_params['Cs']*1e5
    t         = dict_params['age']  # year
    omega     = dict_params['Omega0']
    # calculate related parameters
    M_env_dot = 0.975*cs**3/G
    mstar     = M_env_dot * t * yr
    R_cen     = omega**2 * G**3 * mstar**3 /(16*cs**8)
    R_inf     = cs * t * yr
    # protostar parameter
    tstar     = dict_params['tstar']
    R_env_max = dict_params['R_env_max']*AU
    theta_cav = dict_params['theta_cav']
    rho_cav_center = dict_params['rho_cav_center']
    rho_cav_edge   = dict_params['rho_cav_edge']*AU
    rstar     = dict_params['rstar']*RS
    # Mostly fixed parameter
    M_disk    = dict_params['M_disk']*MS
    beta      = dict_params['beta']
    h100      = dict_params['h100']*AU
    rho_cav   = dict_params['rho_cav']
    # make M_disk varies with mstar, which is the mass of star+disk
    if auto_disk != None:
        if M_disk != 0:
            print 'M_disk is reset to %4f of mstar (star+disk)' % auto_disk
            M_disk = mstar * auto_disk
        else:
            print 'M_disk = 0 is found.  M_disk is set to 0.'

    # ellipsoid cavity parameter
    if ellipsoid == True:
        # the numbers are given in arcsec
        a_out = 130 * dstar * AU
        b_out = 50  * dstar * AU
        z_out = a_out
        a_in  = dict_params['a_in'] * dstar * AU
        b_in  = a_in/a_out*b_out
        z_in  = a_in
        rho_cav_out = dict_params['rho_cav_out'] * mh
        rho_cav_in  = dict_params['rho_cav_in']  * mh
    # Calculate the dust sublimation radius
    T_sub = 1600
    a     = 1   # in micron
    # realistic dust
    # d_sub = 2.9388e7*(a/0.1)**-0.2 * (4*np.pi*rstar**2*sigma*tstar**4/LS)**0.5 / T_sub**3 *AU
    # black body dust
    d_sub = (LS/16./np.pi/sigma/AU**2*(4*np.pi*rstar**2*sigma*tstar**4/LS)/T_sub**4)**0.5 *AU
    # use the dust sublimation radius as the inner radius of disk and envelope
    R_disk_min = d_sub
    R_env_min  = d_sub
    rin        = rstar
    rout       = R_env_max
    R_disk_max = R_cen

    # print the variables
    print 'Dust sublimation radius %6f AU' % (d_sub/AU)
    print 'M_star %4f Solar mass' % (mstar/MS)
    print 'Infall radius %4f AU' % (R_inf / AU)

    # if there is any parameter found in fix_params, then fix them
    if fix_params != None:
        if 'R_min' in fix_params.keys():
            R_disk_min = fix_params['R_min']*AU
            R_env_min  = fix_params['R_min']*AU

    # Make the Coordinates
    #
    # if ext_source != None:
    #     rout = R_env_max*1.1
    ri           = rin * (rout/rin)**(np.arange(nx+1).astype(dtype='float')/float(nx))
    ri           = np.hstack((0.0, ri))
    thetai       = PI*np.arange(ny+1).astype(dtype='float')/float(ny)
    phii         = PI*2.0*np.arange(nz+1).astype(dtype='float')/float(nz)

    # Keep the constant cell size in r-direction at large radii
    #
    if flat == True:
        ri_cellsize = ri[1:-1]-ri[0:-2]
        ind = np.where(ri_cellsize/AU > 100.0)[0][0]       # The largest cell size is 100 AU
        ri = np.hstack((ri[0:ind],ri[ind]+np.arange(np.ceil((rout-ri[ind])/100/AU))*100*AU))
        nxx = nx
        nx = len(ri)-1
    # Assign the coordinates of the center of cell as its coordinates.
    #
    rc           = 0.5*( ri[0:nx]     + ri[1:nx+1] )
    thetac       = 0.5*( thetai[0:ny] + thetai[1:ny+1] )
    phic         = 0.5*( phii[0:nz]   + phii[1:nz+1] )

    # for non-TSC model
    if tsc_com:
        import hyperion as hp
        from hyperion.model import AnalyticalYSOModel

        non_tsc = AnalyticalYSOModel()

        # Define the luminsoity source
        nt_source = non_tsc.add_spherical_source()
        nt_source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4)  # [ergs/s]
        nt_source.radius = rstar  # [cm]
        nt_source.temperature = tstar  # [K]
        nt_source.position = (0., 0., 0.)
        nt_source.mass = mstar

        # Envelope structure
        #
        nt_envelope = non_tsc.add_ulrich_envelope()
        nt_envelope.mdot = M_env_dot    # Infall rate
        nt_envelope.rmin = rin          # Inner radius
        nt_envelope.rc   = R_cen        # Centrifugal radius
        nt_envelope.rmax = R_env_max    # Outer radius
        nt_envelope.star = nt_source

        nt_grid = hp.grid.SphericalPolarGrid(ri, thetai, phii)

        rho_env_ulrich = nt_envelope.density(nt_grid).T
        rho_env_ulrich2d = np.sum(rho_env_ulrich**2,axis=2)/np.sum(rho_env_ulrich,axis=2)

    # Make the dust density model
    # Make the density profile of the envelope
    #
    total_mass = 0
    if tsc == False:
        print 'Calculating the dust density profile with infall solution...'
        if theta_cav != 0:
            # using R = 10000 AU as the reference point
            c0 = (10000.*AU)**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav)))
        else:
            c0 = 0
        rho_env  = np.zeros([len(rc),len(thetac),len(phic)])
        rho_disk = np.zeros([len(rc),len(thetac),len(phic)])
        rho      = np.zeros([len(rc),len(thetac),len(phic)])

        if dyn_cav == True:
            print 'WARNING: Calculation of interdependent cavity property has not implemented in infall-only solution!'
        # Normalization for the total disk mass
        def f(w,z,beta,rstar,h100):
            f = 2*PI*w*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/(w**beta*h100/100**beta))**2)
            return f

        rho_0 = M_disk/(nquad(f,[[R_disk_min,R_disk_max],[-R_env_max,R_env_max]], args=(beta,rstar,h100)))[0]
        i = 0
        j = 0
        if 'rho_cav_center' in locals() == False:
            rho_cav_center = 5e-19
            print 'Use 5.27e-18 as the default value for cavity center'
        if 'rho_cav_edge' in locals() == False:
            rho_cav_edge = 40*AU
            print 'Use 40 AU as the default value for size of the inner region'
        discont = 1
        for ir in range(0,len(rc)):
            for itheta in range(0,len(thetac)):
                for iphi in range(0,len(phic)):
                    if rc[ir] > R_env_min:
                        # Envelope profile
                        w = abs(rc[ir]*np.cos(np.pi/2 - thetac[itheta]))
                        z = rc[ir]*np.sin(np.pi/2 - thetac[itheta])

                        if ellipsoid == False:
                            z_cav = c0*abs(w)**1.5
                            if z_cav == 0:
                                z_cav = R_env_max
                            cav_con = abs(z) > abs(z_cav)
                            if theta_cav == 90:
                                cav_con = True
                        else:
                            # condition for the outer ellipsoid
                            cav_con = (2*(w/b_out)**2 + ((abs(z)-z_out)/a_out)**2) < 1
                        if cav_con:
                            # open cavity
                            if ellipsoid == False:
                                if rho_cav_edge == 0:
                                    rho_cav_edge = R_env_min
                                if (rc[ir] <= rho_cav_edge) & (rc[ir] >= R_env_min):
                                    rho_env[ir,itheta,iphi] = g2d * rho_cav_center
                                else:
                                    rho_env[ir,itheta,iphi] = g2d * rho_cav_center*discont*(rho_cav_edge/rc[ir])**power
                                i += 1
                            else:
                                # condition for the inner ellipsoid
                                if (2*(w/b_in)**2 + ((abs(z)-z_in)/a_in)**2) > 1:
                                    rho_env[ir,itheta,iphi] = rho_cav_out
                                else:
                                    rho_env[ir,itheta,iphi] = rho_cav_in
                                i +=1
                        else:
                            j += 1
                            mu = abs(np.cos(thetac[itheta]))
                            # Implement new root finding algorithm
                            roots = np.roots(np.array([1.0, 0.0, rc[ir]/R_cen-1.0, -mu*rc[ir]/R_cen]))
                            if len(roots[roots.imag == 0]) == 1:
                                if (abs(roots[roots.imag == 0]) - 1.0) <= 0.0:
                                    mu_o_dum = roots[roots.imag == 0]
                                else:
                                    mu_o_dum = -0.5
                                    print 'Problem with cubic solving, cos(theta) = ', mu_o_dum
                                    print 'parameters are ', np.array([1.0, 0.0, rc[ir]/R_cen-1.0, -mu*rc[ir]/R_cen])
                            else:
                                mu_o_dum = -0.5
                                for imu in range(0, len(roots)):
                                    if roots[imu]*mu >= 0.0:
                                        if (abs((abs(roots[imu]) - 1.0)) <= 1e-5):
                                            mu_o_dum = 1.0 * np.sign(mu)
                                        else:
                                            mu_o_dum = roots[imu]
                                if mu_o_dum == -0.5:
                                    print 'Problem with cubic solving, roots are: ', roots
                            mu_o = mu_o_dum.real
                            rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*R_cen**3)**0.5)*(rc[ir]/R_cen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*R_cen/rc[ir])**(-1)
                        # Disk profile
                        if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
                            h = ((w/(100*AU))**beta)*h100
                            rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2)
                        # Combine envelope and disk
                        rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi]
                    else:
                        rho[ir,itheta,iphi] = 1e-30
                    # add the dust mass into the total count
                    cell_mass = rho[ir, itheta, iphi] * (1/3.)*(ri[ir+1]**3 - ri[ir]**3) * (phii[iphi+1]-phii[iphi]) * -(np.cos(thetai[itheta+1])-np.cos(thetai[itheta]))
                    total_mass = total_mass + cell_mass

        rho_env  = rho_env  + 1e-40
        rho_disk = rho_disk + 1e-40
        rho      = rho      + 1e-40
    # TSC model
    else:
        print 'Calculating the dust density profile with TSC solution...'
        if theta_cav != 0:
            c0 = (1e4*AU)**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav)))
        else:
            c0 = 0
        # If needed, calculate the TSC model via IDL
        #
        if idl == True:
            print 'Using IDL to calculate the TSC model.  Make sure you are running this on mechine with IDL.'
            import pidly
            idl = pidly.IDL(IDL_path)
            idl('.r '+TSC_dir+'tsc.pro')
            idl('.r '+TSC_dir+'tsc_run.pro')
            #
            # only run TSC calculation within infall radius
            # modify the rc array
            ind_infall = np.where(rc >= R_inf)[0][0]
            if max(ri) > R_inf:
                rc_idl = rc[0:ind_infall+1]
            else:
                rc_idl = rc[rc < max(ri)]
            idl.pro('tsc_run', indir=TSC_dir, outdir=outdir, rc=rc_idl, thetac=thetac, time=t,
                    c_s=cs, omega=omega, renv_min=R_env_min)
            file_idl = 'rhoenv.dat'
        else:
            print 'Read the pre-computed TSC model.'
            ind_infall = np.where(rc >= R_inf)[0][0]
            if max(ri) > R_inf:
                rc_idl = rc[0:ind_infall+1]
            else:
                rc_idl = rc[rc < max(ri)]
            if idl != False:
                file_idl = idl

        # read in the exist file
        rho_env_tsc_idl = np.genfromtxt(outdir+file_idl).T
        # because only region within infall radius is calculated by IDL program,
        # need to project it to the original grid
        rho_env_tsc = np.zeros([len(rc), len(thetac)])
        for irc in range(len(rc)):
            if rc[irc] in rc_idl:
                rho_env_tsc[irc,:] = rho_env_tsc_idl[np.squeeze(np.where(rc_idl == rc[irc])),:]

        # extrapolate for the NaN values at the outer radius, usually at radius beyond the infall radius
        # using r^-2 profile at radius greater than infall radius
        # and map the 2d strcuture onto 3-D grid
        # map TSC solution from IDL to actual 2-D grid
        rho_env_tsc2d = np.empty((nx,ny))
        if max(ri) > R_inf:
            for i in range(0, len(rc)):
                if i <= ind_infall:
                    rho_env_tsc2d[i,:] = rho_env_tsc[i,:]
                else:
                    rho_env_tsc2d[i,:] =  10**(np.log10(rho_env_tsc[ind_infall,:]) - 2*(np.log10(rc[i]/rc[ind_infall])))
        else:
            rho_env_tsc2d = rho_env_tsc
        # map it to 3-D grid
        rho_env = np.empty((nx,ny,nz))
        for i in range(0, nz):
            rho_env[:,:,i] = rho_env_tsc2d

        # typical no used.  Just an approach I tried to make the size of the
        # constant desnity region self-consistent with the outflow cavity.
        if dyn_cav == True:
            print 'Calculate the cavity properties using the criteria that swept-up mass = outflowed mass'
            # using swept-up mass = flow mass to derive the edge of the extended flat density region
            v_outflow = 1e2 * 1e5
            rho_cav_edge = outflow_inner_edge(np.copy(rho_env), (ri,thetai,phii),M_env_dot,v_outflow,theta_cav, R_env_min)
            dict_params['rho_cav_edge'] = rho_cav_edge
            # assume gas-to-dust ratio = 100
            rho_cav_center = 0.01 * 0.1*M_env_dot*rho_cav_edge/v_outflow/2 / (2*np.pi/3*rho_cav_edge**3*(1-np.cos(np.radians(theta_cav))))
            dict_params['rho_cav_center'] = rho_cav_center
            print 'inner edge is %5f AU and density is %e g/cm3' % (rho_cav_edge/AU, rho_cav_center)

        # create the array of density of disk and the whole structure
        #
        rho_disk = np.zeros([len(rc),len(thetac),len(phic)])
        rho      = np.zeros([len(rc),len(thetac),len(phic)])

        # non-TSC option
        if tsc_com:
            rho_ulrich = np.zeros([len(rc),len(thetac),len(phic)])

        # Calculate the disk scale height by the normalization of h100
        def f(w,z,beta,rstar,h100):
            f = 2*PI*w*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/(w**beta*h100/100**beta))**2)
            return f
        # The function for calculating the normalization of disk using the total disk mass
        #
        rho_0 = M_disk/(nquad(f,[[R_disk_min,R_disk_max],[-R_env_max,R_env_max]], args=(beta,rstar,h100)))[0]
        i = 0
        j = 0

        # put in default outflow cavity setting if nothing is specified
        if 'rho_cav_center' in locals() == False:
            rho_cav_center = 5e-19
            print 'Use 5e-19 as the default value for cavity center'
        if 'rho_cav_edge' in locals() == False:
            rho_cav_edge = 40*AU
            print 'Use 40 AU as the default value for size of the inner region'
        discont = 1
        for ir in range(0,len(rc)):
            for itheta in range(0,len(thetac)):
                for iphi in range(0,len(phic)):
                    # for external heating option
                    if (rc[ir] > R_env_min):
                        # Envelope profile
                        w = abs(rc[ir]*np.cos(np.pi/2 - thetac[itheta]))
                        z = rc[ir]*np.sin(np.pi/2 - thetac[itheta])

                        if ellipsoid == False:
                            z_cav = c0*abs(w)**1.5
                            if z_cav == 0:
                                z_cav = R_env_max
                            cav_con = abs(z) > abs(z_cav)
                        else:
                            # condition for the outer ellipsoid
                            cav_con = (2*(w/b_out)**2 + ((abs(z)-z_out)/a_out)**2) < 1
                        if cav_con:
                            # open cavity
                            if ellipsoid == False:
                                if rho_cav_edge == 0:
                                    rho_cav_edge = R_env_min
                                if (rc[ir] <= rho_cav_edge) & (rc[ir] >= R_env_min):
                                    rho_env[ir,itheta,iphi] = g2d * rho_cav_center#*((rc[ir]/AU)**2)
                                    if tsc_com:
                                        rho_env_ulrich[ir,itheta,iphi] = rho_env[ir,itheta,iphi]
                                else:
                                    rho_env[ir,itheta,iphi] = g2d * rho_cav_center*discont*(rho_cav_edge/rc[ir])**power
                                    if tsc_com:
                                        rho_env_ulrich[ir,itheta,iphi] = rho_env[ir,itheta,iphi]
                                i += 1
                            else:
                                # condition for the inner ellipsoid
                                if (2*(w/b_in)**2 + ((abs(z)-z_in)/a_in)**2) > 1:
                                    rho_env[ir,itheta,iphi] = rho_cav_out
                                    if tsc_com:
                                        rho_env_ulrich[ir,itheta,iphi] = rho_env[ir,itheta,iphi]
                                else:
                                    rho_env[ir,itheta,iphi] = rho_cav_in
                                    if tsc_com:
                                        rho_env_ulrich[ir,itheta,iphi] = rho_env[ir,itheta,iphi]
                                i +=1

