import pickle
from hyperion.util.constants import pc


target_list = ['IRAS20050.1','IRAS20050.2','IRAS20050.3','IRAS20050.4','IRAS20050.5']
dist = 700*pc


folder = ['Grid/']
name = ['model']

angles=np.arccos(np.linspace(0,1.,20))*180./np.pi
inclinations=angles[::-1]

d = SphericalDust()
d.read('d03_5.5_3.0_A.hdf5')
chi = d.optical_properties.chi
chi = chi[::-1]
wav = d.optical_properties.wav
wav = wav[::-1]
Chi = interp1d(wav,chi,kind='linear')

sorted_grid = pickle.load(open(folder[0]+name[0]+"_"+target+".grid.dat",'r'))
best_model_fname = folder[0]+sorted_grid['name'][0]+'.rtout'
best_model = ModelOutput(fname)
inc = int(np.argwhere(inclinations==sorted_grid['inc'][0]))
sed = best_model.get_sed(aperture=-1, inclination=inc, distance=dist,units='Jy')
N = len(sed.wav)
vec = np.zeros(N,len(target_list)+1)
vec[:,0] = sed.wav
Example #2
0
wlHerschel = [70,160,250,350]
uHerschel = ["e_"+col for col in Herschel]
labelSpitzer = 'Herschel'
sources = sourcetable.group_by('SOFIA_name')

# set up extinction
extinctions = range(30)
#d = SphericalDust()
#d.read('d03_5.5_3.0_A.hdf5')
#chi = d.optical_properties.chi
#chi = chi[::-1]
#wav = d.optical_properties.wav
#wav = wav[::-1]
#Chi = interp1d(wav,chi,kind='linear')
d = SphericalDust()
d.read('OH5.hdf5')
chi = d.optical_properties.chi#/100. # divide by 100 for the gas-to-dust ratio
chi = chi[::-1]# divide by 100 for the gas-to-dust ratio
wav = d.optical_properties.wav
wav = wav[::-1]
Chi = interp1d(wav,chi,kind='linear')

#inclinations = [0.,10.,20.,30.,40.,50.,60.,70.,80.,90.]
angles=np.arccos(np.linspace(0,1.,20))*180./np.pi
inclinations=angles[::-1]

# set the wavelengths
names = TwoMASS+Spitzer+SOFIA+Herschel
wl=wlTwoMASS+wlSpitzer+wlSOFIA+wlHerschel
wl_table = Table(names = names,dtype=['f8' for col in wl])
wl_table.add_row(wl)
Example #3
0
class YSOModelSim(object):
	
	def __init__(self,name,folder,T=9000,M_sun=5.6,L_sun=250,disk_mass=0.01,disk_rmax=100, 
		env=True,env_type='power',rc=400,mdot=1e-8,env_mass=0.1,env_rmin=30,env_rmax=5000,cav=True,cav_r0=500,cav_rho_0=8e-24,cav_theta=25,env_power=-1.5,
		Npix=149,angles=[20.,45.,60.,80],angles2=[60.,60.,60.,60.], amb_dens=8e-24, disk="Flared",disk_rmin=1., amb_rmin=1., amb_rmax=1000., innerdustfile='OH5.hdf5',
		outerdustfile='d03_5.5_3.0_A.hdf5',beta=1.1):
		self.name=name
		self.folder=folder
		self.T=T
		self.M_sun=M_sun*msun
		self.L_sun=L_sun*lsun
		self.disk_mass=disk_mass*msun
		self.disk_rmax=disk_rmax*au
		self.disk_rmin=disk_rmin*au
		self.disk_h_0 = OptThinRadius(1600)
		self.env=env
		self.disk=disk
		self.env_type=env_type
		self.env_mass=env_mass*msun
		self.env_rmin=env_rmin*au
		self.env_rmax=env_rmax*au
		self.mdot=mdot #*msun/yr*self.M_sun # disk accretion rate
		self.rc=rc*au
		self.cav=cav
		self.cav_rho_0=cav_rho_0
		self.cav_r0=cav_r0*au
		self.cav_theta=cav_theta
		self.Npix=Npix
		self.angles=angles
		self.angles2=angles2
		self.amb_dens=amb_dens
		self.amb_rmin=amb_rmin
		self.amb_rmax=amb_rmax*au
		self.env_power=env_power
		self.dustfile=innerdustfile
		self.dustfile_out=outerdustfile
		self.limval = max(self.env_rmax,1000*au)
		self.beta = beta

	def modelDump(self):
		sp.call('rm %s.mod ' % (self.folder+self.name),shell=True)
		pickle.dump(self,open(self.folder+self.name+'.mod','wb'))
		time.sleep(2)

