Example #1
0
def main():
    try:
        os.mkdir(args.snapshot_directory)
    except:
        pass

    np.random.seed(0)

    xp = np
    device_gpu = args.gpu_device
    device_cpu = -1
    using_gpu = device_gpu >= 0
    if using_gpu:
        cuda.get_device(args.gpu_device).use()
        xp = cupy

    dataset = gqn.data.Dataset(args.dataset_directory)

    hyperparams = HyperParameters()
    hyperparams.generator_share_core = args.generator_share_core
    hyperparams.generator_share_prior = args.generator_share_prior
    hyperparams.generator_generation_steps = args.generation_steps
    hyperparams.generator_share_upsampler = args.generator_share_upsampler
    hyperparams.inference_share_core = args.inference_share_core
    hyperparams.inference_share_posterior = args.inference_share_posterior
    hyperparams.h_channels = args.h_channels
    hyperparams.z_channels = args.z_channels
    hyperparams.u_channels = args.u_channels
    hyperparams.image_size = (args.image_size, args.image_size)
    hyperparams.representation_channels = args.representation_channels
    hyperparams.representation_architecture = args.representation_architecture
    hyperparams.pixel_n = args.pixel_n
    hyperparams.pixel_sigma_i = args.initial_pixel_variance
    hyperparams.pixel_sigma_f = args.final_pixel_variance
    hyperparams.save(args.snapshot_directory)
    print(hyperparams)

    model = Model(hyperparams,
                  snapshot_directory=args.snapshot_directory,
                  optimized=args.optimized)
    if using_gpu:
        model.to_gpu()

    scheduler = Scheduler(sigma_start=args.initial_pixel_variance,
                          sigma_end=args.final_pixel_variance,
                          final_num_updates=args.pixel_n,
                          snapshot_directory=args.snapshot_directory)
    print(scheduler)

    optimizer = AdamOptimizer(model.parameters,
                              mu_i=args.initial_lr,
                              mu_f=args.final_lr,
                              initial_training_step=scheduler.num_updates)
    print(optimizer)

    pixel_var = xp.full((args.batch_size, 3) + hyperparams.image_size,
                        scheduler.pixel_variance**2,
                        dtype="float32")
    pixel_ln_var = xp.full((args.batch_size, 3) + hyperparams.image_size,
                           math.log(scheduler.pixel_variance**2),
                           dtype="float32")

    representation_shape = (args.batch_size,
                            hyperparams.representation_channels,
                            args.image_size // 4, args.image_size // 4)

    fig = plt.figure(figsize=(9, 3))
    axis_data = fig.add_subplot(1, 3, 1)
    axis_data.set_title("Data")
    axis_data.axis("off")
    axis_reconstruction = fig.add_subplot(1, 3, 2)
    axis_reconstruction.set_title("Reconstruction")
    axis_reconstruction.axis("off")
    axis_generation = fig.add_subplot(1, 3, 3)
    axis_generation.set_title("Generation")
    axis_generation.axis("off")

    current_training_step = 0
    for iteration in range(args.training_iterations):
        mean_kld = 0
        mean_nll = 0
        mean_mse = 0
        mean_elbo = 0
        total_num_batch = 0
        start_time = time.time()

        for subset_index, subset in enumerate(dataset):
            iterator = gqn.data.Iterator(subset, batch_size=args.batch_size)

            for batch_index, data_indices in enumerate(iterator):
                # shape: (batch, views, height, width, channels)
                # range: [-1, 1]
                images, viewpoints = subset[data_indices]

                # (batch, views, height, width, channels) -> (batch, views, channels, height, width)
                images = images.transpose((0, 1, 4, 2, 3)).astype(np.float32)

                total_views = images.shape[1]