                        # Disk profile
                        if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
                            h = ((w/(100*AU))**beta)*h100
                            rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2)
                        # Combine envelope and disk
                        rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi]
                        if tsc_com:
                            rho_ulrich[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env_ulrich[ir,itheta,iphi]
                    else:
                        rho[ir,itheta,iphi] = 1e-40
                        if tsc_com:
                            rho[ir,itheta,iphi] = 1e-40
                    # add the dust mass into the total count
                    cell_mass = rho[ir, itheta, iphi] * (1/3.)*(ri[ir+1]**3 - ri[ir]**3) * (phii[iphi+1]-phii[iphi]) * -(np.cos(thetai[itheta+1])-np.cos(thetai[itheta]))
                    total_mass = total_mass + cell_mass
    # apply gas-to-dust ratio of 100
    rho_dust = rho/g2d
    if tsc_com:
        rho_ulrich_dust = rho_ulrich/g2d
    total_mass_dust = total_mass/MS/g2d
    print 'Total dust mass = %f Solar mass' % total_mass_dust

    if record == True:
        # Record the input and calculated parameters
        params = dict_params.copy()
        params.update({'d_sub': d_sub/AU, 'M_env_dot': M_env_dot/MS*yr, 'R_inf': R_inf/AU, 'R_cen': R_cen/AU, 'mstar': mstar/MS, 'M_tot_gas': total_mass/MS})
        record_hyperion(params,record_dir)

    if plot == True:
        # rho2d is the 2-D projection of gas density
        # take the weighted average
        rho2d = np.sum(rho**2,axis=2)/np.sum(rho,axis=2)

        if tsc_com:
            rho2d = np.sum(rho_ulrich**2,axis=2)/np.sum(rho_ulrich,axis=2)

        if fast_plot == False:
            # Plot the azimuthal averaged density
            fig = plt.figure(figsize=(8,6))
            ax_env  = fig.add_subplot(111,projection='polar')

            zmin = 1e-22/mmw/mh
            zmin = 1e-1
            cmap = plt.cm.CMRmap
            rho2d_exp = np.hstack((rho2d,rho2d,rho2d[:,0:1]))
            thetac_exp = np.hstack((thetac-PI/2, thetac+PI/2, thetac[0]-PI/2))
            # plot the gas density
            img_env = ax_env.pcolormesh(thetac_exp,rc/AU,rho2d_exp/mmw/mh,cmap=cmap,norm=LogNorm(vmin=zmin,vmax=1e6)) # np.nanmax(rho2d_exp/mmw/mh)

            ax_env.set_xlabel(r'$\rm{Polar\,angle\,(Degree)}$',fontsize=20)
            ax_env.set_ylabel('',fontsize=20, labelpad=-140)
            ax_env.tick_params(labelsize=18)
            ax_env.set_yticks(np.hstack((np.arange(0,(int(R_env_max/AU/10000.)+1)*10000, 10000),R_env_max/AU)))
            ax_env.set_xticklabels([r'$\rm{90^{\circ}}$',r'$\rm{45^{\circ}}$',r'$\rm{0^{\circ}}$',r'$\rm{-45^{\circ}}$',\
                                    r'$\rm{-90^{\circ}}$',r'$\rm{-135^{\circ}}$',r'$\rm{180^{\circ}}$',r'$\rm{135^{\circ}}$'])
            ax_env.set_yticklabels([])
            # fix the tick label font
            ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=20)
            for label in ax_env.get_yticklabels():
                label.set_fontproperties(ticks_font)

            ax_env.grid(True, color='LightGray', linewidth=1)
            cb = fig.colorbar(img_env, pad=0.1)
            cb.ax.set_ylabel(r'$\rm{Averaged\,Gas\,Density\,(cm^{-3})}$',fontsize=20)
            # cb.set_ticks([1e2,1e3,1e4,1e5,1e6,1e7,1e8,1e9])
            # cb.set_ticklabels([r'$\rm{10^{2}}$',r'$\rm{10^{3}}$',r'$\rm{10^{4}}$',r'$\rm{10^{5}}$',r'$\rm{10^{6}}$',\
            #                    r'$\rm{10^{7}}$',r'$\rm{10^{8}}$',r'$\rm{\geq 10^{9}}$'])
            # lower density ticks
            cb.set_ticks([1e-1,1e0,1e1,1e2,1e3,1e4,1e5,1e6])
            cb.set_ticklabels([r'$\rm{10^{-1}}$',r'$\rm{10^{0}}$',r'$\rm{10^{1}}$',r'$\rm{10^{2}}$',r'$\rm{10^{3}}$',
                               r'$\rm{10^{4}}$',r'$\rm{10^{5}}$',r'$\rm{\geq 10^{6}}$'])

            cb_obj = plt.getp(cb.ax.axes, 'yticklabels')
            plt.setp(cb_obj,fontsize=20)
            fig.savefig(outdir+outname+'_gas_density.png', format='png', dpi=300, bbox_inches='tight')
            fig.clf()

        # Plot the radial density profile
        fig = plt.figure(figsize=(12,9))
        ax = fig.add_subplot(111)

        plot_grid = [0,49,99,149,199]
        color_grid = ['#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00']
        label = [r'$\rm{\theta='+str(int(np.degrees(thetai[plot_grid[0]])))+'^{\circ}}$',\
                 r'$\rm{\theta='+str(int(np.degrees(thetai[plot_grid[1]])))+'^{\circ}}$',\
                 r'$\rm{\theta='+str(1+int(np.degrees(thetai[plot_grid[2]])))+'^{\circ}}$',\
                 r'$\rm{\theta='+str(int(np.degrees(thetai[plot_grid[3]])))+'^{\circ}}$',\
                 r'$\rm{\theta='+str(1+int(np.degrees(thetai[plot_grid[4]])))+'^{\circ}}$']
        alpha = np.linspace(0.3,1.0,len(plot_grid))
        for i in plot_grid:
            ax.plot(np.log10(rc[rc > 0.14*AU]/AU), np.log10(rho2d[rc > 0.14*AU,i]/g2d/mmw/mh)+plot_grid[::-1].index(i)*-0.2,'-',color=color_grid[plot_grid.index(i)],mec='None',linewidth=2.5, \
                    markersize=3, label=label[plot_grid.index(i)]) # alpha=alpha[plot_grid.index(i)],
        ax.axvline(np.log10(R_inf/AU), linestyle='--', color='k', linewidth=1.5, label=r'$\rm{infall\,radius}$')
        ax.axvline(np.log10(R_cen/AU), linestyle=':', color='k', linewidth=1.5, label=r'$\rm{centrifugal\,radius}$')

        lg = plt.legend(fontsize=20, numpoints=1, ncol=2, framealpha=0.7, loc='upper right')

        ax.set_xlabel(r'$\rm{log(Radius)\,(AU)}$',fontsize=20)
        ax.set_ylabel(r'$\rm{log(Dust\,Density)\,(cm^{-3})}$',fontsize=20)
        [ax.spines[axis].set_linewidth(1.5) for axis in ['top','bottom','left','right']]
        ax.minorticks_on()
        ax.tick_params('both',labelsize=18,width=1.5,which='major',pad=15,length=5)
        ax.tick_params('both',labelsize=18,width=1.5,which='minor',pad=15,length=2.5)

        # fix the tick label font
        ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=18)
        for label in ax.get_xticklabels():
            label.set_fontproperties(ticks_font)
        for label in ax.get_yticklabels():
            label.set_fontproperties(ticks_font)

        ax.set_ylim([0,11])
        fig.gca().set_xlim(left=np.log10(0.05))
        fig.savefig(outdir+outname+'_gas_radial.pdf',format='pdf',dpi=300,bbox_inches='tight')
        fig.clf()

    # Insert the calculated grid and dust density profile into hyperion
    m.set_spherical_polar_grid(ri, thetai, phii)

    m.add_density_grid(rho_dust.T, d)
    # for non-TSC option
    if tsc_com:
        m.add_density_grid(rho_ulrich_dust.T, d)

    # Define the luminsoity source
    source = m.add_spherical_source()
    source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4)  # [ergs/s]
    source.radius = rstar  # [cm]
    source.temperature = tstar  # [K]
    source.position = (0., 0., 0.)
    print 'L_center =  % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS)

    # if ext_source != None:
    #     # add external heating - ISRF
    #     # use standard receipe from Hyperion doc
    #     isrf = ascii.read(ext_source, names=['wavelength', 'J_lambda'])
    #     isrf_nu = c/(isrf['wavelength']*1e-4)
    #     isrf_jnu = isrf['J_lambda']*isrf['wavelength']/isrf_nu
    #
    #     if 'mmp83' in ext_source:
    #         FOUR_PI_JNU = 0.0217
    #     else:
    #         FOUR_PI_JNU = raw_input('What is the FOUR_PI_JNU value?')
    #
    #     s_isrf = m.add_external_spherical_source()
    #     s_isrf.radius = R_env_max
    #     s_isrf.spectrum = (isrf_nu, isrf_jnu)
    #     s_isrf.luminosity = PI * R_env_max**2 * FOUR_PI_JNU

    m.set_raytracing(True)
    # option of using more photons for imaging
    if better_im == False:
        im_photon = 1e6
    else:
        im_photon = 5e7

    if mono == True:
        if (type(mono_wave) == int) or (type(mono_wave) == float) or (type(mono_wave) == str):
            mono_wave = float(mono_wave)
            mono_wave = [mono_wave]

        # Monochromatic radiative transfer setting
        m.set_monochromatic(True, wavelengths=mono_wave)
        m.set_n_photons(initial=1e6, imaging_sources=im_photon,
            imaging_dust=im_photon,raytracing_sources=1e6, raytracing_dust=1e6)
    else:
        # regular wavelength grid setting
        m.set_n_photons(initial=1e6, imaging=im_photon,raytracing_sources=1e6,
                        raytracing_dust=1e6)
    # number of iteration to compute dust specific energy (temperature)
    m.set_n_initial_iterations(20)
    m.set_convergence(True, percentile=dict_params['percentile'],
                            absolute=dict_params['absolute'],
                            relative=dict_params['relative'])
    m.set_mrw(True)   # Gamma = 1 by default

    # Setting up images and SEDs
    if not image_only:
        # SED setting
        # Infinite aperture
        syn_inf = m.add_peeled_images(image=False)
        # use the index of wavelength array used by the monochromatic radiative transfer
        if mono == False:
            syn_inf.set_wavelength_range(wav_num, wav_min, wav_max)
        syn_inf.set_viewing_angles([dict_params['view_angle']], [0.0])
        syn_inf.set_uncertainties(True)
        syn_inf.set_output_bytes(8)

        # aperture
        # 7.2 in 10 um scaled by lambda / 10
        # flatten beyond 20 um
        # default aperture (should always specify a set of apertures)
        if aperture == None:
            aperture = {'wave': [3.6, 4.5, 5.8, 8.0, 8.5, 9, 9.7, 10, 10.5, 11, 16, 20, 24, 30, 70, 100, 160, 250, 350, 500, 1300],\
                        'aperture': [7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 20.4, 20.4, 20.4, 20.4, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 101]}
        # assign wl_aper and aper from dictionary of aperture
        wl_aper = aperture['wave']
        aper    = aperture['aperture']
        # create the non-repetitive aperture list and index array
        aper_reduced = list(set(aper))
        index_reduced = np.arange(1, len(aper_reduced)+1)

        dict_peel_sed = {}
        for i in range(0, len(aper_reduced)):
            aper_dum = aper_reduced[i]/2 * (1/3600.*np.pi/180.)*dstar*pc
            dict_peel_sed[str(index_reduced[i])] = m.add_peeled_images(image=False)
            # use the index of wavelength array used by the monochromatic radiative transfer
            if mono == False:
                dict_peel_sed[str(index_reduced[i])].set_wavelength_range(wav_num, wav_min, wav_max)
            dict_peel_sed[str(index_reduced[i])].set_viewing_angles([dict_params['view_angle']], [0.0])
            # aperture should be given in cm and its the radius of the aperture
            dict_peel_sed[str(index_reduced[i])].set_aperture_range(1, aper_dum, aper_dum)
            dict_peel_sed[str(index_reduced[i])].set_uncertainties(True)
            dict_peel_sed[str(index_reduced[i])].set_output_bytes(8)

    # image setting
    syn_im = m.add_peeled_images(sed=False)
    # use the index of wavelength array used by the monochromatic radiative transfer
    if mono == False:
        syn_im.set_wavelength_range(wav_num, wav_min, wav_max)
    # pixel number
    # !!!
    if not mono:
        pix_num = 300
    else:
        pix_num = 8000
    #
    syn_im.set_image_size(pix_num, pix_num)
    syn_im.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max)
    syn_im.set_viewing_angles([dict_params['view_angle']], [0.0])
    syn_im.set_uncertainties(True)
    syn_im.set_output_bytes(8)

    # Output setting
    # Density
    m.conf.output.output_density = 'last'

    # Density difference (shows where dust was destroyed)
    m.conf.output.output_density_diff = 'none'

    # Energy absorbed (using pathlengths)
    m.conf.output.output_specific_energy = 'last'

    # Number of unique photons that passed through the cell
    m.conf.output.output_n_photons = 'last'

    m.write(outdir+outname+'.rtin')

    if radmc == True:
        # RADMC-3D still use a pre-defined aperture with lazy for-loop
        aper = np.zeros([len(lam)])
        ind = 0
        for wl in lam:
            if wl < 5:
                aper[ind] = 8.4
            elif wl >= 5 and wl < 14:
                aper[ind] = 1.8 * 4
            elif wl >= 14 and wl < 40:
                aper[ind] = 5.1 * 4
            else:
                aper[ind] = 24.5
            ind += 1

        # Write the wavelength_micron.inp file
        #
        f_wave = open(outdir+'wavelength_micron.inp','w')
        f_wave.write('%d \n' % int(nlam))
        for ilam in range(0,nlam):
            f_wave.write('%f \n' % lam[ilam])
        f_wave.close()

        # Write the camera_wavelength_micron.inp file
        #
        f_wave_cam = open(outdir+'camera_wavelength_micron.inp','w')
        f_wave_cam.write('%d \n' % int(nlam))
        for ilam in range(0,nlam):
            f_wave_cam.write('%f \n' % lam[ilam])
        f_wave_cam.close()

        # Write the aperture_info.inp
        #
        f_aper = open(outdir+'aperture_info.inp','w')
        f_aper.write('1 \n')
        f_aper.write('%d \n' % int(nlam))
        for iaper in range(0, len(aper)):
            f_aper.write('%f \t %f \n' % (lam[iaper],aper[iaper]/2))
        f_aper.close()

        # Write the stars.inp file
        #
        f_star = open(outdir+'stars.inp','w')
        f_star.write('2\n')
        f_star.write('1 \t %d \n' % int(nlam))
        f_star.write('\n')
        f_star.write('%e \t %e \t %e \t %e \t %e \n' % (rstar*0.9999,mstar,0,0,0))
        f_star.write('\n')
        for ilam in range(0,nlam):
            f_star.write('%f \n' % lam[ilam])
        f_star.write('\n')
        f_star.write('%f \n' % -tstar)
        f_star.close()

        # Write the grid file
        #
        f_grid = open(outdir+'amr_grid.inp','w')
        f_grid.write('1\n')                               # iformat
        f_grid.write('0\n')                               # AMR grid style  (0=regular grid, no AMR)
        f_grid.write('150\n')                             # Coordinate system  coordsystem<100: Cartisian; 100<=coordsystem<200: Spherical; 200<=coordsystem<300: Cylindrical
        f_grid.write('0\n')                               # gridinfo
        f_grid.write('1 \t 1 \t 1 \n')                    # Include x,y,z coordinate
        f_grid.write('%d \t %d \t %d \n' % (int(nx)-1,int(ny),int(nz)))    # Size of the grid
        [f_grid.write('%e \n' % ri[ir]) for ir in range(1,len(ri))]
        [f_grid.write('%f \n' % thetai[itheta]) for itheta in range(0,len(thetai))]
        [f_grid.write('%f \n' % phii[iphi]) for iphi in range(0,len(phii))]
        f_grid.close()

        # Write the density file
        #
        f_dust = open(outdir+'dust_density.inp','w')
        f_dust.write('1 \n')                      # format number
        f_dust.write('%d \n' % int((nx-1)*ny*nz)) # Nr of cells
        f_dust.write('1 \n')                      # Nr of dust species
        for iphi in range(0,len(phic)):
            for itheta in range(0,len(thetac)):
                for ir in range(1,len(rc)):
                    f_dust.write('%e \n' % rho_dust[ir,itheta,iphi])
        f_dust.close()

        # Write the dust opacity table
        f_dustkappa = open(outdir+'dustkappa_oh5_extended.inp','w')
        f_dustkappa.write('3 \n')                       # format index for including g-factor
        f_dustkappa.write('%d \n' % len(dust['nu']))    # number of wavlength/frequency in the table
        for i in range(len(dust['nu'])):
            f_dustkappa.write('%f \t %f \t %f \t %f \n' % (c/dust['nu'][i]*1e4, dust['chi'][i], dust['chi'][i]*dust['albedo'][i]/(1-dust['albedo'][i]), dust['g'][i]))
        f_dustkappa.close()

        # Write the Dust opacity control file
        #
        f_opac = open(outdir+'dustopac.inp','w')
        f_opac.write('2               Format number of this file\n')
        f_opac.write('1               Nr of dust species\n')
        f_opac.write('============================================================================\n')
        f_opac.write('1               Way in which this dust species is read\n')
        f_opac.write('0               0=Thermal grain\n')
        # f_opac.write('klaus           Extension of name of dustkappa_***.inp file\n')
        f_opac.write('oh5_extended    Extension of name of dustkappa_***.inp file\n')
        f_opac.write('----------------------------------------------------------------------------\n')
        f_opac.close()