	def modelPrint(self):
		#string= self.folder+ self.name+'\n'
		string="T="+str(self.T)+"K"+'\n'
		string+= "M="+str(self.M_sun/msun)+'Msun'+'\n'
		string+= "L="+str(self.L_sun/lsun)+'Lsun'+'\n'
		string+= "Disk="+str(self.disk)+'\n'
		string+= "Disk_mass="+str(self.disk_mass/msun)+'Msun'+'\n'
		string+= "Disk_rmax="+str(self.disk_rmax/au)+'AU'+'\n'
		string+= "Disk_rmin="+str(self.disk_rmin/au)+'AU'+'\n'
		string+= "env="+str(self.env)+'\n'
		string+= "env_type="+self.env_type+'\n'
		string+= "env_mass="+str(self.env_mass/msun)+'Msun'+'\n'
		string+= "env_rmax="+str(self.env_rmax/au)+'AU'+'\n'
		string+= "env_rmin="+str(self.env_rmin/au)+'AU'+'\n'
		if self.env_type == 'ulrich' and self.env==True:
			string+= "mass_ulrich="+str((8.*np.pi*self.env_rho_0*self.rc**3*pow(self.env_rmax/self.rc,1.5)/(3.*np.sqrt(2)))/msun)+'Msun'+'\n'
		string+= "mdot="+str(self.mdot)+'Msun/yr'+'\n' # (only if env_type="Ulrich")
		string+= "rc="+str(self.rc/au)+'AU'+'\n' # (only if env_type="Ulrich")
		string+= "cav="+str(self.cav)+'\n'
		string+= "cav_theta="+str(self.cav_theta)+'\n'
		string+= "cav_r0="+str(self.cav_r0/au)+'\n'
		string+= "env_power="+str(self.env_power)+'\n'
		string+= "disk_h_0="+str(self.disk_h_0)+'\n'
		string+= "dustfile="+self.dustfile+'\n'
		string+= "dustfile_out="+self.dustfile_out+'\n'
		string+= "amb_dens="+str(self.amb_dens)+'\n'
		string+= "amb_rmin="+str(self.amb_rmin)+'\n'
		string+= "amb_rmax="+str(self.amb_rmax/au)+'\n'
		string+= "angles="+str(self.angles)+'\n'
		print string
		return string

	def dust_gen(self,dustfile,dustfile_out='d03_5.5_3.0_A.hdf5'):
		### first, we need to load Tracy's dust files and manipulate them to feed to Hyperion
		### wavelength (microns),Cext,Csca,Kappa,g,pmax,theta (ignored)
		### albedo = Csca/Cext
		### opacity kappa is in cm^2/gm, dust_gas extinction opactity (absorption+scattering) - assumes gas-to=dust raio of 100
		### see Whitney et al. 2003a
		
#		tracy_dust = np.loadtxt('Tracy_models/OH5.par')

#		### format for dust: d = HenyeyGreensteinDust(nu, albedo, chi, g, p_lin_max)
#		nu = const.c.value/ (tracy_dust[:,0]*1e-6)
#		albedo = tracy_dust[:,2]/tracy_dust[:,1]
#		chi = tracy_dust[:,3]
#		g = tracy_dust[:,4]
#		p_lin_max = tracy_dust[:,5]

#		### flip the table to have an increasing frequency
#		nu = nu[::-1]
#		albedo = albedo[::-1]
#		chi=chi[::-1]
#		g=g[::-1]
#		p_lin_max=p_lin_max[::-1]

#		### create the dust model
#		d = HenyeyGreensteinDust(nu, albedo, chi, g, p_lin_max)
#		d.optical_properties.extrapolate_wav(0.001,1.e7)
#		d.plot('OH5.png')
#		d.write('OH5.hdf5')
		
		self.d = SphericalDust()
		self.d.read(dustfile)
		self.d.plot(str(dustfile.split(',')[:-1])+'.png')
		self.d_out = SphericalDust()
		self.d_out.read(dustfile_out)
		#self.d_out.read(dustfile)
		self.d_out.plot(str(dustfile_out.split(',')[:-1])+'.png')

	def initModel(self):
		### Use Tracy parameter file to set up the model 
		self.dust_gen(self.dustfile,self.dustfile_out)
		mi = AnalyticalYSOModel()

		mi.star.temperature = self.T
		mi.star.mass = self.M_sun
		mi.star.luminosity = self.L_sun
		mi.star.radius=np.sqrt(mi.star.luminosity/(4.0*np.pi*sigma*mi.star.temperature**4))
		#m.star.luminosity = 4.0*np.pi*m.star.radius**2*sigma*m.star.temperature**4
		print mi.star.luminosity/lsun
		self.luminosity=mi.star.luminosity/lsun

		if self.disk=="Flared":
			print "Adding flared disk"
			disk = mi.add_flared_disk()
			disk.dust=self.d
			if self.dustfile == 'd03_5.5_3.0_A.hdf5':
				disk.mass=self.disk_mass/100.
			else: disk.mass=self.disk_mass
			disk.rmin=OptThinRadius(1600) #self.disk_rmin
			print "disk.rmin = ",disk.rmin,disk.rmin/au
			disk.rmax=self.disk_rmax
			disk.r_0 = self.disk_rmin
			disk.h_0 = disk.r_0/10. #self.disk_h_0*au
			disk.beta=self.beta
			disk.p = -1.
		elif self.disk=="Alpha":
			print "Adding alpha disk"
			disk = mi.add_alpha_disk()
			disk.dust=self.d
			if self.dustfile == 'd03_5.5_3.0_A.hdf5':
				disk.mass=self.disk_mass/100.
			else: disk.mass=self.disk_mass
			disk.rmin=OptThinRadius(1600)
			disk.rmax=self.disk_rmax
			disk.r_0 = self.disk_rmin
			disk.h_0 = disk.r_0/10. #self.disk_h_0*au
			disk.beta=1.1
			disk.p = -1
			disk.mdot=self.mdot
			disk.star = mi.star
			