                # Sample number of views
                num_views = random.choice(range(1, total_views + 1))
                observation_view_indices = list(range(total_views))
                random.shuffle(observation_view_indices)
                observation_view_indices = observation_view_indices[:num_views]
                query_index = random.choice(range(total_views))

                if num_views > 0:
                    observation_images = preprocess_images(
                        images[:, observation_view_indices])
                    observation_query = viewpoints[:, observation_view_indices]
                    representation = model.compute_observation_representation(
                        observation_images, observation_query)
                else:
                    representation = xp.zeros(representation_shape,
                                              dtype="float32")
                    representation = chainer.Variable(representation)

                # Sample query
                query_index = random.choice(range(total_views))
                query_images = preprocess_images(images[:, query_index])
                query_viewpoints = viewpoints[:, query_index]

                # Transfer to gpu if necessary
                query_images = to_device(query_images, device_gpu)
                query_viewpoints = to_device(query_viewpoints, device_gpu)

                z_t_param_array, mean_x = model.sample_z_and_x_params_from_posterior(
                    query_images, query_viewpoints, representation)

                # Compute loss
                ## KL Divergence
                loss_kld = 0
                for params in z_t_param_array:
                    mean_z_q, ln_var_z_q, mean_z_p, ln_var_z_p = params
                    kld = gqn.functions.gaussian_kl_divergence(
                        mean_z_q, ln_var_z_q, mean_z_p, ln_var_z_p)
                    loss_kld += cf.sum(kld)

                ## Negative log-likelihood of generated image
                loss_nll = cf.sum(
                    gqn.functions.gaussian_negative_log_likelihood(
                        query_images, mean_x, pixel_var, pixel_ln_var))

                # Calculate the average loss value
                loss_nll = loss_nll / args.batch_size
                loss_kld = loss_kld / args.batch_size

                loss = loss_nll / scheduler.pixel_variance + loss_kld

                model.cleargrads()
                loss.backward()
                optimizer.update(current_training_step)

                loss_nll = float(loss_nll.data) + math.log(256.0)
                loss_kld = float(loss_kld.data)

                elbo = -(loss_nll + loss_kld)

                loss_mse = float(
                    cf.mean_squared_error(query_images, mean_x).data)

                printr(
                    "Iteration {}: Subset {} / {}: Batch {} / {} - elbo: {:.2f} - loss: nll: {:.2f} mse: {:.6e} kld: {:.5f} - lr: {:.4e} - pixel_variance: {:.5f} - step: {}  "
                    .format(iteration + 1,
                            subset_index + 1, len(dataset), batch_index + 1,
                            len(iterator), elbo, loss_nll, loss_mse, loss_kld,
                            optimizer.learning_rate, scheduler.pixel_variance,
                            current_training_step))

                scheduler.step(iteration, current_training_step)
                pixel_var[...] = scheduler.pixel_variance**2
                pixel_ln_var[...] = math.log(scheduler.pixel_variance**2)

                total_num_batch += 1
                current_training_step += 1
                mean_kld += loss_kld
                mean_nll += loss_nll
                mean_mse += loss_mse
                mean_elbo += elbo

            model.serialize(args.snapshot_directory)

            # Visualize
            if args.with_visualization:
                axis_data.imshow(make_uint8(query_images[0]),
                                 interpolation="none")
                axis_reconstruction.imshow(make_uint8(mean_x.data[0]),
                                           interpolation="none")

                with chainer.no_backprop_mode():
                    generated_x = model.generate_image(
                        query_viewpoints[None, 0], representation[None, 0])
                    axis_generation.imshow(make_uint8(generated_x[0]),
                                           interpolation="none")
                plt.pause(1e-8)

        elapsed_time = time.time() - start_time
        print(
            "\033[2KIteration {} - elbo: {:.2f} - loss: nll: {:.2f} mse: {:.6e} kld: {:.5f} - lr: {:.4e} - pixel_variance: {:.5f} - step: {} - time: {:.3f} min"
            .format(iteration + 1, mean_elbo / total_num_batch,
                    mean_nll / total_num_batch, mean_mse / total_num_batch,
                    mean_kld / total_num_batch, optimizer.learning_rate,
                    scheduler.pixel_variance, current_training_step,
                    elapsed_time / 60))
        model.serialize(args.snapshot_directory)
def main():
    try:
        os.mkdir(args.snapshot_path)
    except:
        pass