        # Write the radmc3d.inp control file
        #
        f_control = open(outdir+'radmc3d.inp','w')
        f_control.write('nphot = %d \n' % 100000)
        f_control.write('scattering_mode_max = 2\n')
        f_control.write('camera_min_drr = 0.1\n')
        f_control.write('camera_min_dangle = 0.1\n')
        f_control.write('camera_spher_cavity_relres = 0.1\n')
        f_control.write('istar_sphere = 1\n')
        f_control.write('modified_random_walk = 1\n')
        f_control.close()

    return m
Example #4
0
def setup_model(outdir, record_dir, outname, params, dust_file, wav_range, aperture,
                tsc=True, idl=False, plot=False, low_res=True, max_rCell=100,
                scale=1, radmc=False, mono_wave=None, norecord=False,
                dstar=200., dyn_cav=False, fix_params=None,
                power=2, mc_photons=1e6, im_photons=1e6, ellipsoid=False,
                TSC_dir='~/programs/misc/TSC/',
                IDL_path='/Applications/exelis/idl83/bin/idl', auto_disk=0.25,
                fast_plot=False, image_only=False, ulrich=False):
    """
    params = dictionary of the model parameters
    'alma' keyword is obsoleted
    outdir: The directory for storing Hyperion input files
    record_dir: The directory contains "model_list.txt" for recording parameters
    TSC_dir: Path the TSC-related IDL routines
    IDL_path: The IDL executable
    fast_plot: Do not plot the polar plot of the density because the rendering
               takes quite a lot of time.
    mono: monochromatic radiative transfer mode (need to specify the wavelength
          or a list of wavelength with 'mono_wave')
    image_only: only run for images
    """
    import numpy as np
    import astropy.constants as const
    import scipy as sci
    # to avoid X server error
    import matplotlib as mpl
    mpl.use('Agg')
    #
    import matplotlib.pyplot as plt
    import os
    from matplotlib.colors import LogNorm
    from scipy.integrate import nquad
    from hyperion.model import Model
    from record_hyperion import record_hyperion
    from pprint import pprint

    # Constants setup
    c         = const.c.cgs.value
    AU        = const.au.cgs.value     # Astronomical Unit       [cm]
    pc        = const.pc.cgs.value     # Parsec                  [cm]
    MS        = const.M_sun.cgs.value  # Solar mass              [g]
    LS        = const.L_sun.cgs.value  # Solar luminosity        [erg/s]
    RS        = const.R_sun.cgs.value  # Solar radius            [cm]
    G         = const.G.cgs.value      # Gravitational constant  [cm3/g/s^2]
    yr        = 60*60*24*365           # Years in seconds
    PI        = np.pi                  # PI constant
    sigma     = const.sigma_sb.cgs.value  # Stefan-Boltzmann constant
    mh        = const.m_p.cgs.value + const.m_e.cgs.value
    g2d       = 100.
    mmw       = 2.37                   # Kauffmann 2008

    m = Model()

    # min and max wavelength to compute (need to define them first for checking dust properties)
    wav_min, wav_max, wav_num = wav_range

    # Create dust properties
    # Hyperion needs nu, albedo, chi, g, p_lin_max
    from hyperion.dust import HenyeyGreensteinDust
    dust = dict()
    [dust['nu'], dust['albedo'], dust['chi'], dust['g']] = np.genfromtxt(dust_file).T
    d = HenyeyGreensteinDust(dust['nu'], dust['albedo'], dust['chi'], dust['g'], dust['g']*0)
    # dust sublimation option
    # dust sublimation temperture specified here
    T_sub = 1600.0
    d.set_sublimation_temperature('slow', temperature=T_sub)
    d.set_lte_emissivities(n_temp=3000,
                           temp_min=0.1,
                           temp_max=2000.)
    # if the min and/or max wavelength fall out of range
    if c/wav_min/1e-4 > dust['nu'].max():
        d.optical_properties.extrapolate_nu(dust['nu'].min(), c/wav_min/1e-4)
        print('minimum wavelength is out of dust model.  The dust model is extrapolated.')
    if c/wav_max/1e-4 < dust['nu'].min():
        d.optical_properties.extrapolate_nu(c/wav_max/1e-4, dust['nu'].max())
        print('maximum wavelength is out of dust model.  The dust model is extrapolated.')

    # try to solve the freq. problem
    d.optical_properties.extrapolate_nu(3.28e15, 5e15)
    #
    d.write(outdir+os.path.basename(dust_file).split('.')[0]+'.hdf5')
    d.plot(outdir+os.path.basename(dust_file).split('.')[0]+'.png')
    plt.clf()

    # Grids and Density

    # Grid Parameters
    nx        = 300L
    if low_res == True:
        nx    = 100L
    ny        = 400L
    nz        = 50L
    [nx, ny, nz] = [int(scale*nx), int(scale*ny), int(scale*nz)]

    # TSC model input setting
    dict_params = params
    # TSC model parameter
    cs        = dict_params['Cs']*1e5
    t         = dict_params['age']  # year
    omega     = dict_params['Omega0']
    # calculate related parameters
    M_env_dot = 0.975*cs**3/G
    mstar     = M_env_dot * t * yr
    R_cen     = omega**2 * G**3 * mstar**3 /(16*cs**8)
    R_inf     = cs * t * yr
    # protostar parameter
    tstar     = dict_params['tstar']
    R_env_max = dict_params['R_env_max']*AU
    theta_cav = dict_params['theta_cav']
    rho_cav_center = dict_params['rho_cav_center']
    rho_cav_edge   = dict_params['rho_cav_edge']*AU
    rstar     = dict_params['rstar']*RS
    # Mostly fixed parameter
    M_disk    = dict_params['M_disk']*MS
    beta      = dict_params['beta']
    h100      = dict_params['h100']*AU
    rho_cav   = dict_params['rho_cav']
    # make M_disk varies with mstar, which is the mass of star+disk
    if auto_disk != None:
        if M_disk != 0:
            print('M_disk is reset to %4f of mstar (star+disk)' % auto_disk)
            M_disk = mstar * auto_disk
        else:
            print('M_disk = 0 is found.  M_disk is set to 0.')

    # ellipsoid cavity parameter
    if ellipsoid == True:
        print('Use ellipsoid cavity (experimental)')
        # the numbers are given in arcsec
        a_out = 130 * dstar * AU
        b_out = 50  * dstar * AU
        z_out = a_out
        a_in  = dict_params['a_in'] * dstar * AU
        b_in  = a_in/a_out*b_out
        z_in  = a_in
        rho_cav_out = dict_params['rho_cav_out'] * mh
        rho_cav_in  = dict_params['rho_cav_in']  * mh

    # Calculate the dust sublimation radius
    # dust sublimation temperature specified when setting up the dust properties
    # realistic dust
    # a     = 1   # in micron
    # d_sub = 2.9388e7*(a/0.1)**-0.2 * (4*np.pi*rstar**2*sigma*tstar**4/LS)**0.5 / T_sub**3 *AU
    # black body dust
    d_sub = (LS/16./np.pi/sigma/AU**2*(4*np.pi*rstar**2*sigma*tstar**4/LS)/T_sub**4)**0.5 *AU
    # use the dust sublimation radius as the inner radius of disk and envelope
    R_disk_min = d_sub
    R_env_min  = d_sub
    rin        = rstar
    rout       = R_env_max
    R_disk_max = R_cen

    # print the variables
    print('Dust sublimation radius %6f AU' % (d_sub/AU))
    print('M_star %4f Solar mass' % (mstar/MS))
    print('Infall radius %4f AU' % (R_inf / AU))

    # if there is any parameter found in fix_params, then fix them
    if fix_params != None:
        if 'R_min' in fix_params.keys():
            R_disk_min = fix_params['R_min']*AU
            R_env_min  = fix_params['R_min']*AU

    # Make the Coordinates
    #
    ri           = rin * (rout/rin)**(np.arange(nx+1).astype(dtype='float')/float(nx))
    ri           = np.hstack((0.0, ri))
    thetai       = PI*np.arange(ny+1).astype(dtype='float')/float(ny)
    phii         = PI*2.0*np.arange(nz+1).astype(dtype='float')/float(nz)

    # Keep the constant cell size in r-direction at large radii
    #
    if max_rCell != None:
        ri_cellsize = ri[1:-1]-ri[0:-2]
        ind = np.where(ri_cellsize/AU > max_rCell)[0][0]       # The largest cell size is 100 AU
        ri = np.hstack((ri[0:ind],
                        ri[ind]+np.arange(np.ceil((rout-ri[ind])/max_rCell/AU))*max_rCell*AU))
        nxx = nx
        nx = len(ri)-1
    # Assign the coordinates of the center of cell as its coordinates.
    #
    rc           = 0.5*( ri[0:nx]     + ri[1:nx+1] )
    thetac       = 0.5*( thetai[0:ny] + thetai[1:ny+1] )
    phic         = 0.5*( phii[0:nz]   + phii[1:nz+1] )

    # for non-TSC model
    if ulrich:
        import hyperion as hp
        from hyperion.model import AnalyticalYSOModel

        non_tsc = AnalyticalYSOModel()

        # Define the luminsoity source
        nt_source = non_tsc.add_spherical_source()
        nt_source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4)  # [ergs/s]
        nt_source.radius = rstar  # [cm]
        nt_source.temperature = tstar  # [K]
        nt_source.position = (0., 0., 0.)
        nt_source.mass = mstar

        # Envelope structure
        #
        nt_envelope = non_tsc.add_ulrich_envelope()
        nt_envelope.mdot = M_env_dot    # Infall rate
        nt_envelope.rmin = rin          # Inner radius
        nt_envelope.rc   = R_cen        # Centrifugal radius
        nt_envelope.rmax = R_env_max    # Outer radius
        nt_envelope.star = nt_source

        nt_grid = hp.grid.SphericalPolarGrid(ri, thetai, phii)

        rho_env_ulrich = nt_envelope.density(nt_grid).T
        rho_env_ulrich2d = np.sum(rho_env_ulrich**2, axis=2)/np.sum(rho_env_ulrich, axis=2)

    # Make the dust density model
    #
    # total mass counter
    total_mass = 0

    # normalization constant for cavity shape
    if theta_cav != 0:
        # using R = 10000 AU as the reference point
        c0 = (10000.*AU)**(-0.5)*\
             np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav)))
    else:
        c0 = 0

    # empty density grid to be filled later
    rho = np.zeros([len(rc), len(thetac), len(phic)])

    # Normalization for the total disk mass
    def f(w, z, beta, rstar, h100):
        f = 2*PI*w*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/(w**beta*h100/100**beta))**2)
        return f
    rho_0 = M_disk/(nquad(f,[[R_disk_min,R_disk_max],[-R_env_max,R_env_max]], args=(beta,rstar,h100)))[0]

    # TODO: review
    if dyn_cav == True:
        if not tsc:
            print('WARNING: Calculation of interdependent cavity property has not implemented in infall-only solution!')
        else:
            from outflow_inner_edge import outflow_inner_edge
            # typical no used.  Just an approach I tried to make the size of the
            # constant desnity region self-consistent with the outflow cavity.
            print 'Calculate the cavity properties using the criteria that swept-up mass = outflowed mass'
            # using swept-up mass = flow mass to derive the edge of the extended flat density region
            v_outflow = 1e2 * 1e5
            rho_cav_edge = outflow_inner_edge(np.copy(rho_env), (ri,thetai,phii),M_env_dot,v_outflow,theta_cav, R_env_min)
            dict_params['rho_cav_edge'] = rho_cav_edge
            # assume gas-to-dust ratio = 100
            rho_cav_center = 0.01 * 0.1*M_env_dot*rho_cav_edge/v_outflow/2 / (2*np.pi/3*rho_cav_edge**3*(1-np.cos(np.radians(theta_cav))))
            dict_params['rho_cav_center'] = rho_cav_center
            print 'inner edge is %5f AU and density is %e g/cm3' % (rho_cav_edge/AU, rho_cav_center)


    # default setting for the density profile in cavity
    if 'rho_cav_center' in locals() == False:
        rho_cav_center = 5e-19
        print('Use 5e-19 as the default value for cavity center')
    if 'rho_cav_edge' in locals() == False:
        rho_cav_edge = 40*AU
        print('Use 40 AU as the default value for size of the inner region')
    # discontinuity factor inside and outside of cavity inner edge
    discont = 1
    # determine the edge of constant region in the cavity
    if rho_cav_edge == 0:
        rho_cav_edge = R_env_min


    if not tsc:
        print('Calculating the dust density profile with infall solution...')

        for ir in range(0,len(rc)):
            for itheta in range(0,len(thetac)):
                for iphi in range(0,len(phic)):
                    if rc[ir] > R_env_min:
                        # related coordinates
                        w = abs(rc[ir]*np.cos(np.pi/2 - thetac[itheta]))
                        z = rc[ir]*np.sin(np.pi/2 - thetac[itheta])

                        # Disk profile or envelope/cavity
                        if ((w >= R_disk_min) and (w <= R_disk_max)):
                            h = ((w/(100*AU))**beta)*h100
                            rho_dum = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2)
                        else:
                            # determine whether the current cell is in the cavity
                            if ellipsoid == False:
                                z_cav = c0*abs(w)**1.5
                                if z_cav == 0:
                                    z_cav = R_env_max
                                cav_con = abs(z) > abs(z_cav)
                                if theta_cav == 90:
                                    cav_con = True
                            else:
                                # condition for the outer ellipsoid
                                cav_con = (2*(w/b_out)**2 + ((abs(z)-z_out)/a_out)**2) < 1

                            # cavity density
                            if cav_con:
                                # open cavity
                                if ellipsoid == False:
                                    if (rc[ir] <= rho_cav_edge) & (rc[ir] >= R_env_min):
                                        rho_dum = g2d * rho_cav_center
                                    else:
                                        rho_dum = g2d * rho_cav_center*discont*(rho_cav_edge/rc[ir])**power
                                else:
                                    # condition for the inner ellipsoid
                                    if (2*(w/b_in)**2 + ((abs(z)-z_in)/a_in)**2) > 1:
                                        rho_dum = rho_cav_out
                                    else:
                                        rho_dum = rho_cav_in
                            # envelope density
                            else:
                                mu = abs(np.cos(thetac[itheta]))
                                # Implement new root finding algorithm
                                roots = np.roots(np.array([1.0, 0.0, rc[ir]/R_cen-1.0, -mu*rc[ir]/R_cen]))
                                if len(roots[roots.imag == 0]) == 1:
                                    if (abs(roots[roots.imag == 0]) - 1.0) <= 0.0:
                                        mu_o_dum = roots[roots.imag == 0]
                                    else:
                                        mu_o_dum = -0.5
                                        print('Problem with cubic solving, cos(theta) = ', mu_o_dum)
                                        print('parameters are ', np.array([1.0, 0.0, rc[ir]/R_cen-1.0, -mu*rc[ir]/R_cen]))
                                else:
                                    mu_o_dum = -0.5
                                    for imu in range(0, len(roots)):
                                        if roots[imu]*mu >= 0.0:
                                            if (abs((abs(roots[imu]) - 1.0)) <= 1e-5):
                                                mu_o_dum = 1.0 * np.sign(mu)
                                            else:
                                                mu_o_dum = roots[imu]
                                    if mu_o_dum == -0.5:
                                        print('Problem with cubic solving, roots are: ', roots)
                                mu_o = mu_o_dum.real
                                rho_dum = M_env_dot/(4*PI*(G*mstar*R_cen**3)**0.5)*(rc[ir]/R_cen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*R_cen/rc[ir])**(-1)
                        rho[ir,itheta,iphi] = rho_dum
                    else:
                        rho[ir,itheta,iphi] = 1e-30
                    # add the dust mass into the total count
                    cell_mass = rho[ir, itheta, iphi] * (1/3.)*(ri[ir+1]**3 - ri[ir]**3) * (phii[iphi+1]-phii[iphi]) * -(np.cos(thetai[itheta+1])-np.cos(thetai[itheta]))
                    total_mass = total_mass + cell_mass

    # TSC model
    else:
        print('Calculating the dust density profile with TSC solution...')

        # If needed, calculate the TSC model via IDL
        #
        if idl == True:
            print('Using IDL to calculate the TSC model.  Make sure you are running this on mechine with IDL.')
            import pidly
            idl = pidly.IDL(IDL_path)
            idl('.r '+TSC_dir+'tsc.pro')
            idl('.r '+TSC_dir+'tsc_run.pro')
            #
            # only run TSC calculation within infall radius
            # modify the rc array
            ind_infall = np.where(rc >= R_inf)[0][0]
            if max(ri) > R_inf:
                rc_idl = rc[0:ind_infall+1]
            else:
                rc_idl = rc[rc < max(ri)]
            idl.pro('tsc_run', indir=TSC_dir, outdir=outdir, rc=rc_idl, thetac=thetac, time=t,
                    c_s=cs, omega=omega, renv_min=R_env_min)
            file_idl = 'rhoenv.dat'
        else:
            print('Read the pre-computed TSC model.')
            ind_infall = np.where(rc >= R_inf)[0][0]
            if max(ri) > R_inf:
                rc_idl = rc[0:ind_infall+1]
            else:
                rc_idl = rc[rc < max(ri)]
            if idl != False:
                file_idl = idl

        # read in the exist file
        rho_env_tsc_idl = np.genfromtxt(outdir+file_idl).T
        # because only region within infall radius is calculated by IDL program,
        # need to project it to the original grid
        rho_env_tsc = np.zeros([len(rc), len(thetac)])
        for irc in range(len(rc)):
            if rc[irc] in rc_idl:
                rho_env_tsc[irc,:] = rho_env_tsc_idl[np.squeeze(np.where(rc_idl == rc[irc])),:]

        # extrapolate for the NaN values at the outer radius, usually at radius beyond the infall radius
        # using r^-2 profile at radius greater than infall radius
        # and map the 2d strcuture onto 3-D grid
        # map TSC solution from IDL to actual 2-D grid
        rho_env_tsc2d = np.empty((nx,ny))
        if max(ri) > R_inf:
            for i in range(0, len(rc)):
                if i <= ind_infall:
                    rho_env_tsc2d[i,:] = rho_env_tsc[i,:]
                else:
                    rho_env_tsc2d[i,:] = 10**(np.log10(rho_env_tsc[ind_infall,:]) - 2*(np.log10(rc[i]/rc[ind_infall])))
        else:
            rho_env_tsc2d = rho_env_tsc