		#print 'Disk density:',disk.rho_0

		
		if self.env==True and self.env_type=='power':
			envelope=mi.add_power_law_envelope()
			envelope.dust=self.d_out
			envelope.r_0=self.env_rmin
			#envelope.r_0 = OptThinRadius(1600)
			if self.dustfile_out == 'd03_5.5_3.0_A.hdf5':
				envelope.mass=self.env_mass/100.
			else: envelope.mass=self.env_mass
			envelope.rmin=self.env_rmin
			envelope.rmax=self.env_rmax
			envelope.power=self.env_power
			#print 'Envelope rho:',envelope.rho_0
		elif self.env==True and self.env_type=='ulrich':
			envelope=mi.add_ulrich_envelope()
			envelope.dust=self.d_out
			envelope.mdot=1e-6*msun/yr # has little impact on the fluxes, so fixed
			envelope.rc=self.rc
			envelope.rmin=self.env_rmin
			envelope.rmax=self.env_rmax
		if self.env==True:
			self.env_rho_0 = envelope.rho_0
			print 'Envelope rho:',envelope.rho_0

		#print "Rho_0 = ",envelope.rho_0
		if self.cav==True:
			cavity=envelope.add_bipolar_cavity()
			cavity.dust=self.d_out
			cavity.power=1.5
			cavity.cap_to_envelope_density=True ### prevents the cavity density to go above the envelope's density
			cavity.r_0=self.cav_r0
			cavity.theta_0=self.cav_theta
			cavity.rho_0=self.cav_rho_0 #in g/cm^3
			cavity.rho_exp=0.0
			
		
#		if self.env==True:
#			ambient=mi.add_ambient_medium(subtract=[envelope,disk])
#		if self.dustfile_out == 'd03_5.5_3.0_A.hdf5':
#			ambient.rho=self.amb_dens/100.
#		else: ambient.rho=self.amb_dens
#		ambient.rmin=OptThinRadius(1600.)
#		ambient.rmax=self.env_rmax
#		ambient.dust=self.d_out
		

		'''*** Grid parameters ***'''
		mi.set_spherical_polar_grid_auto(199,49,1)

		# Specify that the specific energy and density are needed
		mi.conf.output.output_specific_energy = 'last'
		mi.conf.output.output_density = 'last'


		'''**** Output Data ****'''
		image = mi.add_peeled_images(sed=True,image=False)
		image.set_wavelength_range(150,1,3000)
		#image.set_image_size(self.Npix,self.Npix)
		#image.set_image_limits(-self.limval,self.limval,-self.limval,self.limval)
		image.set_aperture_range(1,100000.*au,100000.*au)
		image.set_viewing_angles(self.angles,self.angles2)
		#image.set_track_origin('detailed')
		image.set_uncertainties(True)

		''' Use the modified random walk
		*** Advanced ***'
		YES = DIFFUSION  = Whether to use the diffusion
		'''
		if self.env==True:
			#mi.set_pda(True)
			mi.set_mrw(True)
		else:
			mi.set_pda(False)
			mi.set_mrw(False)

		# Use raytracing to improve s/n of thermal/source emission
		mi.set_raytracing(True)


		'''**** Preliminaries ****'''
		mi.set_n_initial_iterations(5)
		mi.set_n_photons(initial=1e6,imaging=1e6,raytracing_sources=1e5,raytracing_dust=1e6)
		mi.set_convergence(True, percentile=99.0, absolute=2.0, relative=1.1)
		self.m = mi

	def runModel(self):
		self.initModel()
		self.m.write(self.folder+self.name+'.rtin')
		self.m.run(self.folder+self.name+'.rtout', mpi=True,n_processes=6)

	def plotData(self,ax,sourcename):
		if sourcename != 'None':
			folder_export="/n/a2/mrizzo/Dropbox/SOFIA/Processed_Data/"
			sourcetable = pickle.load(open(folder_export+"totsourcetable_fits.data","r"))