    comm = chainermn.create_communicator()
    device = comm.intra_rank
    print("device", device, "/", comm.size)
    cuda.get_device(device).use()
    xp = cupy

    dataset = gqn.data.Dataset(args.dataset_path)

    hyperparams = HyperParameters()
    hyperparams.generator_share_core = args.generator_share_core
    hyperparams.generator_share_prior = args.generator_share_prior
    hyperparams.generator_generation_steps = args.generation_steps
    hyperparams.inference_share_core = args.inference_share_core
    hyperparams.inference_share_posterior = args.inference_share_posterior
    hyperparams.channels_chz = args.channels_chz
    hyperparams.generator_channels_u = args.channels_u
    hyperparams.inference_channels_map_x = args.channels_map_x
    hyperparams.pixel_n = args.pixel_n
    hyperparams.pixel_sigma_i = args.initial_pixel_sigma
    hyperparams.pixel_sigma_f = args.final_pixel_sigma
    if comm.rank == 0:
        hyperparams.save(args.snapshot_path)
        hyperparams.print()

    model = Model(hyperparams, snapshot_directory=args.snapshot_path)
    model.to_gpu()

    optimizer = Optimizer(
        model.parameters,
        communicator=comm,
        mu_i=args.initial_lr,
        mu_f=args.final_lr)
    if comm.rank == 0:
        optimizer.print()

    dataset_mean, dataset_std = dataset.load_mean_and_std()

    if comm.rank == 0:
        np.save(os.path.join(args.snapshot_path, "mean.npy"), dataset_mean)
        np.save(os.path.join(args.snapshot_path, "std.npy"), dataset_std)

    # avoid division by zero
    dataset_std += 1e-12

    sigma_t = hyperparams.pixel_sigma_i
    pixel_var = xp.full(
        (args.batch_size, 3) + hyperparams.image_size,
        sigma_t**2,
        dtype="float32")
    pixel_ln_var = xp.full(
        (args.batch_size, 3) + hyperparams.image_size,
        math.log(sigma_t**2),
        dtype="float32")

    random.seed(0)
    subset_indices = list(range(len(dataset.subset_filenames)))

    current_training_step = 0
    for iteration in range(args.training_iterations):
        mean_kld = 0
        mean_nll = 0
        total_batch = 0
        subset_size_per_gpu = len(subset_indices) // comm.size
        start_time = time.time()

        for subset_loop in range(subset_size_per_gpu):
            random.shuffle(subset_indices)
            subset_index = subset_indices[comm.rank]
            subset = dataset.read(subset_index)
            iterator = gqn.data.Iterator(subset, batch_size=args.batch_size)

            for batch_index, data_indices in enumerate(iterator):
                # shape: (batch, views, height, width, channels)
                # range: [-1, 1]
                images, viewpoints = subset[data_indices]

                # preprocessing
                images = (images - dataset_mean) / dataset_std

                # (batch, views, height, width, channels) ->  (batch, views, channels, height, width)
                images = images.transpose((0, 1, 4, 2, 3))

                total_views = images.shape[1]

                # sample number of views
                num_views = random.choice(range(total_views))
                query_index = random.choice(range(total_views))

                if current_training_step == 0 and num_views == 0:
                    num_views = 1  # avoid OpenMPI error

                if num_views > 0:
                    r = model.compute_observation_representation(
                        images[:, :num_views], viewpoints[:, :num_views])
                else:
                    r = xp.zeros(
                        (args.batch_size, hyperparams.channels_r) +
                        hyperparams.chrz_size,
                        dtype="float32")
                    r = chainer.Variable(r)

                query_images = images[:, query_index]
                query_viewpoints = viewpoints[:, query_index]
                # transfer to gpu
                query_images = to_gpu(query_images)
                query_viewpoints = to_gpu(query_viewpoints)