        # map it to 3-D grid
        rho_env = np.repeat(rho_env_tsc2d[:,:,np.newaxis], nz, axis=2)

        for ir in range(0,len(rc)):
            for itheta in range(0,len(thetac)):
                for iphi in range(0,len(phic)):
                    if rc[ir] > R_env_min:
                        # related coordinates
                        w = abs(rc[ir]*np.cos(np.pi/2 - thetac[itheta]))
                        z = rc[ir]*np.sin(np.pi/2 - thetac[itheta])

                        # initialize dummer rho for disk and cavity
                        rho_dum = 0
                        # Disk profile
                        if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
                            h = ((w/(100*AU))**beta)*h100
                            rho_dum = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2)
                        else:
                        # determine whether the current cell is in the cavity
                            if ellipsoid == False:
                                z_cav = c0*abs(w)**1.5
                                if z_cav == 0:
                                    z_cav = R_env_max
                                cav_con = abs(z) > abs(z_cav)
                            else:
                                # condition for the outer ellipsoid
                                cav_con = (2*(w/b_out)**2 + ((abs(z)-z_out)/a_out)**2) < 1

                            if cav_con:
                                # open cavity
                                if ellipsoid == False:
                                    if (rc[ir] <= rho_cav_edge) & (rc[ir] >= R_env_min):
                                        rho_dum = g2d * rho_cav_center
                                    else:
                                        rho_dum = g2d * rho_cav_center*discont*(rho_cav_edge/rc[ir])**power
                                else:
                                    # condition for the inner ellipsoid
                                    if (2*(w/b_in)**2 + ((abs(z)-z_in)/a_in)**2) > 1:
                                        rho_dum = rho_cav_out
                                    else:
                                        rho_dum = rho_cav_in

                        rho[ir, itheta, iphi] = rho_env[ir, itheta, iphi] + rho_dum

                    else:
                        rho[ir,itheta,iphi] = 1e-40

                    # add the dust mass into the total count
                    cell_mass = rho[ir, itheta, iphi] * (1/3.)*(ri[ir+1]**3 - ri[ir]**3) * (phii[iphi+1]-phii[iphi]) * -(np.cos(thetai[itheta+1])-np.cos(thetai[itheta]))
                    total_mass = total_mass + cell_mass
    # apply gas-to-dust ratio of 100
    rho_dust = rho/g2d
    total_mass_dust = total_mass/MS/g2d
    print('Total dust mass = %f Solar mass' % total_mass_dust)

    # Insert the calculated grid and dust density profile into hyperion
    m.set_spherical_polar_grid(ri, thetai, phii)
    m.add_density_grid(rho_dust.T, d)

    # Define the luminsoity source
    source = m.add_spherical_source()
    source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4)  # [ergs/s]
    source.radius = rstar  # [cm]
    source.temperature = tstar  # [K]
    source.position = (0., 0., 0.)
    print('L_center =  % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS))

    # radiative transfer settigs
    m.set_raytracing(True)

    # determine the number of photons for imaging
    # the case of monochromatic
    if mono_wave != None:
        if (type(mono_wave) == int) or (type(mono_wave) == float) or (type(mono_wave) == str):
            mono_wave = float(mono_wave)
            mono_wave = [mono_wave]

        # Monochromatic radiative transfer setting
        m.set_monochromatic(True, wavelengths=mono_wave)
        m.set_n_photons(initial=mc_photons, imaging_sources=im_photon,
                        imaging_dust=im_photon, raytracing_sources=im_photon,
                        raytracing_dust=im_photon)
    # regular SED
    else:
        m.set_n_photons(initial=mc_photons, imaging=im_photon * wav_num,
                        raytracing_sources=im_photon,
                        raytracing_dust=im_photon)
    # number of iteration to compute dust specific energy (temperature)
    m.set_n_initial_iterations(20)
    m.set_convergence(True, percentile=dict_params['percentile'],
                            absolute=dict_params['absolute'],
                            relative=dict_params['relative'])
    m.set_mrw(True)   # Gamma = 1 by default

    # Setting up images and SEDs
    if not image_only:
        # SED setting
        # Infinite aperture
        syn_inf = m.add_peeled_images(image=False)
        # use the index of wavelength array used by the monochromatic radiative transfer
        if mono_wave == None:
            syn_inf.set_wavelength_range(wav_num, wav_min, wav_max)
        syn_inf.set_viewing_angles([dict_params['view_angle']], [0.0])
        syn_inf.set_uncertainties(True)
        syn_inf.set_output_bytes(8)

        # aperture
        # 7.2 in 10 um scaled by lambda / 10
        # flatten beyond 20 um
        # default aperture (should always specify a set of apertures)

        # assign wl_aper and aper from dictionary of aperture
        wl_aper = aperture['wave']
        aper    = aperture['aperture']
        # create the non-repetitive aperture list and index array
        aper_reduced = sorted(list(set(aper)))
        index_reduced = np.arange(1, len(aper_reduced)+1)

        dict_peel_sed = {}
        for i in range(0, len(aper_reduced)):
            aper_dum = aper_reduced[i]/2 * (1/3600.*np.pi/180.)*dstar*pc
            dict_peel_sed[str(index_reduced[i])] = m.add_peeled_images(image=False)
            # use the index of wavelength array used by the monochromatic radiative transfer
            if mono == False:
                dict_peel_sed[str(index_reduced[i])].set_wavelength_range(wav_num, wav_min, wav_max)
            dict_peel_sed[str(index_reduced[i])].set_viewing_angles([dict_params['view_angle']], [0.0])
            # aperture should be given in cm and its the radius of the aperture
            dict_peel_sed[str(index_reduced[i])].set_aperture_range(1, aper_dum, aper_dum)
            dict_peel_sed[str(index_reduced[i])].set_uncertainties(True)
            dict_peel_sed[str(index_reduced[i])].set_output_bytes(8)

    # image setting
    syn_im = m.add_peeled_images(sed=False)
    # use the index of wavelength array used by the monochromatic radiative transfer
    if mono_wave == None:
        syn_im.set_wavelength_range(wav_num, wav_min, wav_max)
        pix_num = 300
    else:
        pix_num = 8000
    #
    syn_im.set_image_size(pix_num, pix_num)
    syn_im.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max)
    syn_im.set_viewing_angles([dict_params['view_angle']], [0.0])
    syn_im.set_uncertainties(True)
    syn_im.set_output_bytes(8)

    # Output setting
    # Density
    m.conf.output.output_density = 'last'
    # Density difference (shows where dust was destroyed)
    m.conf.output.output_density_diff = 'none'
    # Energy absorbed (using pathlengths)
    m.conf.output.output_specific_energy = 'last'
    # Number of unique photons that passed through the cell
    m.conf.output.output_n_photons = 'last'
    m.write(outdir+outname+'.rtin')

    if plot:
        # rho2d is the 2-D projection of gas density
        # take the weighted average
        rho2d = np.sum(rho**2, axis=2)/np.sum(rho, axis=2)

        if fast_plot == False:
            # Plot the azimuthal averaged density
            fig = plt.figure(figsize=(8,6))
            ax_env  = fig.add_subplot(111, projection='polar')

            # zmin = 1e-22/mmw/mh
            zmin = 1e-1
            cmap = plt.cm.CMRmap
            rho2d_exp = np.hstack((rho2d, rho2d, rho2d[:,0:1]))
            thetac_exp = np.hstack((thetac-PI/2, thetac+PI/2, thetac[0]-PI/2))
            # plot the gas density
            img_env = ax_env.pcolormesh(thetac_exp, rc/AU, rho2d_exp/mmw/mh,
                                        cmap=cmap,
                                        norm=LogNorm(vmin=zmin,vmax=1e6))

            ax_env.set_xlabel(r'$\rm{Polar\,angle\,(Degree)}$',fontsize=20)
            ax_env.set_ylabel('', fontsize=20, labelpad=-140)
            ax_env.tick_params(labelsize=18)
            ax_env.set_yticks(np.hstack((np.arange(0,(int(R_env_max/AU/10000.)+1)*10000, 10000),R_env_max/AU)))
            ax_env.set_xticklabels([r'$\rm{90^{\circ}}$',r'$\rm{45^{\circ}}$',r'$\rm{0^{\circ}}$',r'$\rm{-45^{\circ}}$',\
                                    r'$\rm{-90^{\circ}}$',r'$\rm{-135^{\circ}}$',r'$\rm{180^{\circ}}$',r'$\rm{135^{\circ}}$'])
            ax_env.set_yticklabels([])
            # fix the tick label font
            ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=20)
            for label in ax_env.get_yticklabels():
                label.set_fontproperties(ticks_font)

            ax_env.grid(True, color='LightGray', linewidth=1.5)
            cb = fig.colorbar(img_env, pad=0.1)
            cb.ax.set_ylabel(r'$\rm{Averaged\,Gas\,Density\,(cm^{-3})}$',fontsize=20)
            cb.set_ticks([1e-1,1e0,1e1,1e2,1e3,1e4,1e5,1e6])
            cb.set_ticklabels([r'$\rm{10^{-1}}$',r'$\rm{10^{0}}$',r'$\rm{10^{1}}$',r'$\rm{10^{2}}$',r'$\rm{10^{3}}$',
                               r'$\rm{10^{4}}$',r'$\rm{10^{5}}$',r'$\rm{\geq 10^{6}}$'])

            cb_obj = plt.getp(cb.ax.axes, 'yticklabels')
            plt.setp(cb_obj, fontsize=20)
            fig.savefig(outdir+outname+'_gas_density.png', format='png', dpi=300, bbox_inches='tight')
            fig.clf()

        # Plot the radial density profile
        fig = plt.figure(figsize=(12,9))
        ax = fig.add_subplot(111)

        plot_grid = [0, 49, 99, 149, 199]
        color_grid = ['#e41a1c', '#377eb8', '#4daf4a', '#984ea3', '#ff7f00']
        label = [r'$\rm{\theta='+str(int(np.degrees(thetai[plot_grid[0]])))+'^{\circ}}$',
                 r'$\rm{\theta='+str(int(np.degrees(thetai[plot_grid[1]])))+'^{\circ}}$',
                 r'$\rm{\theta='+str(1+int(np.degrees(thetai[plot_grid[2]])))+'^{\circ}}$',
                 r'$\rm{\theta='+str(int(np.degrees(thetai[plot_grid[3]])))+'^{\circ}}$',
                 r'$\rm{\theta='+str(1+int(np.degrees(thetai[plot_grid[4]])))+'^{\circ}}$']
        alpha = np.linspace(0.3, 1.0, len(plot_grid))
        for i in plot_grid:
            ax.plot(np.log10(rc[rc > 0.14*AU]/AU), np.log10(rho2d[rc > 0.14*AU,i]/g2d/mmw/mh)+plot_grid[::-1].index(i)*-0.2,'-',color=color_grid[plot_grid.index(i)],mec='None',linewidth=2.5, \
                    markersize=3, label=label[plot_grid.index(i)])
        ax.axvline(np.log10(R_inf/AU), linestyle='--', color='k', linewidth=1.5, label=r'$\rm{infall\,radius}$')
        ax.axvline(np.log10(R_cen/AU), linestyle=':', color='k', linewidth=1.5, label=r'$\rm{centrifugal\,radius}$')

        lg = plt.legend(fontsize=20, numpoints=1, ncol=2, framealpha=0.7, loc='upper right')

        ax.set_xlabel(r'$\rm{log(Radius)\,(AU)}$', fontsize=20)
        ax.set_ylabel(r'$\rm{log(Dust\,Density)\,(cm^{-3})}$', fontsize=20)
        [ax.spines[axis].set_linewidth(1.5) for axis in ['top','bottom','left','right']]
        ax.minorticks_on()
        ax.tick_params('both', labelsize=18, width=1.5, which='major', pad=15, length=5)
        ax.tick_params('both', labelsize=18, width=1.5, which='minor', pad=15, length=2.5)

        # fix the tick label font
        ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=18)
        for label in ax.get_xticklabels():
            label.set_fontproperties(ticks_font)
        for label in ax.get_yticklabels():
            label.set_fontproperties(ticks_font)

        ax.set_ylim([0,11])
        fig.gca().set_xlim(left=np.log10(0.05))
        fig.savefig(outdir+outname+'_gas_radial.pdf',format='pdf',dpi=300,bbox_inches='tight')
        fig.clf()

    # Record the input and calculated parameters
    if not norecord == True:
        params = dict_params.copy()
        params.update({'d_sub': d_sub/AU,
                       'M_env_dot': M_env_dot/MS*yr,
                       'R_inf': R_inf/AU,
                       'R_cen': R_cen/AU,
                       'mstar': mstar/MS,
                       'M_tot_gas': total_mass/MS})
        record_hyperion(params,record_dir)


    return m
Example #5
0
def setup_model(indir,outdir,model=False,denser_wall=False,plot=False,low_res=False,flat=True,scale=1.0):
    import numpy as np
    import astropy.constants as const
    import scipy as sci
    import matplotlib.pyplot as plt
    import matplotlib as mat
    import os
    from matplotlib.colors import LogNorm
    from scipy.optimize import fsolve
    from scipy.integrate import nquad
    from envelope_func import func
    from hyperion.model import Model

    # Constants setup
    c         = const.c.cgs.value
    AU        = 1.49598e13     # Astronomical Unit       [cm]
    pc        = 3.08572e18     # Parsec                  [cm]
    MS        = 1.98892e33     # Solar mass              [g]
    LS        = 3.8525e33      # Solar luminosity        [erg/s]
    RS        = 6.96e10        # Solar radius            [cm]
    G         = 6.67259e-8     # Gravitational constant  [cm3/g/s^2]
    yr        = 60*60*24*365   # Years in seconds
    PI        = np.pi          # PI constant
    sigma     = const.sigma_sb.cgs.value  # Stefan-Boltzmann constant 


    m = Model()

    # Create dust properties

    # Hyperion needs nu, albedo, chi, g, p_lin_max
    from hyperion.dust import HenyeyGreensteinDust
    # Read in the dust opacity table used by RADMC-3D
    dust_radmc = dict()
    [dust_radmc['wl'], dust_radmc['abs'], dust_radmc['scat'], dust_radmc['g']] = np.genfromtxt('dustkappa_oh5_extended.inp',skip_header=2).T
    # opacity per mass of dust?
    dust_hy = dict()
    dust_hy['nu'] = c/dust_radmc['wl']*1e4
    ind = np.argsort(dust_hy['nu'])
    dust_hy['nu'] = dust_hy['nu'][ind]
    dust_hy['albedo'] = (dust_radmc['scat']/(dust_radmc['abs']+dust_radmc['scat']))[ind]
    dust_hy['chi'] = (dust_radmc['abs']+dust_radmc['scat'])[ind]
    dust_hy['g'] = dust_radmc['g'][ind]
    dust_hy['p_lin_max'] = 0*dust_radmc['wl'][ind]     # assume no polarization

    d = HenyeyGreensteinDust(dust_hy['nu'], dust_hy['albedo'], dust_hy['chi'], dust_hy['g'], dust_hy['p_lin_max'])
    # dust sublimation does not occur
    # d.set_sublimation_temperature(None)
    d.write(outdir+'oh5.hdf5')
    d.plot(outdir+'oh5.png')

    # Grids and Density
    # Calculation inherited from the script used for RADMC-3D

    # Parameters setup
    # Import the model parameters from another file 
    #
    params     = np.genfromtxt(indir+'/params.dat',dtype=None)
    tstar      = params[0][1]
    mstar      = params[1][1]*MS
    rstar      = params[2][1]*RS
    M_env_dot  = params[3][1]*MS/yr
    M_disk_dot = params[4][1]*MS/yr
    R_env_max  = params[5][1]*AU
    R_env_min  = params[6][1]*AU
    theta_cav  = params[7][1]
    R_disk_max = params[8][1]*AU
    R_disk_min = params[9][1]*AU
    R_cen      = R_disk_max
    M_disk     = params[10][1]*MS
    beta       = params[11][1]
    h100       = params[12][1]*AU
    rho_cav    = params[13][1]
    if denser_wall == True:
        wall       = params[14][1]*AU
        rho_wall   = params[15][1]
    rho_cav_center = params[16][1]
    rho_cav_edge   = params[17][1]*AU
    
    # Grid Parameters
    nx        = 300L
    if low_res == True:
        nx    = 100L
    ny        = 400L
    nz        = 50L
    [nx, ny, nz] = [scale*nx, scale*ny, scale*nz]
    # nx        = 20
    # ny        = 40
    # nz        = 5

    
    # Model Parameters
    #
    rin       = rstar
    rout      = R_env_max
    rcen      = R_cen

    # Star Parameters
    #
    mstar    = mstar
    rstar    = rstar*0.9999
    tstar    = tstar
    pstar    = [0.,0.,0.]

    # Make the Coordinates
    #
    ri           = rin * (rout/rin)**(np.arange(nx+1).astype(dtype='float')/float(nx))
    ri           = np.hstack((0.0, ri))
    thetai       = PI*np.arange(ny+1).astype(dtype='float')/float(ny)
    phii         = PI*2.0*np.arange(nz+1).astype(dtype='float')/float(nz)
    
    # Keep the constant cell size in r-direction
    #
    if flat == True:
        ri_cellsize = ri[1:-1]-ri[0:-2]
        ind = np.where(ri_cellsize/AU > 100.0)[0][0]       # The largest cell size is 100 AU
        ri = np.hstack((ri[0:ind],ri[ind]+np.arange(np.ceil((rout-ri[ind])/100/AU))*100*AU))
        nxx = nx
        nx = len(ri)-1    