			markers = ['v','p','D','^','h','o','*','x','d','<']
			TwoMASS = ['j','h','ks']
			uTwoMASS = ["e_"+col for col in TwoMASS]
			wlTwoMASS = [1.3,1.6,2.2]
			colTwoMASS = colors[0]
			markerTwoMASS = markers[0]
			labelTwoMASS = '2MASS'
			Spitzer = ['i1','i2','i3','i4','m1','m2']
			uSpitzer = ["e_"+col for col in Spitzer]
			wlSpitzer = [3.6,4.5,5.8,8.,24,70]
			colSpitzer = colors[1]
			markerSpitzer = markers[1]
			labelSpitzer = 'Spitzer'
			WISE = ['w1','w2','w3','w4']
			uWISE = ["e_"+col for col in WISE]
			wlWISE = [3.4,4.6,12,22]
			colWISE = colors[2]
			labelWISE = 'WISE'
			markerWISE = markers[2]
			SOFIA = ['F11','F19','F31','F37']
			uSOFIA = ["e_"+col for col in SOFIA]
			wlSOFIA = [11.1,19.7,31.5,37.1]
			colSOFIA = colors[3]
			markerSOFIA = markers[3]
			labelSOFIA = 'SOFIA'
			IRAS = ['Fnu_12','Fnu_25','Fnu_60','Fnu_100']
			uIRAS = ["e_"+col for col in IRAS]
			wlIRAS = [12,25,60,100]
			colIRAS = colors[4]
			markerIRAS = markers[4]
			labelIRAS = 'IRAS'
			AKARI = ['S65','S90','S140','S160']
			uAKARI = ["e_"+col for col in AKARI]
			wlAKARI = [65,90,140,160]
			colAKARI = colors[5]
			markerAKARI = markers[5]
			labelAKARI = 'AKARI'
			ENOCH = ['Fp']
			uENOCH = ["e_"+col for col in ENOCH]
			wlENOCH = [1300]
			colENOCH = colors[6]
			markerENOCH = markers[6]
			labelENOCH = 'ENOCH'
			HERSCHEL = ['H70','H160','H250','H350','H500']
			uHERSCHEL = ["e_"+col for col in HERSCHEL]
			wlHERSCHEL = [70,160,250,350,500]
			colHERSCHEL = colors[7]
			markerHERSCHEL = markers[7]
			labelHERSCHEL = 'HERSCHEL'
			SCUBA = ['S450','S850','S1300']
			uSCUBA = ["e_"+col for col in SCUBA]
			wlSCUBA = [450,850,1300]
			colSCUBA = colors[8]
			markerSCUBA = markers[8]
			labelSCUBA = 'SCUBA'
			alpha=1
			sources = sourcetable.group_by('SOFIA_name')
			for key,sourcetable in zip(sources.groups.keys,sources.groups):
				if sourcename == sourcetable['SOFIA_name'][0]:	
					#print sourcetable['SOFIA_name'][0]
					p.plotData(ax,sourcetable,markerTwoMASS,TwoMASS,uTwoMASS,wlTwoMASS,colTwoMASS,labelTwoMASS,alpha)
					p.plotData(ax,sourcetable,markerSpitzer,Spitzer,uSpitzer,wlSpitzer,colSpitzer,labelSpitzer,alpha)
					p.plotData(ax,sourcetable,markerWISE,WISE,uWISE,wlWISE,colWISE,labelWISE,alpha)
					p.plotData(ax,sourcetable,markerSOFIA,SOFIA,uSOFIA,wlSOFIA,colSOFIA,labelSOFIA,alpha)
					p.plotData(ax,sourcetable,markerIRAS,IRAS,uIRAS,wlIRAS,colIRAS,labelIRAS,alpha)
					p.plotData(ax,sourcetable,markerAKARI,AKARI,uAKARI,wlAKARI,colAKARI,labelAKARI,alpha)
					p.plotData(ax,sourcetable,markerENOCH,ENOCH,uENOCH,wlENOCH,colENOCH,labelENOCH,alpha)
					p.plotData(ax,sourcetable,markerHERSCHEL,HERSCHEL,uHERSCHEL,wlHERSCHEL,colHERSCHEL,labelHERSCHEL,alpha)
					p.plotData(ax,sourcetable,markerSCUBA,SCUBA,uSCUBA,wlSCUBA,colSCUBA,labelSCUBA,alpha)

	def calcChi2(self,dist_pc=140,extinction=0, sourcename='Oph.1'):
		self.dist=dist_pc*pc
		self.extinction=extinction
		chi = np.loadtxt('kmh94_3.1_full.chi')
		wav = np.loadtxt('kmh94_3.1_full.wav')
		Chi = interp1d(wav,chi,kind='linear')
		modelname = self.folder+self.name
		self.mo = ModelOutput(modelname+'.rtout')
		
