def eval_elbo(seq_file, file_list, model_file, preproc_file, output_file, ubm_type, **kwargs): sr_args = SR.filter_eval_args(**kwargs) if preproc_file is not None: preproc = TransformList.load(preproc_file) else: preproc = None sr = SR(seq_file, file_list, batch_size=1, shuffle_seqs=False, preproc=preproc, **sr_args) t1 = time.time() if ubm_type == 'diag-gmm': model = DiagGMM.load(model_file) else: model = DiagGMM.load_from_kaldi(model_file) model.initialize() elbo = np.zeros((sr.num_seqs, ), dtype=float_cpu()) num_frames = np.zeros((sr.num_seqs, ), dtype=int) keys = [] for i in xrange(sr.num_seqs): x, key = sr.read_next_seq() keys.append(key) elbo[i] = model.elbo(x) num_frames[i] = x.shape[0] num_total_frames = np.sum(num_frames) total_elbo = np.sum(elbo) total_elbo_norm = total_elbo / num_total_frames logging.info('Extract elapsed time: %.2f' % (time.time() - t1)) s = 'Total ELBO: %f\nELBO_NORM %f' % (total_elbo, total_elbo_norm) logging.info(s) with open(output_file, 'w') as f: f.write(s)
def extract_ivector(seq_file, file_list, gmm_file, model_file, preproc_file, output_path, qy_only, **kwargs): set_float_cpu('float32') sr_args = SR.filter_eval_args(**kwargs) if preproc_file is not None: preproc = TransformList.load(preproc_file) else: preproc = None gmm = DiagGMM.load_from_kaldi(gmm_file) sr = SR(seq_file, file_list, batch_size=1, shuffle_seqs=False, preproc=preproc, **sr_args) t1 = time.time() # if qy_only: # model = TVAEY.load(model_file) # else: model = TVAEYZ.load(model_file) model.build(max_seq_length=sr.max_batch_seq_length) y = np.zeros((sr.num_seqs, model.y_dim), dtype=float_keras()) xx = np.zeros((1, sr.max_batch_seq_length, model.x_dim), dtype=float_keras()) rr = np.zeros((1, sr.max_batch_seq_length, model.r_dim), dtype=float_keras()) keys = [] for i in xrange(sr.num_seqs): ti1 = time.time() x, key = sr.read_next_seq() ti2 = time.time() r = gmm.compute_z(x) ti3 = time.time() logging.info('Extracting i-vector %d/%d for %s, num_frames: %d' % (i, sr.num_seqs, key, x.shape[0])) keys.append(key) xx[:,:,:] = 0 rr[:,:,:] = 0 xx[0,:x.shape[0]] = x rr[0,:x.shape[0]] = r y[i] = model.compute_qy_x([xx, rr], batch_size=1)[0] ti4 = time.time() logging.info('Elapsed time i-vector %d/%d for %s, total: %.2f read: %.2f, gmm: %.2f, vae: %.2f' % (i, sr.num_seqs, key, ti4-ti1, ti2-ti1, ti3-ti2, ti4-ti3)) logging.info('Extract elapsed time: %.2f' % (time.time() - t1)) hw = HypDataWriter(output_path) hw.write(keys, '', y)
def init_ubm(seq_file, train_list, x_dim, num_comp, output_path, **kwargs): if seq_file is None: model = DiagGMM(x_dim=x_dim, num_comp=1) model.initialize() model.save(output_path) sr_args = SR.filter_args(**kwargs) sr = SR(seq_file, train_list, batch_size=1, **sr_args)
def compute_gmm_post(seq_file, file_list, model_file, preproc_file, output_path, num_comp, **kwargs): sr_args = SR.filter_eval_args(**kwargs) if preproc_file is not None: preproc = TransformList.load(preproc_file) else: preproc = None gmm = DiagGMM.load_from_kaldi(model_file) sr = SR(seq_file, file_list, batch_size=1, shuffle_seqs=False, preproc=preproc, **sr_args) t1 = time.time() logging.info(time.time() - t1) index = np.zeros((sr.num_seqs, num_comp), dtype=int) hw = HypDataWriter(output_path) for i in xrange(sr.num_seqs): x, key = sr.read_next_seq() logging.info('Extracting i-vector %d/%d for %s, num_frames: %d' % (i, sr.num_seqs, key, x.shape[0])) r = gmm.compute_z(x) r_s, index = to_sparse(r, num_comp) if i == 0: r2 = to_dense(r_s, index, r.shape[1]) logging.degug(np.sort(r[0, :])[-12:]) logging.degug(np.sort(r2[0, :])[-12:]) logging.degug(np.argsort(r[0, :])[-12:]) logging.degug(np.argsort(r2[0, :])[-12:]) hw.write([key], '.r', [r_s]) hw.write([key], '.index', [index]) logging.info('Extract elapsed time: %.2f' % (time.time() - t1))