    # Assign the coordinates of the center of cell as its coordinates.
    #
    rc           = 0.5*( ri[0:nx]     + ri[1:nx+1] )
    thetac       = 0.5*( thetai[0:ny] + thetai[1:ny+1] )
    phic         = 0.5*( phii[0:nz]   + phii[1:nz+1] )
    # phic         = 0.5*( phii[0:nz-1]   + phii[1:nz] )

    # Make the dust density model
    # Make the density profile of the envelope
    #
    print 'Calculating the dust density profile...'
    if theta_cav != 0:
        c0 = R_env_max**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav)))
    else:
        c0 = 0
    rho_env  = np.zeros([len(rc),len(thetac),len(phic)])
    rho_disk = np.zeros([len(rc),len(thetac),len(phic)])
    rho      = np.zeros([len(rc),len(thetac),len(phic)])
    def f(w,z,beta,rstar,h100):
        f = 2*PI*w*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/(w**beta*h100/100**beta))**2)
        return f
    rho_0 = M_disk/(nquad(f,[[R_disk_min,R_disk_max],[-R_env_max,R_env_max]], args=(beta,rstar,h100)))[0]
    i = 0
    j = 0
    if 'rho_cav_center' in locals() == False:
        rho_cav_center = 5.27e-18 # 1.6e-17  # 5.27e-18
        print 'Use 5.27e-18 as the default value for cavity center'
    if 'rho_cav_edge' in locals() == False:
        rho_cav_edge = 40*AU
        print 'Use 40 AU as the default value for size of the inner region'
    discont = 1
    if denser_wall == False:
        for ir in range(0,len(rc)):
            for itheta in range(0,len(thetac)):
                for iphi in range(0,len(phic)):
                    if rc[ir] > R_env_min:
                        # Envelope profile
                        w = abs(rc[ir]*np.cos(np.pi/2-thetac[itheta]))
                        z = rc[ir]*np.sin(np.pi/2-thetac[itheta])
                        z_cav = c0*abs(w)**1.5
                        if z_cav == 0:
                            z_cav = R_env_max
                        if abs(z) > abs(z_cav):
                            # rho_env[ir,itheta,iphi] = rho_cav
                            # Modification for using density gradient in the cavity
                            if rc[ir] <= rho_cav_edge:
                                rho_env[ir,itheta,iphi] = rho_cav_center#*((rc[ir]/AU)**2)
                            else:
                                rho_env[ir,itheta,iphi] = rho_cav_center*discont*(rho_cav_edge/rc[ir])**2
                            i += 1
                        else:
                            j += 1
                            mu = abs(np.cos(thetac[itheta]))
                            mu_o = np.abs(fsolve(func,[0.5,0.5,0.5],args=(rc[ir],rcen,mu))[0])
                            rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*rcen**3)**0.5)*(rc[ir]/rcen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*rcen/rc[ir])**(-1)
                        # Disk profile
                        if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
                            h = ((w/(100*AU))**beta)*h100
                            rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2)
                        # Combine envelope and disk
                        rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi]

                        # # testing the effect of new solver
                        # # Envelope profile
                        # w = abs(rc[ir]*np.cos(np.pi/2 - thetac[itheta]))
                        # z = rc[ir]*np.sin(np.pi/2 - thetac[itheta])
                        # z_cav = c0*abs(w)**1.5
                        # if z_cav == 0:
                        #     z_cav = R_env_max
                        # if abs(z) > abs(z_cav):
                        #     # rho_env[ir,itheta,iphi] = rho_cav
                        #     # Modification for using density gradient in the cavity
                        #     if rc[ir] <= rho_cav_edge:
                        #         rho_env[ir,itheta,iphi] = rho_cav_center#*((rc[ir]/AU)**2)
                        #     else:
                        #         rho_env[ir,itheta,iphi] = rho_cav_center*discont*(rho_cav_edge/rc[ir])**2
                        #     i += 1
                        # else:
                        #     j += 1
                        #     mu = abs(np.cos(thetac[itheta]))
                        #     # Implement new root finding algorithm
                        #     roots = np.roots(np.array([1.0, 0.0, rc[ir]/rcen-1.0, -mu*rc[ir]/rcen]))
                        #     if len(roots[roots.imag == 0]) == 1:
                        #         if (abs(roots[roots.imag == 0]) - 1.0) <= 0.0:
                        #             mu_o_dum = roots[roots.imag == 0]
                        #         else:
                        #             mu_o_dum = -0.5
                        #             print 'Problem with cubic solving, cos(theta) = ', mu_o_dum
                        #             print 'parameters are ', np.array([1.0, 0.0, rc[ir]/rcen-1.0, -mu*rc[ir]/rcen])
                        #     else:
                        #         mu_o_dum = -0.5
                        #         for imu in range(0, len(roots)):
                        #             if roots[imu]*mu >= 0.0:
                        #                 if (abs((abs(roots[imu]) - 1.0)) <= 1e-5):
                        #                     mu_o_dum = 1.0 * np.sign(mu)
                        #                 else:
                        #                     mu_o_dum = roots[imu]
                        #         if mu_o_dum == -0.5:
                        #             print 'Problem with cubic solving, roots are: ', roots
                        #     mu_o = mu_o_dum.real
                        #     rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*rcen**3)**0.5)*(rc[ir]/rcen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*rcen/rc[ir])**(-1)
                        # # Disk profile
                        # if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
                        #     h = ((w/(100*AU))**beta)*h100
                        #     rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2)
                        # # Combine envelope and disk
                        # rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi]
                    else:
                        rho[ir,itheta,iphi] = 1e-30
        rho_env  = rho_env  + 1e-40
        rho_disk = rho_disk + 1e-40
        rho      = rho      + 1e-40
    else:
        for ir in range(0,len(rc)):
            for itheta in range(0,len(thetac)):
                for iphi in range(0,len(phic)):
                    # Envelope profile
                    w = abs(rc[ir]*np.cos(thetac[itheta]))
                    z = rc[ir]*np.sin(thetac[itheta])
                    z_cav = c*abs(w)**1.5
                    z_cav_wall = c*abs(w-wall)**1.5
                    if z_cav == 0:
                        z_cav = R_env_max
                    if abs(z) > abs(z_cav):
                        # rho_env[ir,itheta,iphi] = rho_cav
                        # Modification for using density gradient in the cavity
                        if rc[ir] <= 20*AU:
                            rho_env[ir,itheta,iphi] = rho_cav_center*((rc[ir]/AU)**2)
                        else:
                            rho_env[ir,itheta,iphi] = rho_cav_center*discont*(20*AU/rc[ir])**2
                        i += 1
                    elif (abs(z) > abs(z_cav_wall)) and (abs(z) < abs(z_cav)):
                        rho_env[ir,itheta,iphi] = rho_wall
                    else:
                        j += 1
                        mu = abs(np.cos(thetac[itheta]))
                        mu_o = np.abs(fsolve(func,[0.5,0.5,0.5],args=(rc[ir],rcen,mu))[0])
                        rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*rcen**3)**0.5)*(rc[ir]/rcen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*rcen/rc[ir])**(-1)
                    # Disk profile
                    if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
                        h = ((w/(100*AU))**beta)*h100
                        rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2)
                    # Combine envelope and disk
                    rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi]
        rho_env  = rho_env  + 1e-40
        rho_disk = rho_disk + 1e-40
        rho      = rho      + 1e-40

    # Insert the calculated grid and dust density profile into hyperion
    m.set_spherical_polar_grid(ri, thetai, phii)
    m.add_density_grid(rho.T, outdir+'oh5.hdf5')    # numpy read the array in reverse order

    # Define the luminsoity source
    source = m.add_spherical_source()
    source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4)  # [ergs/s]
    source.radius = rstar  # [cm]
    source.temperature = tstar  # [K]
    source.position = (0., 0., 0.)
    print 'L_center =  % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS)

    # Setting up images and SEDs
    image = m.add_peeled_images()
    image.set_wavelength_range(300, 2.0, 670.0)
    # pixel number
    image.set_image_size(300, 300)
    image.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max)
    image.set_viewing_angles([82.0], [0.0])
    image.set_uncertainties(True)
    # output as 64-bit
    image.set_output_bytes(8)

    # Radiative transfer setting

    # number of photons for temp and image
    m.set_raytracing(True)
    m.set_n_photons(initial=1000000, imaging=1000000, raytracing_sources=1000000, raytracing_dust=1000000)
    # number of iteration to compute dust specific energy (temperature)
    m.set_n_initial_iterations(5)
    m.set_convergence(True, percentile=99., absolute=1.5, relative=1.02)
    m.set_mrw(True)   # Gamma = 1 by default

    # Output setting
    # Density
    m.conf.output.output_density = 'last'

    # Density difference (shows where dust was destroyed)
    m.conf.output.output_density_diff = 'none'

    # Energy absorbed (using pathlengths)
    m.conf.output.output_specific_energy = 'last'

    # Number of unique photons that passed through the cell
    m.conf.output.output_n_photons = 'last'

    m.write(outdir+'old_setup2.rtin')
Example #6
0
def setup_model(outdir,record_dir,outname,params,dust_file,tsc=True,idl=False,plot=False,\
                low_res=True,flat=True,scale=1,radmc=False,mono=False,record=True,dstar=178.,\
                aperture=None,dyn_cav=False,fix_params=None,alma=False,power=2,better_im=False,ellipsoid=False,\
                TSC_dir='~/programs/misc/TSC/', IDL_path='/Applications/exelis/idl83/bin/idl',auto_disk=0.25):
    """
    params = dictionary of the model parameters
    alma keyword is obsoleted 
    outdir: The directory for storing Hyperion input files
    record_dir: The directory contains "model_list.txt" for recording parameters
    TSC_dir: Path the TSC-related IDL routines
    IDL_path: The IDL executable 
    """
    import numpy as np
    import astropy.constants as const
    import scipy as sci
    # to avoid X server error
    import matplotlib as mpl
    mpl.use('Agg')
    #
    import matplotlib.pyplot as plt
    import os
    from matplotlib.colors import LogNorm
    from scipy.integrate import nquad
    from hyperion.model import Model
    from record_hyperion import record_hyperion
    from outflow_inner_edge import outflow_inner_edge
    from pprint import pprint
    # import pdb
    # pdb.set_trace()

    # Constants setup
    c         = const.c.cgs.value
    AU        = 1.49598e13     # Astronomical Unit       [cm]
    pc        = 3.08572e18     # Parsec                  [cm]
    MS        = 1.98892e33     # Solar mass              [g]
    LS        = 3.8525e33      # Solar luminosity        [erg/s]
    RS        = 6.96e10        # Solar radius            [cm]
    G         = 6.67259e-8     # Gravitational constant  [cm3/g/s^2]
    yr        = 60*60*24*365   # Years in seconds
    PI        = np.pi          # PI constant
    sigma     = const.sigma_sb.cgs.value  # Stefan-Boltzmann constant 
    mh        = const.m_p.cgs.value + const.m_e.cgs.value
    g2d       = 100.
    mmw       = 2.37   # Kauffmann 2008


    m = Model()

    # Create dust properties

    # Hyperion needs nu, albedo, chi, g, p_lin_max
    from hyperion.dust import HenyeyGreensteinDust
    # Read in the dust opacity table used by RADMC-3D
    dust = dict()
    # [dust_radmc['wl'], dust_radmc['abs'], dust_radmc['scat'], dust_radmc['g']] = np.genfromtxt(dust_file,skip_header=2).T
    [dust['nu'], dust['albedo'], dust['chi'], dust['g']] = np.genfromtxt(dust_file).T
    # opacity per mass of dust?
    # dust_hy = dict()
    # dust_hy['nu'] = c/dust_radmc['wl']*1e4
    # ind = np.argsort(dust_hy['nu'])
    # dust_hy['nu'] = dust_hy['nu'][ind]
    # dust_hy['albedo'] = (dust_radmc['scat']/(dust_radmc['abs']+dust_radmc['scat']))[ind]
    # dust_hy['chi'] = (dust_radmc['abs']+dust_radmc['scat'])[ind]
    # dust_hy['g'] = dust_radmc['g'][ind]
    # dust_hy['p_lin_max'] = 0*dust_radmc['wl'][ind]     # assume no polarization

    # d = HenyeyGreensteinDust(dust_hy['nu'], dust_hy['albedo'], dust_hy['chi'], dust_hy['g'], dust_hy['p_lin_max'])
    d = HenyeyGreensteinDust(dust['nu'], dust['albedo'], dust['chi'], dust['g'], dust['g']*0)
    # dust sublimation option
    d.set_sublimation_temperature('slow', temperature=1600.0)
    d.set_lte_emissivities(n_temp=3000,
                       temp_min=0.1,
                       temp_max=2000.)
    # try to solve the freq. problem
    d.optical_properties.extrapolate_nu(3.28e15, 4e15)
    #
    d.write(outdir+os.path.basename(dust_file).split('.')[0]+'.hdf5')
    d.plot(outdir+os.path.basename(dust_file).split('.')[0]+'.png')
    plt.clf()

    # Grids and Density
    # Calculation inherited from the script used for RADMC-3D

    # Grid Parameters
    nx        = 300L
    if low_res == True:
        nx    = 100L
    ny        = 400L
    nz        = 50L
    [nx, ny, nz] = [int(scale*nx), int(scale*ny), int(scale*nz)]

    # TSC model input setting
    # params    = np.genfromtxt(indir+'/tsc_params.dat', dtype=None)
    dict_params = params # input_reader(params_file)
    # TSC model parameter
    cs        = dict_params['Cs']*1e5
    t         = dict_params['age']  # year
    omega     = dict_params['Omega0']
    # calculate related parameters
    M_env_dot = 0.975*cs**3/G
    mstar     = M_env_dot * t * yr
    R_cen     = omega**2 * G**3 * mstar**3 /(16*cs**8)
    R_inf     = cs * t * yr
    # M_env_dot = dict_params['M_env_dot']*MS/yr
    # R_cen     = dict_params['R_cen']*AU
    # R_inf     = dict_params['R_inf']*AU
    # protostar parameter
    tstar     = dict_params['tstar']
    R_env_max = dict_params['R_env_max']*AU
    theta_cav = dict_params['theta_cav']
    rho_cav_center = dict_params['rho_cav_center']
    rho_cav_edge   = dict_params['rho_cav_edge']*AU
    rstar     = dict_params['rstar']*RS
    # Mostly fixed parameter
    M_disk    = dict_params['M_disk']*MS
    beta      = dict_params['beta']
    h100      = dict_params['h100']*AU
    rho_cav   = dict_params['rho_cav']
    # make M_disk varies with mstar, which is the mass of star+disk
    if auto_disk != None:
        if M_disk != 0:
            print 'M_disk is reset to %4f of mstar (star+disk)' % auto_disk
            M_disk = mstar * auto_disk
        else:
            print 'M_disk = 0 is found.  M_disk is set to 0.'