		# get the sed of all inclination
		sed = self.mo.get_sed(aperture=-1, inclination='all', distance=self.dist,units='Jy')
				
		# calculate the optical depth at all wavelengths
		tau = self.extinction*Chi(sed.wav)/Chi(0.550)/1.086
		
		# calculate extinction values
		ext = np.array([np.exp(-tau) for i in range(sed.val.shape[0])])
		
		# apply extinction to model
		extinct_values = np.log10(sed.val.transpose()*ext.T)
		
		# data points and errors
		folder_export="/n/a2/mrizzo/Dropbox/SOFIA/Processed_Data/"
		sourcetable = pickle.load(open(folder_export+"totsourcetable_fits.data","r"))
		TwoMASS = ['j','h','ks']
		uTwoMASS = ["e_"+col for col in TwoMASS]
		wlTwoMASS = [1.3,1.6,2.2]
		labelTwoMASS = '2MASS'
		Spitzer = ['i1','i2','i3','i4']
		uSpitzer = ["e_"+col for col in Spitzer]
		wlSpitzer = [3.6,4.5,5.8,8.]
		labelSpitzer = 'Spitzer'
		SOFIA = ['F11','F19','F31','F37']
		uSOFIA = ["e_"+col for col in SOFIA]
		wlSOFIA = [11.1,19.7,31.5,37.1]
		labelSOFIA = 'SOFIA'
		sources = sourcetable.group_by('SOFIA_name')
		for key,source in zip(sources.groups.keys,sources.groups):
			if sourcename == source['SOFIA_name'][0]:	
				datapoints = source[TwoMASS+Spitzer+SOFIA]
				dataerrors = source[uTwoMASS+uSpitzer+uSOFIA]
				print p.nptable(datapoints),p.nptable(dataerrors)
				
				# calculate log10 of quantities required for chi squared
				logFnu = np.log10(p.nptable(datapoints))-0.5*(1./np.log(10.))*p.nptable(dataerrors)**2/p.nptable(datapoints)**2
				varlogFnu = (1./np.log(10)/p.nptable(datapoints))**2*p.nptable(dataerrors)**2
				print extinct_values,extinct_values.shape
				
				# for each inclination, calculate chi squared; need to interpolate to get model at required wavelengths
				Ninc = extinct_values.shape[1]
				chi2 = np.zeros(Ninc)
				wl=wlTwoMASS+wlSpitzer+wlSOFIA
				N = len(wl)
				for j in range(Ninc):
					interp_func = interp1d(sed.wav,extinct_values[:,j],kind='linear')
					interp_vals = interp_func(wl)
					chi2[j] = 1./N * np.sum((logFnu - interp_vals)**2/varlogFnu)
					
				print chi2

	def plotModel(self,dist_pc=140,inc=3,extinction=0,show=False,sourcename='Oph.1'):
		self.dist=dist_pc*pc
		self.inc=inc
		self.extinction=extinction
		modelname = self.folder+self.name
		self.mo = ModelOutput(modelname+'.rtout')

		#tracy_dust = np.loadtxt('Tracy_models/OH5.par')
		chi = np.loadtxt('kmh94_3.1_full.chi')
		wav = np.loadtxt('kmh94_3.1_full.wav')
		Chi = interp1d(wav,chi,kind='linear')



		fig = plt.figure(figsize=(20,14))
		ax=fig.add_subplot(2,3,1)
		sed = self.mo.get_sed(aperture=-1, inclination='all', distance=self.dist)
		#print tracy_dust[11,1],Cext(sed.wav[-1]),Cext(sed.wav[-1])/tracy_dust[11,1]
		tau = self.extinction*Chi(sed.wav)/Chi(0.550)/1.086
		#print Cext(sed.wav)/tracy_dust[11,1]
		ext = np.array([np.exp(-tau) for i in range(sed.val.shape[0])])
		#print tau,np.exp(-tau)
		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='black')
		ax.set_title(modelname+'_seds, Av='+str(self.extinction))
		ax.set_xlim(sed.wav.min(), 1300)
		ax.set_ylim(1e-13, 1e-7)
		ax.set_xlabel(r'$\lambda$ [$\mu$m]')
		ax.set_ylabel(r'$\lambda F_\lambda$ [ergs/cm$^2/s$]')
		self.plotData(ax,sourcename)
		ax.set_xscale('log')
		ax.set_yscale('log')

		#ax.set_ylabel(r'$F_{Jy}$ [Jy]')
		#plt.legend(loc=4)

		ax=fig.add_subplot(2,3,2)
		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist)
		ext=np.exp(-tau)
		ax.loglog(sed.wav, sed.val.transpose()*ext.T, lw=3,color='black',label='source_total')
		ax.set_xlim(sed.wav.min(), 1300)
		ax.set_ylim(1e-13, 1e-7)  ### for lamFlam
		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist,component='source_emit')
		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='blue',label='source_emit')
		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist,component='source_scat')
		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='teal',label='source_scat')
		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist,component='dust_emit')
		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='red',label='dust_emit')
		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist,component='dust_scat')
		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='orange',label='dust_scat')
		self.plotData(ax,sourcename)
		ax.set_xscale('log')
		ax.set_yscale('log')
		ax.set_title('seds_inc=inc')
		ax.set_xlabel(r'$\lambda$ [$\mu$m]')
		ax.set_ylabel(r'$\lambda F_\lambda$ [ergs/cm$^2/s$]')
		#ax.set_ylabel(r'$F_{Jy}$ [Jy]')
		leg = ax.legend(loc=4,fontsize='small')
		#leg = plt.gca().get_legend()
		#plt.setp(leg.get_text(),fontsize='small')
		# Extract the quantities
		g = self.mo.get_quantities()
		