def extract_ivector(seq_file, file_list, gmm_file, model_file, preproc_file, output_path, qy_only, **kwargs): set_float_cpu('float32') sr_args = SR.filter_eval_args(**kwargs) if preproc_file is not None: preproc = TransformList.load(preproc_file) else: preproc = None gmm = DiagGMM.load_from_kaldi(gmm_file) sr = SR(seq_file, file_list, batch_size=1, shuffle_seqs=False, preproc=preproc, **sr_args) t1 = time.time() # if qy_only: # model = TVAEY.load(model_file) # else: model = TVAEYZ.load(model_file) #model.build(max_seq_length=sr.max_batch_seq_length) #model.build(max_seq_length=1) model.x_dim = 60 model.r_dim = 2048 model.y_dim = 400 y = np.zeros((sr.num_seqs, model.y_dim), dtype=float_keras()) xx = np.zeros((1, sr.max_batch_seq_length, model.x_dim), dtype=float_keras()) rr = np.zeros((1, sr.max_batch_seq_length, model.r_dim), dtype=float_keras()) keys = [] xp = Input(shape=( sr.max_batch_seq_length, model.x_dim, )) rp = Input(shape=( sr.max_batch_seq_length, model.r_dim, )) qy_param = model.qy_net([xp, rp]) qy_net = Model([xp, rp], qy_param) for i in xrange(sr.num_seqs): ti1 = time.time() x, key = sr.read_next_seq() ti2 = time.time() r = gmm.compute_z(x) ti3 = time.time() logging.info('Extracting i-vector %d/%d for %s, num_frames: %d' % (i, sr.num_seqs, key, x.shape[0])) keys.append(key) # xp = Input(shape=(x.shape[0], model.x_dim,)) # rp = Input(shape=(x.shape[0], model.r_dim,)) # qy_param = model.qy_net([xp, rp]) ti5 = time.time() xx[:, :, :] = 0 rr[:, :, :] = 0 xx[0, :x.shape[0]] = x rr[0, :x.shape[0]] = r # x = np.expand_dims(x, axis=0) # r = np.expand_dims(r, axis=0) # qy_net = Model([xp, rp], qy_param) y[i] = qy_net.predict([xx, rr], batch_size=1)[0] # del qy_net # y[i] = model.compute_qy_x2([x, r], batch_size=1)[0] #for i in xrange(10): #gc.collect() ti4 = time.time() logging.info( 'Elapsed time i-vector %d/%d for %s, total: %.2f read: %.2f, gmm: %.2f, vae: %.2f qy: %.2f' % (i, sr.num_seqs, key, ti4 - ti1, ti2 - ti1, ti3 - ti2, ti4 - ti5, ti5 - ti3)) # print('Elapsed time i-vector %d/%d for %s, total: %.2f read: %.2f, gmm: %.2f, vae: %.2f' % # (i, sr.num_seqs, key, ti4-ti1, ti2-ti1, ti3-ti2, ti4-ti3)) logging.info('Extract elapsed time: %.2f' % (time.time() - t1)) hw = HypDataWriter(output_path) hw.write(keys, '', y)
def extract_ivector(seq_file, file_list, gmm_file, model_file, preproc_file, output_path, qy_only, max_length, **kwargs): set_float_cpu('float32') sr_args = SR.filter_eval_args(**kwargs) if preproc_file is not None: preproc = TransformList.load(preproc_file) else: preproc = None gmm = DiagGMM.load_from_kaldi(gmm_file) sr = SR(seq_file, file_list, batch_size=1, shuffle_seqs=False, preproc=preproc, **sr_args) t1 = time.time() # if qy_only: # model = TVAEY.load(model_file) # else: model = TVAEYZ.load(model_file) #model.build(max_seq_length=sr.max_batch_seq_length) model.build(max_seq_length=1) max_length = np.minimum(sr.max_batch_seq_length, max_length) y = np.zeros((sr.num_seqs, model.y_dim), dtype=float_keras()) xx = np.zeros((1, max_length, model.x_dim), dtype=float_keras()) rr = np.zeros((1, max_length, model.r_dim), dtype=float_keras()) keys = [] xp = Input(shape=( max_length, model.x_dim, )) rp = Input(shape=( max_length, model.r_dim, )) qy_param = model.qy_net([xp, rp]) qy_net = Model([xp, rp], qy_param) for i in xrange(sr.num_seqs): ti1 = time.time() x, key = sr.read_next_seq() ti2 = time.time() r = gmm.compute_z(x) ti3 = time.time() logging.info('Extracting i-vector %d/%d for %s, num_frames: %d' % (i, sr.num_seqs, key, x.shape[0])) keys.append(key) xx[:, :, :] = 0 rr[:, :, :] = 0 if x.shape[0] <= max_length: xx[0, :x.shape[0]] = x rr[0, :x.shape[0]] = r y[i] = qy_net.predict([xx, rr], batch_size=1)[0] else: num_batches = int(np.ceil(x.shape[0] / max_length)) for j in xrange(num_batches - 1): start = j * max_length xx[0] = x[start:start + max_length] rr[0] = r[start:start + max_length] y[i] += qy_net.predict([xx, rr], batch_size=1)[0].ravel() xx[0] = x[-max_length:] rr[0] = r[-max_length:] y[i] += qy_net.predict([xx, rr], batch_size=1)[0].ravel() y[i] /= num_batches ti4 = time.time() logging.info( 'Elapsed time i-vector %d/%d for %s, total: %.2f read: %.2f, gmm: %.2f, vae: %.2f' % (i, sr.num_seqs, key, ti4 - ti1, ti2 - ti1, ti3 - ti2, ti4 - ti3)) logging.info('Extract elapsed time: %.2f' % (time.time() - t1)) hw = HypDataWriter(output_path) hw.write(keys, '', y)
def train_tvae(seq_file, train_list, val_list, gmm_file, decoder_file, qy_file, qz_file, init_path, epochs, batch_size, preproc_file, output_path, num_samples_y, num_samples_z, px_form, qy_form, qz_form, min_kl, **kwargs): set_float_cpu(float_keras()) sr_args = SR.filter_args(**kwargs) sr_val_args = SR.filter_val_args(**kwargs) opt_args = KOF.filter_args(**kwargs) cb_args = KCF.filter_args(**kwargs) if preproc_file is not None: preproc = TransformList.load(preproc_file) else: preproc = None gmm = DiagGMM.load_from_kaldi(gmm_file) sr = SR(seq_file, train_list, batch_size=batch_size, preproc=preproc, **sr_args) max_length = sr.max_batch_seq_length gen_val = None if val_list is not None: sr_val = SR(seq_file, val_list, batch_size=batch_size, preproc=preproc, shuffle_seqs=False, seq_split_mode='sequential', seq_split_overlap=0, reset_rng=True, **sr_val_args) max_length = max(max_length, sr_val.max_batch_seq_length) gen_val = data_generator(sr_val, gmm, max_length) gen_train = data_generator(sr, gmm, max_length) t1 = time.time() if init_path is None: decoder = load_model_arch(decoder_file) qy = load_model_arch(qy_file) # if qz_file is None: # vae = TVAEY(qy, decoder, px_cond_form=px_form, # qy_form=qy_form, min_kl=min_kl) # vae.build(num_samples=num_samples_y, # max_seq_length = max_length) # else: qz = load_model_arch(qz_file) vae = TVAEYZ(qy, qz, decoder, px_cond_form=px_form, qy_form=qy_form, qz_form=qz_form, min_kl=min_kl) else: vae = TVAEYZ.load(init_path) vae.build(num_samples_y=num_samples_y, num_samples_z=num_samples_z, max_seq_length=max_length) logging.info(time.time() - t1) cb = KCF.create_callbacks(vae, output_path, **cb_args) opt = KOF.create_optimizer(**opt_args) h = vae.fit_generator(gen_train, x_val=gen_val, steps_per_epoch=sr.num_batches, validation_steps=sr_val.num_batches, optimizer=opt, epochs=epochs, callbacks=cb, max_queue_size=10) # if vae.x_chol is not None: # x_chol = np.array(K.eval(vae.x_chol)) # logging.info(x_chol[:4,:4]) logging.info('Train elapsed time: %.2f' % (time.time() - t1)) vae.save(output_path + '/model') sr_val.reset() y_val, sy_val, z_val, srz_val = vae.encoder_net.predict_generator( gen_val, steps=400) from scipy import linalg as la yy = y_val - np.mean(y_val, axis=0) cy = np.dot(yy.T, yy) / yy.shape[0] l, v = la.eigh(cy) np.savetxt(output_path + '/l1.txt', l) sr_val.reset() y_val2, sy_val2 = vae.qy_net.predict_generator(gen_val, steps=400) yy = y_val2 - np.mean(y_val, axis=0) cy = np.dot(yy.T, yy) / yy.shape[0] l, v = la.eigh(cy) np.savetxt(output_path + '/l2.txt', l) logging.info(y_val - y_val2)