    # ellipsoid cavity parameter
    if ellipsoid == True:
        a_out = 130 * 178. * AU
        b_out = 50  * 178. * AU
        z_out = a_out
        # a_in  = 77.5 * 178. * AU
        # b_in  = 30   * 178. * AU
        a_in  = dict_params['a_in'] * 178. * AU
        b_in  = a_in/a_out*b_out
        z_in  = a_in
        # rho_cav_out = 1e4 * mh
        # rho_cav_in  = 1e3 * mh
        rho_cav_out = dict_params['rho_cav_out'] * mh
        rho_cav_in  = dict_params['rho_cav_in']  * mh
    # Calculate the dust sublimation radius
    T_sub = 1600
    a     = 1   #in micron
    # realistic dust
    # d_sub = 2.9388e7*(a/0.1)**-0.2 * (4*np.pi*rstar**2*sigma*tstar**4/LS)**0.5 / T_sub**3 *AU
    # black body dust
    d_sub = (LS/16./np.pi/sigma/AU**2*(4*np.pi*rstar**2*sigma*tstar**4/LS)/T_sub**4)**0.5 *AU
    # use the dust sublimation radius as the inner radius of disk and envelope
    R_disk_min = d_sub
    R_env_min  = d_sub
    rin        = rstar
    rout       = R_env_max
    R_disk_max = R_cen

    # Do the variable conversion
    # cs = (G * M_env_dot / 0.975)**(1/3.)  # cm/s
    # t = R_inf / cs / yr   # in year
    # mstar = M_env_dot * t * yr
    # omega = (R_cen * 16*cs**8 / (G**3 * mstar**3))**0.5

    # print the variables for radmc3d
    print 'Dust sublimation radius %6f AU' % (d_sub/AU)
    print 'M_star %4f Solar mass' % (mstar/MS)
    print 'Infall radius %4f AU' % (R_inf / AU)


    # if there is any parameter found in fix_params, then fix them
    if fix_params != None:
        if 'R_min' in fix_params.keys():
            R_disk_min = fix_params['R_min']*AU
            R_env_min  = fix_params['R_min']*AU

    # Make the Coordinates
    #
    ri           = rin * (rout/rin)**(np.arange(nx+1).astype(dtype='float')/float(nx))
    ri           = np.hstack((0.0, ri))
    thetai       = PI*np.arange(ny+1).astype(dtype='float')/float(ny)
    phii         = PI*2.0*np.arange(nz+1).astype(dtype='float')/float(nz)
    
    # Keep the constant cell size in r-direction at large radii
    #
    if flat == True:
        ri_cellsize = ri[1:-1]-ri[0:-2]
        ind = np.where(ri_cellsize/AU > 100.0)[0][0]       # The largest cell size is 100 AU
        ri = np.hstack((ri[0:ind],ri[ind]+np.arange(np.ceil((rout-ri[ind])/100/AU))*100*AU))
        nxx = nx
        nx = len(ri)-1    
    # Assign the coordinates of the center of cell as its coordinates.
    #
    rc           = 0.5*( ri[0:nx]     + ri[1:nx+1] )
    thetac       = 0.5*( thetai[0:ny] + thetai[1:ny+1] )
    phic         = 0.5*( phii[0:nz]   + phii[1:nz+1] )
    # phic         = 0.5*( phii[0:nz-1]   + phii[1:nz] )

    # Make the dust density model
    # Make the density profile of the envelope
    #
    total_mass = 0
    if tsc == False:
        print 'Calculating the dust density profile with infall solution...'
        if theta_cav != 0:
            # c0 = R_env_max**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav)))
            # using R = 10000 AU as the reference point
            c0 = (10000.*AU)**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav)))
        else:
            c0 = 0
        rho_env  = np.zeros([len(rc),len(thetac),len(phic)])
        rho_disk = np.zeros([len(rc),len(thetac),len(phic)])
        rho      = np.zeros([len(rc),len(thetac),len(phic)])

        if dyn_cav == True:
            print 'WARNING: Calculation of interdependent cavity property has not implemented in infall-only solution!'
        # Normalization for the total disk mass
        def f(w,z,beta,rstar,h100):
            f = 2*PI*w*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/(w**beta*h100/100**beta))**2)
            return f

        rho_0 = M_disk/(nquad(f,[[R_disk_min,R_disk_max],[-R_env_max,R_env_max]], args=(beta,rstar,h100)))[0]
        i = 0
        j = 0
        if 'rho_cav_center' in locals() == False:
            rho_cav_center = 5.27e-18 # 1.6e-17  # 5.27e-18
            print 'Use 5.27e-18 as the default value for cavity center'
        if 'rho_cav_edge' in locals() == False:
            rho_cav_edge = 40*AU
            print 'Use 40 AU as the default value for size of the inner region'
        discont = 1
        for ir in range(0,len(rc)):
            for itheta in range(0,len(thetac)):
                for iphi in range(0,len(phic)):
                    if rc[ir] > R_env_min:
                        # Envelope profile
                        w = abs(rc[ir]*np.cos(np.pi/2 - thetac[itheta]))
                        z = rc[ir]*np.sin(np.pi/2 - thetac[itheta])

                        if ellipsoid == False:
                            z_cav = c0*abs(w)**1.5
                            if z_cav == 0:
                                z_cav = R_env_max
                            cav_con = abs(z) > abs(z_cav)
                        else:
                            # condition for the outer ellipsoid
                            cav_con = (2*(w/b_out)**2 + ((abs(z)-z_out)/a_out)**2) < 1
                        if cav_con:
                            # open cavity
                            if ellipsoid == False:
                                if rho_cav_edge == 0:
                                    rho_cav_edge = R_env_min
                                if (rc[ir] <= rho_cav_edge) & (rc[ir] >= R_env_min):
                                    rho_env[ir,itheta,iphi] = g2d * rho_cav_center#*((rc[ir]/AU)**2)
                                else:
                                    rho_env[ir,itheta,iphi] = g2d * rho_cav_center*discont*(rho_cav_edge/rc[ir])**power
                                i += 1
                            else:
                                # condition for the inner ellipsoid
                                if (2*(w/b_in)**2 + ((abs(z)-z_in)/a_in)**2) > 1:
                                    rho_env[ir,itheta,iphi] = rho_cav_out
                                else:
                                    rho_env[ir,itheta,iphi] = rho_cav_in
                                i +=1
                        else:
                            j += 1
                            mu = abs(np.cos(thetac[itheta]))
                            # Implement new root finding algorithm
                            roots = np.roots(np.array([1.0, 0.0, rc[ir]/R_cen-1.0, -mu*rc[ir]/R_cen]))
                            if len(roots[roots.imag == 0]) == 1:
                                if (abs(roots[roots.imag == 0]) - 1.0) <= 0.0:
                                    mu_o_dum = roots[roots.imag == 0]
                                else:
                                    mu_o_dum = -0.5
                                    print 'Problem with cubic solving, cos(theta) = ', mu_o_dum
                                    print 'parameters are ', np.array([1.0, 0.0, rc[ir]/R_cen-1.0, -mu*rc[ir]/R_cen])
                            else:
                                mu_o_dum = -0.5
                                for imu in range(0, len(roots)):
                                    if roots[imu]*mu >= 0.0:
                                        if (abs((abs(roots[imu]) - 1.0)) <= 1e-5):
                                            mu_o_dum = 1.0 * np.sign(mu)
                                        else:
                                            mu_o_dum = roots[imu]
                                if mu_o_dum == -0.5:
                                    print 'Problem with cubic solving, roots are: ', roots
                            mu_o = mu_o_dum.real
                            rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*R_cen**3)**0.5)*(rc[ir]/R_cen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*R_cen/rc[ir])**(-1)
                        # Disk profile
                        if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
                            h = ((w/(100*AU))**beta)*h100
                            rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2)
                        # Combine envelope and disk
                        rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi]
                    else:
                        rho[ir,itheta,iphi] = 1e-30
                    # add the dust mass into the total count
                    cell_mass = rho[ir, itheta, iphi] * (1/3.)*(ri[ir+1]**3 - ri[ir]**3) * (phii[iphi+1]-phii[iphi]) * -(np.cos(thetai[itheta+1])-np.cos(thetai[itheta]))
                    total_mass = total_mass + cell_mass

        rho_env  = rho_env  + 1e-40
        rho_disk = rho_disk + 1e-40
        rho      = rho      + 1e-40
    # TSC model
    else:
        print 'Calculating the dust density profile with TSC solution...'
        if theta_cav != 0:
            # c0 = R_env_max**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav)))
            c0 = (1e4*AU)**(-0.5)*np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav)))
        else:
            c0 = 0
        # If needed, calculate the TSC model via IDL
        #
        if idl == True:
            print 'Using IDL to calculate the TSC model.  Make sure you are running this on mechine with IDL.'
            import pidly
            # idl = pidly.IDL('/Applications/exelis/idl82/bin/idl')
            idl = pidly.IDL(IDL_path)
            idl('.r '+TSC_dir+'tsc.pro')
            # idl.pro('tsc_run', outdir=outdir, grid=[nxx,ny,nz], time=t, c_s=cs, omega=omega, rstar=rstar, renv_min=R_env_min, renv_max=R_env_max)
            # idl.pro('tsc_run', outdir=outdir, grid=[nxx,ny,nz], time=t, c_s=cs, omega=omega, rstar=rstar, renv_min=R_env_min, renv_max=min([R_inf,max(ri)])) # min([R_inf,max(ri)])
            #
            # only run TSC calculation within infall radius
            # modify the rc array
            rc_idl = rc[(rc < min([R_inf,max(ri)]))]
            idl.pro('tsc_run', outdir=outdir, rc=rc_idl, thetac=thetac, time=t, c_s=cs, omega=omega, renv_min=R_env_min)#, rstar=rstar, renv_min=R_env_min, renv_max=min([R_inf,max(ri)])) # min([R_inf,max(ri)])
        else:
            print 'Read the pre-computed TSC model.'
            rc_idl = rc[(rc < min([R_inf,max(ri)]))]
        # read in the exist file
        rho_env_tsc_idl = np.genfromtxt(outdir+'rhoenv.dat').T
        # because only region within infall radius is calculated by IDL program, need to project it to the original grid
        rho_env_tsc = np.zeros([len(rc), len(thetac)])
        for irc in range(len(rc)):
            if rc[irc] in rc_idl:
                rho_env_tsc[irc,:] = rho_env_tsc_idl[np.where(rc_idl == rc[irc]),:]

        # extrapolate for the NaN values at the outer radius, usually at radius beyond the infall radius
        # using r^-2 profile at radius greater than infall radius
        # and map the 2d strcuture onto 3d grid
        def poly(x, y, x0, deg=2):
            import numpy as np
            p = np.polyfit(x, y, deg)
            y0 = 0
            for i in range(0, len(p)):
                y0 = y0 + p[i]*x0**(len(p)-i-1)
            return y0
        # rho_env_copy = np.array(rho_env_tsc)
        # if max(rc) > R_inf:
        #     ind_infall = np.where(rc <= R_inf)[0][-1]
        #     print ind_infall
        #     for ithetac in range(0, len(thetac)):
        #         # rho_dum = np.log10(rho_env_copy[(rc > R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == False),ithetac])
        #         # rc_dum = np.log10(rc[(rc > R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == False)])
        #         # rc_dum_nan = np.log10(rc[(rc > R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == True)])
        #         # # print rc_dum
        #         # for i in range(0, len(rc_dum_nan)):
        #         #     rho_extrapol = poly(rc_dum, rho_dum, rc_dum_nan[i])
        #         #     rho_env_copy[(np.log10(rc) == rc_dum_nan[i]),ithetac] = 10**rho_extrapol
        #         #
        #         for i in range(ind_infall, len(rc)):
        #             rho_env_copy[i, ithetac] =  10**(np.log10(rho_env_copy[ind_infall, ithetac]) - 2*(np.log10(rc[i]/rc[ind_infall])))
        # rho_env2d = rho_env_copy
        # rho_env = np.empty((nx,ny,nz))
        # for i in range(0, nz):
        #     rho_env[:,:,i] = rho_env2d
        # map TSC solution from IDL to actual 2-D grid
        rho_env_tsc2d = np.empty((nx,ny)) 
        if max(ri) > R_inf:
            ind_infall = np.where(rc <= R_inf)[0][-1]
            for i in range(0, len(rc)):
                if i <= ind_infall:
                    rho_env_tsc2d[i,:] = rho_env_tsc[i,:]
                else:
                    rho_env_tsc2d[i,:] =  10**(np.log10(rho_env_tsc[ind_infall,:]) - 2*(np.log10(rc[i]/rc[ind_infall])))
        else:
            rho_env_tsc2d = rho_env_tsc
        # map it to 3-D grid
        rho_env = np.empty((nx,ny,nz))
        for i in range(0, nz):
            rho_env[:,:,i] = rho_env_tsc2d

        if dyn_cav == True:
            print 'Calculate the cavity properties using the criteria that swept-up mass = outflowed mass'
            # using swept-up mass = flow mass to derive the edge of the extended flat density region
            v_outflow = 1e2 * 1e5
            rho_cav_edge = outflow_inner_edge(np.copy(rho_env), (ri,thetai,phii),M_env_dot,v_outflow,theta_cav, R_env_min)
            dict_params['rho_cav_edge'] = rho_cav_edge
            # assume gas-to-dust ratio = 100
            rho_cav_center = 0.01 * 0.1*M_env_dot*rho_cav_edge/v_outflow/2 / (2*np.pi/3*rho_cav_edge**3*(1-np.cos(np.radians(theta_cav))))
            dict_params['rho_cav_center'] = rho_cav_center
            print 'inner edge is %5f AU and density is %e g/cm3' % (rho_cav_edge/AU, rho_cav_center)

        # create the array of density of disk and the whole structure
        #
        rho_disk = np.zeros([len(rc),len(thetac),len(phic)])
        rho      = np.zeros([len(rc),len(thetac),len(phic)])
        # Calculate the disk scale height by the normalization of h100
        def f(w,z,beta,rstar,h100):
            f = 2*PI*w*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/(w**beta*h100/100**beta))**2)
            return f
        # The function for calculating the normalization of disk using the total disk mass
        #
        rho_0 = M_disk/(nquad(f,[[R_disk_min,R_disk_max],[-R_env_max,R_env_max]], args=(beta,rstar,h100)))[0]
        i = 0
        j = 0
        if 'rho_cav_center' in locals() == False:
            rho_cav_center = 5.27e-18 # 1.6e-17  # 5.27e-18
            print 'Use 5.27e-18 as the default value for cavity center'
        if 'rho_cav_edge' in locals() == False:
            rho_cav_edge = 40*AU
            print 'Use 40 AU as the default value for size of the inner region'
        discont = 1
        for ir in range(0,len(rc)):
            for itheta in range(0,len(thetac)):
                for iphi in range(0,len(phic)):
                    if rc[ir] > R_env_min:
                        # Envelope profile
                        w = abs(rc[ir]*np.cos(np.pi/2 - thetac[itheta]))
                        z = rc[ir]*np.sin(np.pi/2 - thetac[itheta])

                        if ellipsoid == False:
                            z_cav = c0*abs(w)**1.5
                            if z_cav == 0:
                                z_cav = R_env_max
                            cav_con = abs(z) > abs(z_cav)
                        else:
                            # condition for the outer ellipsoid
                            cav_con = (2*(w/b_out)**2 + ((abs(z)-z_out)/a_out)**2) < 1
                        if cav_con:
                            # open cavity
                            if ellipsoid == False:
                                if rho_cav_edge == 0:
                                    rho_cav_edge = R_env_min
                                if (rc[ir] <= rho_cav_edge) & (rc[ir] >= R_env_min):
                                    rho_env[ir,itheta,iphi] = g2d * rho_cav_center#*((rc[ir]/AU)**2)
                                else:
                                    rho_env[ir,itheta,iphi] = g2d * rho_cav_center*discont*(rho_cav_edge/rc[ir])**power
                                i += 1
                            else:
                                # condition for the inner ellipsoid
                                if (2*(w/b_in)**2 + ((abs(z)-z_in)/a_in)**2) > 1:
                                    rho_env[ir,itheta,iphi] = rho_cav_out
                                else:
                                    rho_env[ir,itheta,iphi] = rho_cav_in
                                i +=1

                        # Disk profile
                        if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
                            h = ((w/(100*AU))**beta)*h100 
                            rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2)
                        # Combine envelope and disk
                        rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi]
                    else:
                        rho[ir,itheta,iphi] = 1e-40
                    # add the dust mass into the total count
                    cell_mass = rho[ir, itheta, iphi] * (1/3.)*(ri[ir+1]**3 - ri[ir]**3) * (phii[iphi+1]-phii[iphi]) * -(np.cos(thetai[itheta+1])-np.cos(thetai[itheta]))
                    total_mass = total_mass + cell_mass
        # rho_env  = rho_env  + 1e-40
        # rho_disk = rho_disk + 1e-40
        # rho      = rho      + 1e-40
    # apply gas-to-dust ratio of 100
    rho_dust = rho/g2d
    total_mass_dust = total_mass/MS/g2d
    print 'Total dust mass = %f Solar mass' % total_mass_dust

    if record == True:
        # Record the input and calculated parameters
        params = dict_params.copy()
        params.update({'d_sub': d_sub/AU, 'M_env_dot': M_env_dot/MS*yr, 'R_inf': R_inf/AU, 'R_cen': R_cen/AU, 'mstar': mstar/MS, 'M_tot_gas': total_mass/MS})
        record_hyperion(params,record_dir)

    if plot == True:
        # rc setting
        # mat.rcParams['text.usetex'] = True
        # mat.rcParams['font.family'] = 'serif'
        # mat.rcParams['font.serif'] = 'Times'
        # mat.rcParams['font.sans-serif'] = 'Computer Modern Sans serif'

        # Plot the azimuthal averaged density
        fig = plt.figure(figsize=(8,6))
        ax_env  = fig.add_subplot(111,projection='polar')
        # take the weighted average
        # rho2d is the 2-D projection of gas density
        rho2d = np.sum(rho**2,axis=2)/np.sum(rho,axis=2)

        zmin = 1e-22/mmw/mh
        cmap = plt.cm.CMRmap
        rho2d_exp = np.hstack((rho2d,rho2d,rho2d[:,0:1]))
        thetac_exp = np.hstack((thetac-PI/2, thetac+PI/2, thetac[0]-PI/2))
        # plot the gas density
        img_env = ax_env.pcolormesh(thetac_exp,rc/AU,rho2d_exp/mmw/mh,cmap=cmap,norm=LogNorm(vmin=zmin,vmax=1e9)) # np.nanmax(rho2d_exp/mmw/mh)

        ax_env.set_xlabel(r'$\rm{Polar\,angle\,(Degree)}$',fontsize=20)
        ax_env.set_ylabel(r'$\rm{Radius\,(AU)}$',fontsize=20)
        ax_env.tick_params(labelsize=20)
        ax_env.set_yticks(np.arange(0,R_env_max/AU,R_env_max/AU/5))
        # ax_env.set_ylim([0,10000])
        ax_env.set_xticklabels([r'$\rm{90^{\circ}}$',r'$\rm{45^{\circ}}$',r'$\rm{0^{\circ}}$',r'$\rm{-45^{\circ}}$',\
                                r'$\rm{-90^{\circ}}$',r'$\rm{-135^{\circ}}$',r'$\rm{180^{\circ}}$',r'$\rm{135^{\circ}}$'])
        # fix the tick label font
        ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=20)
        for label in ax_env.get_yticklabels():
            label.set_fontproperties(ticks_font)

        ax_env.grid(True)
        cb = fig.colorbar(img_env, pad=0.1)
        cb.ax.set_ylabel(r'$\rm{Averaged\,Gas\,Density\,(cm^{-3})}$',fontsize=20)
        cb.set_ticks([1e2,1e3,1e4,1e5,1e6,1e7,1e8,1e9])
        cb.set_ticklabels([r'$\rm{10^{2}}$',r'$\rm{10^{3}}$',r'$\rm{10^{4}}$',r'$\rm{10^{5}}$',r'$\rm{10^{6}}$',\
                           r'$\rm{10^{7}}$',r'$\rm{10^{8}}$',r'$\rm{\geq 10^{9}}$'])
        cb_obj = plt.getp(cb.ax.axes, 'yticklabels')
        plt.setp(cb_obj,fontsize=20)
        fig.savefig(outdir+outname+'_gas_density.png', format='png', dpi=300, bbox_inches='tight')
        fig.clf()