                h0_gen, c0_gen, u_0, h0_enc, c0_enc = model.generate_initial_state(
                    args.batch_size, xp)

                loss_kld = 0

                hl_enc = h0_enc
                cl_enc = c0_enc
                hl_gen = h0_gen
                cl_gen = c0_gen
                ul_enc = u_0

                xq = model.inference_downsampler.downsample(query_images)

                for l in range(model.generation_steps):
                    inference_core = model.get_inference_core(l)
                    inference_posterior = model.get_inference_posterior(l)
                    generation_core = model.get_generation_core(l)
                    generation_piror = model.get_generation_prior(l)

                    h_next_enc, c_next_enc = inference_core.forward_onestep(
                        hl_gen, hl_enc, cl_enc, xq, query_viewpoints, r)

                    mean_z_q = inference_posterior.compute_mean_z(hl_enc)
                    ln_var_z_q = inference_posterior.compute_ln_var_z(hl_enc)
                    ze_l = cf.gaussian(mean_z_q, ln_var_z_q)

                    mean_z_p = generation_piror.compute_mean_z(hl_gen)
                    ln_var_z_p = generation_piror.compute_ln_var_z(hl_gen)

                    h_next_gen, c_next_gen, u_next_enc = generation_core.forward_onestep(
                        hl_gen, cl_gen, ul_enc, ze_l, query_viewpoints, r)

                    kld = gqn.nn.chainer.functions.gaussian_kl_divergence(
                        mean_z_q, ln_var_z_q, mean_z_p, ln_var_z_p)

                    loss_kld += cf.sum(kld)

                    hl_gen = h_next_gen
                    cl_gen = c_next_gen
                    ul_enc = u_next_enc
                    hl_enc = h_next_enc
                    cl_enc = c_next_enc

                mean_x = model.generation_observation.compute_mean_x(ul_enc)
                negative_log_likelihood = gqn.nn.chainer.functions.gaussian_negative_log_likelihood(
                    query_images, mean_x, pixel_var, pixel_ln_var)
                loss_nll = cf.sum(negative_log_likelihood)

                loss_nll /= args.batch_size
                loss_kld /= args.batch_size
                loss = loss_nll + loss_kld

                model.cleargrads()
                loss.backward()
                optimizer.update(current_training_step)

                if comm.rank == 0:
                    printr(
                        "Iteration {}: Subset {} / {}: Batch {} / {} - loss: nll: {:.3f} kld: {:.3f} - lr: {:.4e} - sigma_t: {:.6f}".
                        format(iteration + 1, subset_loop * comm.size + 1,
                               len(dataset), batch_index + 1,
                               len(subset) // args.batch_size,
                               float(loss_nll.data), float(loss_kld.data),
                               optimizer.learning_rate, sigma_t))

                sf = hyperparams.pixel_sigma_f
                si = hyperparams.pixel_sigma_i
                sigma_t = max(
                    sf + (si - sf) *
                    (1.0 - current_training_step / hyperparams.pixel_n), sf)

                pixel_var[...] = sigma_t**2
                pixel_ln_var[...] = math.log(sigma_t**2)

                total_batch += 1
                current_training_step += comm.size
                # current_training_step += 1
                mean_kld += float(loss_kld.data)
                mean_nll += float(loss_nll.data)

            if comm.rank == 0:
                model.serialize(args.snapshot_path)

        if comm.rank == 0:
            elapsed_time = time.time() - start_time
            print(
                "\033[2KIteration {} - loss: nll: {:.3f} kld: {:.3f} - lr: {:.4e} - sigma_t: {:.6f} - step: {} - elapsed_time: {:.3f} min".
                format(iteration + 1, mean_nll / total_batch,
                       mean_kld / total_batch, optimizer.learning_rate,
                       sigma_t, current_training_step, elapsed_time / 60))
            model.serialize(args.snapshot_path)
Example #3
0
def main():
    ##############################################
    # To avoid OpenMPI bug
    multiprocessing.set_start_method("forkserver")
    p = multiprocessing.Process(target=print, args=("", ))
    p.start()
    p.join()
    ##############################################