		# Get the wall positions for r and theta
		rw, tw = g.r_wall / au, g.t_wall

		# Make a 2-d grid of the wall positions (used by pcolormesh)
		R, T = np.meshgrid(rw, tw)

		# Calculate the position of the cell walls in cartesian coordinates
		X, Z = R * np.sin(T), R * np.cos(T)

		# Make a plot in (x, z) space for different zooms
		from matplotlib.colors import LogNorm,PowerNorm
		# Make a plot in (r, theta) space
		ax = fig.add_subplot(2, 3, 3)
		if g.shape[-1]==2:
			c = ax.pcolormesh(X, Z, g['temperature'][0].array[0, :, :]+g['temperature'][1].array[0, :, :],norm=PowerNorm(gamma=0.5,vmin=1,vmax=500))
		else :
			c = ax.pcolormesh(X, Z, g['temperature'][0].array[0, :, :],norm=PowerNorm(gamma=0.5,vmin=1,vmax=500))
		#ax.set_xscale('log')
		#ax.set_yscale('log')
		ax.set_xlim(X.min(), X.max()/5.)
		ax.set_ylim(Z.min()/10., Z.max()/10.)
		ax.set_xlabel('x (au)')
		ax.set_ylabel('z (au)')
		#ax.set_yticks([np.pi, np.pi * 0.75, np.pi * 0.5, np.pi * 0.25, 0.])
		#ax.set_yticklabels([r'$\pi$', r'$3\pi/4$', r'$\pi/2$', r'$\pi/4$', r'$0$'])
		cb = fig.colorbar(c)
		ax.set_title('Temperature structure')
		cb.set_label('Temperature (K)')
		#fig.savefig(modelname+'_temperature_spherical_rt.png', bbox_inches='tight')


		ax = fig.add_subplot(2, 3, 4)
		if g.shape[-1]==2:
			c = ax.pcolormesh(X, Z, g['density'][0].array[0, :, :]+g['density'][1].array[0, :, :],norm=LogNorm(vmin=1e-22,vmax=g['density'][0].array[0, :, :].max()))
		else :
			c = ax.pcolormesh(X, Z, g['density'][0].array[0, :, :],norm=LogNorm(vmin=1e-22,vmax=g['density'][0].array[0, :, :].max()))
		#ax.set_xscale('log')
		#ax.set_yscale('log')
		ax.set_xlim(X.min(), X.max()/5.)
		ax.set_ylim(Z.min()/10., Z.max()/10.)
		ax.set_xlabel('x (au)')
		ax.set_ylabel('z (au)')
		ax.set_title('Density structure')
		cb = fig.colorbar(c)
		cb.set_label('Density (g/cm2)')

		### plot the convolved image with the 37 micron filter (manually set to slice 18 of the cube - this would change with wavelength coverage)
		ax = fig.add_subplot(2, 3, 5)
		self.image = self.mo.get_image(inclination=inc,distance=self.dist,units='Jy')
		fits.writeto(modelname+'_inc_'+str(inc)+'.fits',self.image.val.swapaxes(0,2).swapaxes(1,2),clobber=True)

		### need to convolve the image with a Gaussian PSF
		pix = 2.*self.limval/au/self.Npix # in AU/pix
		pix_asec = pix/(self.dist/pc) # in asec/pix
		airy_asec = 3.5 #asec
		airy_pix = airy_asec/pix_asec # in pix
		gauss_pix = airy_pix/2.35 # in Gaussian std 
		print "Gaussian std: ",gauss_pix

		from scipy.ndimage.filters import gaussian_filter as gauss
		#print [(i,sed.wav[i]) for i in range(len(sed.wav))]

		img37 = self.image.val[:,:,18]
		convol = gauss(img37,gauss_pix,mode='constant',cval=0.0)
		Nc = self.Npix/2
		hw = min(int(20./pix_asec),Nc) #(max is Nc)
		#ax.imshow(img37,norm=LogNorm(vmin=1e-20,vmax=img37.max()))
		#ax.imshow(img37,interpolation='nearest')
		#ax.imshow(convol,norm=LogNorm(vmin=1e-20,vmax=img37.max()))
		#ax.imshow(convol,interpolation='nearest',norm=LogNorm(vmin=1e-20,vmax=img37.max()))
		ax.imshow(convol[Nc-hw:Nc+hw,Nc-hw:Nc+hw],interpolation='nearest',origin='lower',cmap=plt.get_cmap('gray'))
		airy_disk = plt.Circle((airy_pix*1.3,airy_pix*1.3),airy_pix,color=colors[3])		
		ax.add_artist(airy_disk)
		ax.text(airy_pix*3,airy_pix*1.3/2.0,'SOFIA 37um Airy disk',color=colors[3])
		ax.set_title('Convolved image')
		fits.writeto(modelname+'_inc_'+str(inc)+'_convol37.fits',convol,clobber=True)