        # Plot the radial density profile
        fig = plt.figure(figsize=(12,9))
        ax = fig.add_subplot(111)

        plot_grid = [0,49,99,149,199]
        alpha = np.linspace(0.3,1.0,len(plot_grid))
        for i in plot_grid:
            rho_rad, = ax.plot(np.log10(rc/AU), np.log10(rho2d[:,i]/g2d/mmw/mh),'-',color='b',linewidth=2, markersize=3,alpha=alpha[plot_grid.index(i)])
            tsc_only, = ax.plot(np.log10(rc/AU), np.log10(rho_env_tsc2d[:,i]/mmw/mh),'o',color='r',linewidth=2, markersize=3,alpha=alpha[plot_grid.index(i)])
        rinf = ax.axvline(np.log10(R_inf/AU), linestyle='--', color='k', linewidth=1.5)
        cen_r = ax.axvline(np.log10(R_cen/AU), linestyle=':', color='k', linewidth=1.5)
        # sisslope, = ax.plot(np.log10(rc/AU), -2*np.log10(rc/AU)+A-(-2)*np.log10(plot_r_inf), linestyle='--', color='Orange', linewidth=1.5)
        # gt_R_cen_slope, = ax.plot(np.log10(rc/AU), -1.5*np.log10(rc/AU)+B-(-1.5)*np.log10(plot_r_inf), linestyle='--', color='Orange', linewidth=1.5)
        # lt_R_cen_slope, = ax.plot(np.log10(rc/AU), -0.5*np.log10(rc/AU)+A-(-0.5)*np.log10(plot_r_inf), linestyle='--', color='Orange', linewidth=1.5)

        lg = plt.legend([rho_rad, tsc_only, rinf, cen_r],\
                        [r'$\rm{\rho_{dust}}$',r'$\rm{\rho_{tsc}}$',r'$\rm{infall\,radius}$',r'$\rm{centrifugal\,radius}$'],\
                        fontsize=20, numpoints=1)
        ax.set_xlabel(r'$\rm{log(Radius)\,(AU)}$',fontsize=20)
        ax.set_ylabel(r'$\rm{log(Gas \slash Dust\,Density)\,(cm^{-3})}$',fontsize=20)
        [ax.spines[axis].set_linewidth(1.5) for axis in ['top','bottom','left','right']]
        ax.minorticks_on()
        ax.tick_params('both',labelsize=18,width=1.5,which='major',pad=15,length=5)
        ax.tick_params('both',labelsize=18,width=1.5,which='minor',pad=15,length=2.5)

        # fix the tick label font
        ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=18)
        for label in ax.get_xticklabels():
            label.set_fontproperties(ticks_font)
        for label in ax.get_yticklabels():
            label.set_fontproperties(ticks_font)

        ax.set_ylim([0,15])
        fig.gca().set_xlim(left=np.log10(0.05))
        # ax.set_xlim([np.log10(0.8),np.log10(10000)])

        # subplot shows the radial density profile along the midplane
        ax_mid = plt.axes([0.2,0.2,0.2,0.2], frameon=True)
        ax_mid.plot(np.log10(rc/AU), np.log10(rho2d[:,199]/g2d/mmw/mh),'o',color='b',linewidth=1, markersize=2)
        ax_mid.plot(np.log10(rc/AU), np.log10(rho_env_tsc2d[:,199]/mmw/mh),'-',color='r',linewidth=1, markersize=2)
        # ax_mid.set_ylim([0,10])
        # ax_mid.set_xlim([np.log10(0.8),np.log10(10000)])
        ax_mid.set_ylim([0,15])
        fig.savefig(outdir+outname+'_gas_radial.pdf',format='pdf',dpi=300,bbox_inches='tight')
        fig.clf()

    # Insert the calculated grid and dust density profile into hyperion
    m.set_spherical_polar_grid(ri, thetai, phii)
    # temperary for comparing full TSC and infall-only TSC model
    # import sys
    # sys.path.append(os.path.expanduser('~')+'/programs/misc/')
    # from tsc_comparison import tsc_com
    # rho_tsc, rho_ulrich = tsc_com()
    m.add_density_grid(rho_dust.T, d)
    # m.add_density_grid(rho.T, outdir+'oh5.hdf5')    # numpy read the array in reverse order

    # Define the luminsoity source
    source = m.add_spherical_source()
    source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4)  # [ergs/s]
    source.radius = rstar  # [cm]
    source.temperature = tstar  # [K]
    source.position = (0., 0., 0.)
    print 'L_center =  % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS)

    # # add an infrared source at the center
    # L_IR = 0.04
    # ir_source = m.add_spherical_source()
    # ir_source.luminosity = L_IR*LS
    # ir_source.radius = rstar      # [cm]
    # ir_source.temperature = 500 # [K]  peak at 10 um
    # ir_source.position = (0., 0., 0.)
    # print 'Additional IR source, L_IR = %5.2f L_sun' % L_IR

    # Setting up the wavelength for monochromatic radiative transfer
    lambda0 = 0.1
    lambda1 = 2.0
    lambda2 = 50.0
    lambda3 = 95.0
    lambda4 = 200.0
    lambda5 = 314.0
    lambda6 = 1000.0
    n01     = 10.0
    n12     = 20.0
    n23     = 50.0

    lam01   = lambda0 * (lambda1/lambda0)**(np.arange(n01)/n01)
    lam12   = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12)
    lam23   = lambda2 * (lambda6/lambda2)**(np.arange(n23+1)/n23)

    lam      = np.concatenate([lam01,lam12,lam23])
    nlam    = len(lam)

    # Create camera wavelength points
    n12     = 70.0
    n23     = 70.0
    n34     = 70.0
    n45     = 50.0
    n56     = 50.0
    
    lam12   = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12)
    lam23   = lambda2 * (lambda3/lambda2)**(np.arange(n23)/n23)
    lam34   = lambda3 * (lambda4/lambda3)**(np.arange(n34)/n34)
    lam45   = lambda4 * (lambda5/lambda4)**(np.arange(n45)/n45)
    lam56   = lambda5 * (lambda6/lambda5)**(np.arange(n56+1)/n56)

    lam_cam = np.concatenate([lam12,lam23,lam34,lam45,lam56])
    n_lam_cam = len(lam_cam)

    # Radiative transfer setting

    # number of photons for temp and image
    lam_list = lam.tolist()
    # print lam_list
    m.set_raytracing(True)
    # option of using more photons for imaging
    if better_im == False:
        im_photon = 1e6
    else:
        im_photon = 5e7

    if mono == True:
        # Monechromatic radiative transfer setting
        m.set_monochromatic(True, wavelengths=lam_list)
        m.set_n_photons(initial=1000000, imaging_sources=im_photon, imaging_dust=im_photon,raytracing_sources=1000000, raytracing_dust=1000000)
    else:
        # regular wavelength grid setting
        m.set_n_photons(initial=1000000, imaging=im_photon,raytracing_sources=1000000, raytracing_dust=1000000)    
    # number of iteration to compute dust specific energy (temperature)
    m.set_n_initial_iterations(20)
    # m.set_convergence(True, percentile=95., absolute=1.5, relative=1.02)
    m.set_convergence(True, percentile=dict_params['percentile'], absolute=dict_params['absolute'], relative=dict_params['relative'])
    m.set_mrw(True)   # Gamma = 1 by default
    # m.set_forced_first_scattering(forced_first_scattering=True)

    # Setting up images and SEDs
    # SED setting

    # Infinite aperture
    syn_inf = m.add_peeled_images(image=False)
    # use the index of wavelength array used by the monochromatic radiative transfer
    if mono == False:
        syn_inf.set_wavelength_range(1400, 2.0, 1400.0)
    syn_inf.set_viewing_angles([dict_params['view_angle']], [0.0])
    syn_inf.set_uncertainties(True)
    syn_inf.set_output_bytes(8)

    # aperture
    # 7.2 in 10 um scaled by lambda / 10
    # flatten beyond 20 um
    # default aperture
    if aperture == None:    
        aperture = {'wave': [3.6, 4.5, 5.8, 8.0, 8.5, 9, 9.7, 10, 10.5, 11, 16, 20, 24, 35, 70, 100, 160, 250, 350, 500, 1300],\
                    'aperture': [7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 20.4, 20.4, 20.4, 20.4, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 101]}
    # assign wl_aper and aper from dictionary of aperture
    wl_aper = aperture['wave']
    aper    = aperture['aperture']
    # create the non-repetitive aperture list and index array
    aper_reduced = list(set(aper))
    index_reduced = np.arange(1, len(aper_reduced)+1)

    # name = np.arange(1,len(wl_aper)+1)
    # aper = np.empty_like(wl_aper)
    # for i in range(0, len(wl_aper)):
    #     if wl_aper[i] < 5:
    #         # aper[i] = 1.2 * 7
    #         aper[i] = 1.8 * 4
    #     elif (wl_aper[i] < 14) & (wl_aper[i] >=5):
    #         # aper[i] = 7.2 * wl_aper[i]/10.
    #         aper[i] = 1.8 * 4
    #     elif (wl_aper[i] >= 14) & (wl_aper[i] <40):
    #         # aper[i] = 7.2 * 2
    #         aper[i] = 5.1 * 4
    #     else:
    #         aper[i] = 24.5

    # dict_peel_sed = {}
    # for i in range(0, len(wl_aper)):
    #     aper_dum = aper[i]/2 * (1/3600.*np.pi/180.)*dstar*pc
    #     dict_peel_sed[str(name[i])] = m.add_peeled_images(image=False)
    #     # use the index of wavelength array used by the monochromatic radiative transfer
    #     if mono == False:
    #         # dict_peel_sed[str(name[i])].set_wavelength_range(1300, 2.0, 1300.0)
    #         dict_peel_sed[str(name[i])].set_wavelength_range(1000, 2.0, 1000.0)
    #     dict_peel_sed[str(name[i])].set_viewing_angles([dict_params['view_angle']], [0.0])
    #     # aperture should be given in cm
    #     dict_peel_sed[str(name[i])].set_aperture_range(1, aper_dum, aper_dum)
    #     dict_peel_sed[str(name[i])].set_uncertainties(True)
    #     dict_peel_sed[str(name[i])].set_output_bytes(8)

    dict_peel_sed = {}
    for i in range(0, len(aper_reduced)):
        aper_dum = aper_reduced[i]/2 * (1/3600.*np.pi/180.)*dstar*pc
        dict_peel_sed[str(index_reduced[i])] = m.add_peeled_images(image=False)
        # use the index of wavelength array used by the monochromatic radiative transfer
        if mono == False:
            dict_peel_sed[str(index_reduced[i])].set_wavelength_range(1400, 2.0, 1400.0)
        dict_peel_sed[str(index_reduced[i])].set_viewing_angles([dict_params['view_angle']], [0.0])
        # aperture should be given in cm and its the radius of the aperture
        dict_peel_sed[str(index_reduced[i])].set_aperture_range(1, aper_dum, aper_dum)
        dict_peel_sed[str(index_reduced[i])].set_uncertainties(True)
        dict_peel_sed[str(index_reduced[i])].set_output_bytes(8)

    # image setting
    syn_im = m.add_peeled_images(sed=False)
    # use the index of wavelength array used by the monochromatic radiative transfer
    if mono == False:
        syn_im.set_wavelength_range(1400, 2.0, 1400.0)
    # pixel number
    syn_im.set_image_size(300, 300)
    syn_im.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max)
    syn_im.set_viewing_angles([dict_params['view_angle']], [0.0])
    syn_im.set_uncertainties(True)
    # output as 64-bit
    syn_im.set_output_bytes(8)
    

    # Output setting
    # Density
    m.conf.output.output_density = 'last'

    # Density difference (shows where dust was destroyed)
    m.conf.output.output_density_diff = 'none'

    # Energy absorbed (using pathlengths)
    m.conf.output.output_specific_energy = 'last'

    # Number of unique photons that passed through the cell
    m.conf.output.output_n_photons = 'last'

    m.write(outdir+outname+'.rtin')

    if radmc == True:
        # RADMC-3D still use a pre-defined aperture with lazy for-loop
        aper = np.zeros([len(lam)])
        ind = 0
        for wl in lam:
            if wl < 5:
                aper[ind] = 8.4
            elif wl >= 5 and wl < 14:
                aper[ind] = 1.8 * 4
            elif wl >= 14 and wl < 40:
                aper[ind] = 5.1 * 4
            else:
                aper[ind] = 24.5
            ind += 1

        # Write the wavelength_micron.inp file
        #
        f_wave = open(outdir+'wavelength_micron.inp','w')
        f_wave.write('%d \n' % int(nlam))
        for ilam in range(0,nlam):
            f_wave.write('%f \n' % lam[ilam])
        f_wave.close()

        # Write the camera_wavelength_micron.inp file
        #
        f_wave_cam = open(outdir+'camera_wavelength_micron.inp','w')
        f_wave_cam.write('%d \n' % int(nlam))
        for ilam in range(0,nlam):
            f_wave_cam.write('%f \n' % lam[ilam])
        f_wave_cam.close()

        # Write the aperture_info.inp
        #
        f_aper = open(outdir+'aperture_info.inp','w')
        f_aper.write('1 \n')
        f_aper.write('%d \n' % int(nlam))
        for iaper in range(0, len(aper)):
            f_aper.write('%f \t %f \n' % (lam[iaper],aper[iaper]/2))
        f_aper.close()

        # Write the stars.inp file
        #
        f_star = open(outdir+'stars.inp','w')
        f_star.write('2\n')
        f_star.write('1 \t %d \n' % int(nlam))
        f_star.write('\n')
        f_star.write('%e \t %e \t %e \t %e \t %e \n' % (rstar*0.9999,mstar,0,0,0))
        f_star.write('\n')
        for ilam in range(0,nlam):
            f_star.write('%f \n' % lam[ilam])
        f_star.write('\n')
        f_star.write('%f \n' % -tstar)
        f_star.close()

        # Write the grid file
        #
        f_grid = open(outdir+'amr_grid.inp','w')
        f_grid.write('1\n')                               # iformat
        f_grid.write('0\n')                               # AMR grid style  (0=regular grid, no AMR)
        f_grid.write('150\n')                             # Coordinate system  coordsystem<100: Cartisian; 100<=coordsystem<200: Spherical; 200<=coordsystem<300: Cylindrical
        f_grid.write('0\n')                               # gridinfo
        f_grid.write('1 \t 1 \t 1 \n')                    # Include x,y,z coordinate
        f_grid.write('%d \t %d \t %d \n' % (int(nx)-1,int(ny),int(nz)))    # Size of the grid
        [f_grid.write('%e \n' % ri[ir]) for ir in range(1,len(ri))]
        [f_grid.write('%f \n' % thetai[itheta]) for itheta in range(0,len(thetai))]
        [f_grid.write('%f \n' % phii[iphi]) for iphi in range(0,len(phii))]
        f_grid.close()

        # Write the density file
        #
        f_dust = open(outdir+'dust_density.inp','w')
        f_dust.write('1 \n')                      # format number
        f_dust.write('%d \n' % int((nx-1)*ny*nz)) # Nr of cells
        f_dust.write('1 \n')                      # Nr of dust species
        for iphi in range(0,len(phic)):
            for itheta in range(0,len(thetac)):
                for ir in range(1,len(rc)):
                    f_dust.write('%e \n' % rho_dust[ir,itheta,iphi])
        f_dust.close()


        # Write the dust opacity table
        f_dustkappa = open(outdir+'dustkappa_oh5_extended.inp','w')
        f_dustkappa.write('3 \n')                       # format index for including g-factor
        f_dustkappa.write('%d \n' % len(dust['nu']))    # number of wavlength/frequency in the table
        for i in range(len(dust['nu'])):
            f_dustkappa.write('%f \t %f \t %f \t %f \n' % (c/dust['nu'][i]*1e4, dust['chi'][i], dust['chi'][i]*dust['albedo'][i]/(1-dust['albedo'][i]), dust['g'][i]))
        f_dustkappa.close()

        # Write the Dust opacity control file
        # 
        f_opac = open(outdir+'dustopac.inp','w')
        f_opac.write('2               Format number of this file\n')
        f_opac.write('1               Nr of dust species\n')
        f_opac.write('============================================================================\n')
        f_opac.write('1               Way in which this dust species is read\n')
        f_opac.write('0               0=Thermal grain\n')
        # f_opac.write('klaus           Extension of name of dustkappa_***.inp file\n')
        f_opac.write('oh5_extended    Extension of name of dustkappa_***.inp file\n')
        f_opac.write('----------------------------------------------------------------------------\n')
        f_opac.close()
                