		### draw a cross-section of the image to show the spatial extension in linear scale, to compare with what we observe in the model.
		ax = fig.add_subplot(2, 3, 6)
		ax.plot(range(Nc-hw,Nc+hw),convol[Nc-hw:Nc+hw,Nc-1],label='cross-section 1')
		ax.plot(range(Nc-hw,Nc+hw),convol[Nc-1,Nc-hw:Nc+hw],label='cross-section 2')
		maxconvol = convol[Nc-hw:Nc+hw,Nc-1].max()
		gauss = np.exp( -(np.array(range(-hw,hw))**2 / (2. * gauss_pix**2)))
		gauss/= gauss.max()
		gauss*=maxconvol
		ax.plot(range(Nc-hw,Nc+hw),gauss,label='SOFIA beam')
		leg = ax.legend(loc=2,fontsize='small')
		#leg = plt.gca().get_legend()
		#plt.setp(leg.get_text(),fontsize='small')
		ax.set_title('Cross section at the center')

		string=self.modelPrint()
		fig.text(0.0,0.14,string+'Av='+str(self.extinction)+'\n'+'dist='+str(self.dist/pc)+'\n',color='r')
		fig.savefig(modelname+'.png', bbox_inches='tight',dpi=300)

		if show:
			plt.show()
			
	def plotSim(self,dist_pc=140,inc=3,extinction=0,show=False):
		self.dist=dist_pc*pc
		self.inc=inc
		self.extinction=extinction
		modelname = self.folder+self.name
		self.mo = ModelOutput(modelname+'.rtout')

		#tracy_dust = np.loadtxt('Tracy_models/OH5.par')
		#chi = np.loadtxt('kmh94_3.1_full.chi')
		#wav = np.loadtxt('kmh94_3.1_full.wav')
		#Chi = interp1d(wav,chi,kind='linear')



		fig = plt.figure(figsize=(20,14))
		ax=fig.add_subplot(1,3,1)
		sed = self.mo.get_sed(aperture=-1, inclination='all', distance=self.dist)
		#print tracy_dust[11,1],Cext(sed.wav[-1]),Cext(sed.wav[-1])/tracy_dust[11,1]
		#tau = self.extinction*Chi(sed.wav)/Chi(0.550)/1.086
		#print Cext(sed.wav)/tracy_dust[11,1]
		#ext = np.array([np.exp(-tau) for i in range(sed.val.shape[0])])
		#print tau,np.exp(-tau)
		ax.loglog(sed.wav, sed.val.transpose(), color='black')
		ax.set_title(modelname+'_seds, Av='+str(self.extinction))
		ax.set_xlim(sed.wav.min(), 1300)
		ax.set_ylim(1e-13, 1e-7)
		ax.set_xlabel(r'$\lambda$ [$\mu$m]')
		ax.set_ylabel(r'$\lambda F_\lambda$ [ergs/cm$^2/s$]')
		#self.plotData(ax,sourcename)
		ax.set_xscale('log')
		ax.set_yscale('log')

		#ax.set_ylabel(r'$F_{Jy}$ [Jy]')
		#plt.legend(loc=4)

#		ax=fig.add_subplot(2,3,2)
#		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist)
#		ext=np.exp(-tau)
#		ax.loglog(sed.wav, sed.val.transpose()*ext.T, lw=3,color='black',label='source_total')
#		ax.set_xlim(sed.wav.min(), 1300)
#		ax.set_ylim(1e-13, 1e-7)  ### for lamFlam
#		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist,component='source_emit')
#		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='blue',label='source_emit')
#		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist,component='source_scat')
#		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='teal',label='source_scat')
#		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist,component='dust_emit')
#		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='red',label='dust_emit')
#		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist,component='dust_scat')
#		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='orange',label='dust_scat')
#		#self.plotData(ax,sourcename)
#		ax.set_xscale('log')
#		ax.set_yscale('log')
#		ax.set_title('seds_inc=inc')
#		ax.set_xlabel(r'$\lambda$ [$\mu$m]')
#		ax.set_ylabel(r'$\lambda F_\lambda$ [ergs/cm$^2/s$]')
#		#ax.set_ylabel(r'$F_{Jy}$ [Jy]')
#		leg = ax.legend(loc=4,fontsize='small')
		#leg = plt.gca().get_legend()
		#plt.setp(leg.get_text(),fontsize='small')
		# Extract the quantities
		g = self.mo.get_quantities()
		
		# Get the wall positions for r and theta
		rw, tw = g.r_wall / au, g.t_wall

		# Make a 2-d grid of the wall positions (used by pcolormesh)
		R, T = np.meshgrid(rw, tw)

		# Calculate the position of the cell walls in cartesian coordinates
		X, Z = R * np.sin(T), R * np.cos(T)

		# Make a plot in (x, z) space for different zooms
		from matplotlib.colors import LogNorm,PowerNorm
		# Make a plot in (r, theta) space
		ax = fig.add_subplot(1, 3, 2)
		if g.shape[-1]==2:
			c = ax.pcolormesh(X, Z, g['temperature'][0].array[0, :, :]+g['temperature'][1].array[0, :, :],norm=PowerNorm(gamma=0.5,vmin=1,vmax=500))
		else :
			c = ax.pcolormesh(X, Z, g['temperature'][0].array[0, :, :],norm=PowerNorm(gamma=0.5,vmin=1,vmax=500))
		#ax.set_xscale('log')
		#ax.set_yscale('log')
		ax.set_xlim(X.min(), X.max())
		ax.set_ylim(Z.min(), Z.max())
		ax.set_xlabel('x (au)')
		ax.set_ylabel('z (au)')
		#ax.set_yticks([np.pi, np.pi * 0.75, np.pi * 0.5, np.pi * 0.25, 0.])
		#ax.set_yticklabels([r'$\pi$', r'$3\pi/4$', r'$\pi/2$', r'$\pi/4$', r'$0$'])
		cb = fig.colorbar(c)
		ax.set_title('Temperature structure')
		cb.set_label('Temperature (K)')
		#fig.savefig(modelname+'_temperature_spherical_rt.png', bbox_inches='tight')


		ax = fig.add_subplot(1, 3, 3)
		if g.shape[-1]==2:
			c = ax.pcolormesh(X, Z, g['density'][0].array[0, :, :]+g['density'][1].array[0, :, :],norm=LogNorm(vmin=1e-22,vmax=g['density'][0].array[0, :, :].max()))
		else :
			c = ax.pcolormesh(X, Z, g['density'][0].array[0, :, :],norm=LogNorm(vmin=1e-22,vmax=g['density'][0].array[0, :, :].max()))
		#ax.set_xscale('log')
		#ax.set_yscale('log')
		ax.set_xlim(X.min(), X.max())
		ax.set_ylim(Z.min(), Z.max())
		ax.set_xlabel('x (au)')
		ax.set_ylabel('z (au)')
		ax.set_title('Density structure')
		cb = fig.colorbar(c)
		cb.set_label('Density (g/cm2)')

#		### plot the convolved image with the 37 micron filter (manually set to slice 18 of the cube - this would change with wavelength coverage)
#		ax = fig.add_subplot(2, 3, 5)
#		self.image = self.mo.get_image(inclination=inc,distance=self.dist,units='Jy')
#		fits.writeto(modelname+'_inc_'+str(inc)+'.fits',self.image.val.swapaxes(0,2).swapaxes(1,2),clobber=True)

#		### need to convolve the image with a Gaussian PSF
#		pix = 2.*self.limval/au/self.Npix # in AU/pix
#		pix_asec = pix/(self.dist/pc) # in asec/pix
#		airy_asec = 3.5 #asec
#		airy_pix = airy_asec/pix_asec # in pix
#		gauss_pix = airy_pix/2.35 # in Gaussian std 
#		print "Gaussian std: ",gauss_pix

#		from scipy.ndimage.filters import gaussian_filter as gauss
#		#print [(i,sed.wav[i]) for i in range(len(sed.wav))]

#		img37 = self.image.val[:,:,18]
#		convol = gauss(img37,gauss_pix,mode='constant',cval=0.0)
#		Nc = self.Npix/2
#		hw = min(int(20./pix_asec),Nc) #(max is Nc)
#		#ax.imshow(img37,norm=LogNorm(vmin=1e-20,vmax=img37.max()))
#		#ax.imshow(img37,interpolation='nearest')
#		#ax.imshow(convol,norm=LogNorm(vmin=1e-20,vmax=img37.max()))
#		#ax.imshow(convol,interpolation='nearest',norm=LogNorm(vmin=1e-20,vmax=img37.max()))
#		ax.imshow(convol[Nc-hw:Nc+hw,Nc-hw:Nc+hw],interpolation='nearest',origin='lower',cmap=plt.get_cmap('gray'))
#		airy_disk = plt.Circle((airy_pix*1.3,airy_pix*1.3),airy_pix,color=colors[3])		
#		ax.add_artist(airy_disk)
#		ax.text(airy_pix*3,airy_pix*1.3/2.0,'SOFIA 37um Airy disk',color=colors[3])
#		ax.set_title('Convolved image')
#		fits.writeto(modelname+'_inc_'+str(inc)+'_convol37.fits',convol,clobber=True)

#		### draw a cross-section of the image to show the spatial extension in linear scale, to compare with what we observe in the model.
#		ax = fig.add_subplot(2, 3, 6)
#		ax.plot(range(Nc-hw,Nc+hw),convol[Nc-hw:Nc+hw,Nc-1],label='cross-section 1')
#		ax.plot(range(Nc-hw,Nc+hw),convol[Nc-1,Nc-hw:Nc+hw],label='cross-section 2')
#		maxconvol = convol[Nc-hw:Nc+hw,Nc-1].max()
#		gauss = np.exp( -(np.array(range(-hw,hw))**2 / (2. * gauss_pix**2)))
#		gauss/= gauss.max()
#		gauss*=maxconvol
#		ax.plot(range(Nc-hw,Nc+hw),gauss,label='SOFIA beam')
#		leg = ax.legend(loc=2,fontsize='small')
#		#leg = plt.gca().get_legend()
#		#plt.setp(leg.get_text(),fontsize='small')
#		ax.set_title('Cross section at the center')

		string=self.modelPrint()
		fig.text(0.0,0.14,string+'Av='+str(self.extinction)+'\n'+'dist='+str(self.dist/pc)+'\n',color='r')
		fig.savefig(modelname+'.png', bbox_inches='tight',dpi=300)

		if show:
			plt.show()