        # In[112]:

        # Write the radmc3d.inp control file
        #
        f_control = open(outdir+'radmc3d.inp','w')
        f_control.write('nphot = %d \n' % 100000)
        f_control.write('scattering_mode_max = 2\n')
        f_control.write('camera_min_drr = 0.1\n')
        f_control.write('camera_min_dangle = 0.1\n')
        f_control.write('camera_spher_cavity_relres = 0.1\n')
        f_control.write('istar_sphere = 1\n')
        f_control.write('modified_random_walk = 1\n')
        f_control.close()

    return m

# from input_reader import input_reader_table
# from pprint import pprint
# filename = '/Users/yaolun/programs/misc/hyperion/test_input.txt'
# params = input_reader_table(filename)
# pprint(params[0])
# indir = '/Users/yaolun/test/'
# outdir = '/Users/yaolun/test/'
# dust_file = '/Users/yaolun/programs/misc/oh5_hyperion.txt'
# # dust_file = '/Users/yaolun/Copy/dust_model/Ormel2011/hyperion/(ic-sil,gra)3opc.txt'
# # fix_params = {'R_min': 0.14}
# fix_params = {}
# setup_model(indir,outdir,'model_test',params[0],dust_file,plot=True,record=False,\
#     idl=False,radmc=False,fix_params=fix_params,ellipsoid=False)
Example #7
0
def setup_model(indir,
                outdir,
                model=False,
                denser_wall=False,
                plot=False,
                low_res=False,
                flat=True,
                scale=1.0):
    import numpy as np
    import astropy.constants as const
    import scipy as sci
    import matplotlib.pyplot as plt
    import matplotlib as mat
    import os
    from matplotlib.colors import LogNorm
    from scipy.optimize import fsolve
    from scipy.integrate import nquad
    from envelope_func import func
    from hyperion.model import Model

    # Constants setup
    c = const.c.cgs.value
    AU = 1.49598e13  # Astronomical Unit       [cm]
    pc = 3.08572e18  # Parsec                  [cm]
    MS = 1.98892e33  # Solar mass              [g]
    LS = 3.8525e33  # Solar luminosity        [erg/s]
    RS = 6.96e10  # Solar radius            [cm]
    G = 6.67259e-8  # Gravitational constant  [cm3/g/s^2]
    yr = 60 * 60 * 24 * 365  # Years in seconds
    PI = np.pi  # PI constant
    sigma = const.sigma_sb.cgs.value  # Stefan-Boltzmann constant

    m = Model()

    # Create dust properties

    # Hyperion needs nu, albedo, chi, g, p_lin_max
    from hyperion.dust import HenyeyGreensteinDust
    # Read in the dust opacity table used by RADMC-3D
    dust_radmc = dict()
    [dust_radmc['wl'], dust_radmc['abs'], dust_radmc['scat'],
     dust_radmc['g']] = np.genfromtxt('dustkappa_oh5_extended.inp',
                                      skip_header=2).T
    # opacity per mass of dust?
    dust_hy = dict()
    dust_hy['nu'] = c / dust_radmc['wl'] * 1e4
    ind = np.argsort(dust_hy['nu'])
    dust_hy['nu'] = dust_hy['nu'][ind]
    dust_hy['albedo'] = (dust_radmc['scat'] /
                         (dust_radmc['abs'] + dust_radmc['scat']))[ind]
    dust_hy['chi'] = (dust_radmc['abs'] + dust_radmc['scat'])[ind]
    dust_hy['g'] = dust_radmc['g'][ind]
    dust_hy['p_lin_max'] = 0 * dust_radmc['wl'][ind]  # assume no polarization

    d = HenyeyGreensteinDust(dust_hy['nu'], dust_hy['albedo'], dust_hy['chi'],
                             dust_hy['g'], dust_hy['p_lin_max'])
    # dust sublimation does not occur
    # d.set_sublimation_temperature(None)
    d.write(outdir + 'oh5.hdf5')
    d.plot(outdir + 'oh5.png')

    # Grids and Density
    # Calculation inherited from the script used for RADMC-3D

    # Parameters setup
    # Import the model parameters from another file
    #
    params = np.genfromtxt(indir + '/params.dat', dtype=None)
    tstar = params[0][1]
    mstar = params[1][1] * MS
    rstar = params[2][1] * RS
    M_env_dot = params[3][1] * MS / yr
    M_disk_dot = params[4][1] * MS / yr
    R_env_max = params[5][1] * AU
    R_env_min = params[6][1] * AU
    theta_cav = params[7][1]
    R_disk_max = params[8][1] * AU
    R_disk_min = params[9][1] * AU
    R_cen = R_disk_max
    M_disk = params[10][1] * MS
    beta = params[11][1]
    h100 = params[12][1] * AU
    rho_cav = params[13][1]
    if denser_wall == True:
        wall = params[14][1] * AU
        rho_wall = params[15][1]
    rho_cav_center = params[16][1]
    rho_cav_edge = params[17][1] * AU

    # Grid Parameters
    nx = 300L
    if low_res == True:
        nx = 100L
    ny = 400L
    nz = 50L
    [nx, ny, nz] = [scale * nx, scale * ny, scale * nz]
    # nx        = 20
    # ny        = 40
    # nz        = 5

    # Model Parameters
    #
    rin = rstar
    rout = R_env_max
    rcen = R_cen

    # Star Parameters
    #
    mstar = mstar
    rstar = rstar * 0.9999
    tstar = tstar
    pstar = [0., 0., 0.]

    # Make the Coordinates
    #
    ri = rin * (rout / rin)**(np.arange(nx + 1).astype(dtype='float') /
                              float(nx))
    ri = np.hstack((0.0, ri))
    thetai = PI * np.arange(ny + 1).astype(dtype='float') / float(ny)
    phii = PI * 2.0 * np.arange(nz + 1).astype(dtype='float') / float(nz)

    # Keep the constant cell size in r-direction
    #
    if flat == True:
        ri_cellsize = ri[1:-1] - ri[0:-2]
        ind = np.where(
            ri_cellsize / AU > 100.0)[0][0]  # The largest cell size is 100 AU
        ri = np.hstack(
            (ri[0:ind],
             ri[ind] + np.arange(np.ceil(
                 (rout - ri[ind]) / 100 / AU)) * 100 * AU))
        nxx = nx
        nx = len(ri) - 1

    # Assign the coordinates of the center of cell as its coordinates.
    #
    rc = 0.5 * (ri[0:nx] + ri[1:nx + 1])
    thetac = 0.5 * (thetai[0:ny] + thetai[1:ny + 1])
    phic = 0.5 * (phii[0:nz] + phii[1:nz + 1])
    # phic         = 0.5*( phii[0:nz-1]   + phii[1:nz] )

    # Make the dust density model
    # Make the density profile of the envelope
    #
    print 'Calculating the dust density profile...'
    if theta_cav != 0:
        c0 = R_env_max**(-0.5) * np.sqrt(1 / np.sin(np.radians(theta_cav))**3 -
                                         1 / np.sin(np.radians(theta_cav)))
    else:
        c0 = 0
    rho_env = np.zeros([len(rc), len(thetac), len(phic)])
    rho_disk = np.zeros([len(rc), len(thetac), len(phic)])
    rho = np.zeros([len(rc), len(thetac), len(phic)])

    def f(w, z, beta, rstar, h100):
        f = 2 * PI * w * (1 - np.sqrt(rstar / w)) * (rstar / w)**(
            beta + 1) * np.exp(-0.5 * (z / (w**beta * h100 / 100**beta))**2)
        return f

    rho_0 = M_disk / (nquad(
        f, [[R_disk_min, R_disk_max], [-R_env_max, R_env_max]],
        args=(beta, rstar, h100)))[0]
    i = 0
    j = 0
    if 'rho_cav_center' in locals() == False:
        rho_cav_center = 5.27e-18  # 1.6e-17  # 5.27e-18
        print 'Use 5.27e-18 as the default value for cavity center'
    if 'rho_cav_edge' in locals() == False:
        rho_cav_edge = 40 * AU
        print 'Use 40 AU as the default value for size of the inner region'
    discont = 1
    if denser_wall == False:
        for ir in range(0, len(rc)):
            for itheta in range(0, len(thetac)):
                for iphi in range(0, len(phic)):
                    if rc[ir] > R_env_min:
                        # Envelope profile
                        w = abs(rc[ir] * np.cos(np.pi / 2 - thetac[itheta]))
                        z = rc[ir] * np.sin(np.pi / 2 - thetac[itheta])
                        z_cav = c0 * abs(w)**1.5
                        if z_cav == 0:
                            z_cav = R_env_max
                        if abs(z) > abs(z_cav):
                            # rho_env[ir,itheta,iphi] = rho_cav
                            # Modification for using density gradient in the cavity
                            if rc[ir] <= rho_cav_edge:
                                rho_env[
                                    ir, itheta,
                                    iphi] = rho_cav_center  #*((rc[ir]/AU)**2)
                            else:
                                rho_env[ir, itheta,
                                        iphi] = rho_cav_center * discont * (
                                            rho_cav_edge / rc[ir])**2
                            i += 1
                        else:
                            j += 1
                            mu = abs(np.cos(thetac[itheta]))
                            mu_o = np.abs(
                                fsolve(func, [0.5, 0.5, 0.5],
                                       args=(rc[ir], rcen, mu))[0])
                            rho_env[ir, itheta, iphi] = M_env_dot / (
                                4 * PI * (G * mstar * rcen**3)**0.5
                            ) * (rc[ir] / rcen)**(-3. / 2) * (1 + mu / mu_o)**(
                                -0.5) * (mu / mu_o +
                                         2 * mu_o**2 * rcen / rc[ir])**(-1)
                        # Disk profile
                        if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
                            h = ((w / (100 * AU))**beta) * h100
                            rho_disk[ir, itheta, iphi] = rho_0 * (1 - np.sqrt(
                                rstar / w)) * (rstar / w)**(beta + 1) * np.exp(
                                    -0.5 * (z / h)**2)
                        # Combine envelope and disk
                        rho[ir, itheta,
                            iphi] = rho_disk[ir, itheta,
                                             iphi] + rho_env[ir, itheta, iphi]

                        # # testing the effect of new solver
                        # # Envelope profile
                        # w = abs(rc[ir]*np.cos(np.pi/2 - thetac[itheta]))
                        # z = rc[ir]*np.sin(np.pi/2 - thetac[itheta])
                        # z_cav = c0*abs(w)**1.5
                        # if z_cav == 0:
                        #     z_cav = R_env_max
                        # if abs(z) > abs(z_cav):
                        #     # rho_env[ir,itheta,iphi] = rho_cav
                        #     # Modification for using density gradient in the cavity
                        #     if rc[ir] <= rho_cav_edge:
                        #         rho_env[ir,itheta,iphi] = rho_cav_center#*((rc[ir]/AU)**2)
                        #     else:
                        #         rho_env[ir,itheta,iphi] = rho_cav_center*discont*(rho_cav_edge/rc[ir])**2
                        #     i += 1
                        # else:
                        #     j += 1
                        #     mu = abs(np.cos(thetac[itheta]))
                        #     # Implement new root finding algorithm
                        #     roots = np.roots(np.array([1.0, 0.0, rc[ir]/rcen-1.0, -mu*rc[ir]/rcen]))
                        #     if len(roots[roots.imag == 0]) == 1:
                        #         if (abs(roots[roots.imag == 0]) - 1.0) <= 0.0:
                        #             mu_o_dum = roots[roots.imag == 0]
                        #         else:
                        #             mu_o_dum = -0.5
                        #             print 'Problem with cubic solving, cos(theta) = ', mu_o_dum
                        #             print 'parameters are ', np.array([1.0, 0.0, rc[ir]/rcen-1.0, -mu*rc[ir]/rcen])
                        #     else:
                        #         mu_o_dum = -0.5
                        #         for imu in range(0, len(roots)):
                        #             if roots[imu]*mu >= 0.0:
                        #                 if (abs((abs(roots[imu]) - 1.0)) <= 1e-5):
                        #                     mu_o_dum = 1.0 * np.sign(mu)
                        #                 else:
                        #                     mu_o_dum = roots[imu]
                        #         if mu_o_dum == -0.5:
                        #             print 'Problem with cubic solving, roots are: ', roots
                        #     mu_o = mu_o_dum.real
                        #     rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*rcen**3)**0.5)*(rc[ir]/rcen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*rcen/rc[ir])**(-1)
                        # # Disk profile
                        # if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
                        #     h = ((w/(100*AU))**beta)*h100
                        #     rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2)
                        # # Combine envelope and disk
                        # rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi]
                    else:
                        rho[ir, itheta, iphi] = 1e-30
        rho_env = rho_env + 1e-40
        rho_disk = rho_disk + 1e-40
        rho = rho + 1e-40
    else:
        for ir in range(0, len(rc)):
            for itheta in range(0, len(thetac)):
                for iphi in range(0, len(phic)):
                    # Envelope profile
                    w = abs(rc[ir] * np.cos(thetac[itheta]))
                    z = rc[ir] * np.sin(thetac[itheta])
                    z_cav = c * abs(w)**1.5
                    z_cav_wall = c * abs(w - wall)**1.5
                    if z_cav == 0:
                        z_cav = R_env_max
                    if abs(z) > abs(z_cav):
                        # rho_env[ir,itheta,iphi] = rho_cav
                        # Modification for using density gradient in the cavity
                        if rc[ir] <= 20 * AU:
                            rho_env[ir, itheta,
                                    iphi] = rho_cav_center * ((rc[ir] / AU)**2)
                        else:
                            rho_env[ir, itheta,
                                    iphi] = rho_cav_center * discont * (
                                        20 * AU / rc[ir])**2
                        i += 1
                    elif (abs(z) > abs(z_cav_wall)) and (abs(z) < abs(z_cav)):
                        rho_env[ir, itheta, iphi] = rho_wall
                    else:
                        j += 1
                        mu = abs(np.cos(thetac[itheta]))
                        mu_o = np.abs(
                            fsolve(func, [0.5, 0.5, 0.5],
                                   args=(rc[ir], rcen, mu))[0])
                        rho_env[ir, itheta, iphi] = M_env_dot / (
                            4 * PI * (G * mstar * rcen**3)**0.5) * (
                                rc[ir] / rcen)**(-3. / 2) * (1 + mu / mu_o)**(
                                    -0.5) * (mu / mu_o +
                                             2 * mu_o**2 * rcen / rc[ir])**(-1)
                    # Disk profile
                    if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
                        h = ((w / (100 * AU))**beta) * h100
                        rho_disk[ir, itheta,
                                 iphi] = rho_0 * (1 - np.sqrt(rstar / w)) * (
                                     rstar / w)**(beta + 1) * np.exp(
                                         -0.5 * (z / h)**2)
                    # Combine envelope and disk
                    rho[ir, itheta,
                        iphi] = rho_disk[ir, itheta,
                                         iphi] + rho_env[ir, itheta, iphi]
        rho_env = rho_env + 1e-40
        rho_disk = rho_disk + 1e-40
        rho = rho + 1e-40

    # Insert the calculated grid and dust density profile into hyperion
    m.set_spherical_polar_grid(ri, thetai, phii)
    m.add_density_grid(rho.T, outdir +
                       'oh5.hdf5')  # numpy read the array in reverse order

    # Define the luminsoity source
    source = m.add_spherical_source()
    source.luminosity = (4 * PI * rstar**2) * sigma * (tstar**4)  # [ergs/s]
    source.radius = rstar  # [cm]
    source.temperature = tstar  # [K]
    source.position = (0., 0., 0.)
    print 'L_center =  % 5.2f L_sun' % ((4 * PI * rstar**2) * sigma *
                                        (tstar**4) / LS)

    # Setting up images and SEDs
    image = m.add_peeled_images()
    image.set_wavelength_range(300, 2.0, 670.0)
    # pixel number
    image.set_image_size(300, 300)
    image.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max)
    image.set_viewing_angles([82.0], [0.0])
    image.set_uncertainties(True)
    # output as 64-bit
    image.set_output_bytes(8)

    # Radiative transfer setting

    # number of photons for temp and image
    m.set_raytracing(True)
    m.set_n_photons(initial=1000000,
                    imaging=1000000,
                    raytracing_sources=1000000,
                    raytracing_dust=1000000)
    # number of iteration to compute dust specific energy (temperature)
    m.set_n_initial_iterations(5)
    m.set_convergence(True, percentile=99., absolute=1.5, relative=1.02)
    m.set_mrw(True)  # Gamma = 1 by default

    # Output setting
    # Density
    m.conf.output.output_density = 'last'

    # Density difference (shows where dust was destroyed)
    m.conf.output.output_density_diff = 'none'

    # Energy absorbed (using pathlengths)
    m.conf.output.output_specific_energy = 'last'

    # Number of unique photons that passed through the cell
    m.conf.output.output_n_photons = 'last'

    m.write(outdir + 'old_setup2.rtin')
Example #8
0
    # Read in the dust opacity table used by RADMC-3D
    dust_radmc = dict()
    [dust_radmc['wl'],dust_radmc['abs'],dust_radmc['scat'],dust_radmc['g']] =
                    np.genfromtxt('dustkappa_oh5_extended.inp',skip_header=2).T
    # opacity per mass of dust?
    dust_hy = dict()
    dust_hy['nu'] = c/dust_radmc['wl']*1e4
    ind = np.argsort(dust_hy['nu'])
    dust_hy['nu'] = dust_hy['nu'][ind]
    dust_hy['albedo'] =
                (dust_radmc['scat']/(dust_radmc['abs']+dust_radmc['scat']))[ind]
    dust_hy['chi'] = (dust_radmc['abs']+dust_radmc['scat'])[ind]
    dust_hy['g'] = dust_radmc['g'][ind]
    dust_hy['p_lin_max'] = 0*dust_radmc['wl'][ind]     # assume no polarization

    d = HenyeyGreensteinDust(dust_hy['nu'], dust_hy['albedo'], dust_hy['chi'],
                             dust_hy['g'], dust_hy['p_lin_max'])
    # use 'slow' method to do dust sublimation
    d.set_sublimation_temperature('slow', temperature=1600.0)
    d.write(outdir+'oh5.hdf5')
    d.plot(outdir+'oh5.png')

    # Grids and Density
    # Calculation inherited from the script used for RADMC-3D

    # Grid Parameters
    nx        = 300L
    if low_res == True:
        nx    = 100L
    ny        = 400L
    nz        = 50L
    [nx, ny, nz] = [int(scale*nx), int(scale*ny), int(scale*nz)]