    try:
        os.mkdir(args.snapshot_directory)
    except:
        pass

    comm = chainermn.create_communicator()
    device = comm.intra_rank
    print("device", device, "/", comm.size)
    cuda.get_device(device).use()
    xp = cupy

    dataset = gqn.data.Dataset(args.dataset_directory)

    hyperparams = HyperParameters()
    hyperparams.generator_share_core = args.generator_share_core
    hyperparams.generator_share_prior = args.generator_share_prior
    hyperparams.generator_generation_steps = args.generation_steps
    hyperparams.generator_u_channels = args.u_channels
    hyperparams.generator_share_upsampler = args.generator_share_upsampler
    hyperparams.generator_subpixel_convolution_enabled = args.generator_subpixel_convolution_enabled
    hyperparams.inference_share_core = args.inference_share_core
    hyperparams.inference_share_posterior = args.inference_share_posterior
    hyperparams.inference_downsampler_channels = args.inference_downsampler_channels
    hyperparams.h_channels = args.h_channels
    hyperparams.z_channels = args.z_channels
    hyperparams.representation_channels = args.representation_channels
    hyperparams.pixel_n = args.pixel_n
    hyperparams.pixel_sigma_i = args.initial_pixel_variance
    hyperparams.pixel_sigma_f = args.final_pixel_variance
    if comm.rank == 0:
        hyperparams.save(args.snapshot_directory)
        print(hyperparams)

    model = Model(hyperparams, snapshot_directory=args.snapshot_directory)
    model.to_gpu()

    optimizer = AdamOptimizer(model.parameters,
                              communicator=comm,
                              mu_i=args.initial_lr,
                              mu_f=args.final_lr)
    if comm.rank == 0:
        print(optimizer)

    scheduler = Scheduler(sigma_start=args.initial_pixel_variance,
                          sigma_end=args.final_pixel_variance,
                          final_num_updates=args.pixel_n)
    if comm.rank == 0:
        print(scheduler)

    pixel_var = xp.full((args.batch_size, 3) + hyperparams.image_size,
                        scheduler.pixel_variance**2,
                        dtype="float32")
    pixel_ln_var = xp.full((args.batch_size, 3) + hyperparams.image_size,
                           math.log(scheduler.pixel_variance**2),
                           dtype="float32")
    num_pixels = hyperparams.image_size[0] * hyperparams.image_size[1] * 3

    random.seed(0)
    subset_indices = list(range(len(dataset.subset_filenames)))

    representation_shape = (
        args.batch_size,
        hyperparams.representation_channels) + hyperparams.chrz_size

    current_training_step = 0
    for iteration in range(args.training_iterations):
        mean_kld = 0
        mean_nll = 0
        mean_mse = 0
        mean_elbo = 0
        total_num_batch = 0
        subset_size_per_gpu = len(subset_indices) // comm.size
        if len(subset_indices) % comm.size != 0:
            subset_size_per_gpu += 1
        start_time = time.time()

        for subset_loop in range(subset_size_per_gpu):
            random.shuffle(subset_indices)
            subset_index = subset_indices[comm.rank]
            subset = dataset.read(subset_index)
            iterator = gqn.data.Iterator(subset, batch_size=args.batch_size)

            for batch_index, data_indices in enumerate(iterator):
                # shape: (batch, views, height, width, channels)
                # range: [-1, 1]
                images, viewpoints = subset[data_indices]

                # (batch, views, height, width, channels) ->  (batch, views, channels, height, width)
                images = images.transpose((0, 1, 4, 2, 3)).astype(np.float32)
                images = images / 255.0
                images += np.random.uniform(
                    0, 1.0 / 256.0, size=images.shape).astype(np.float32)

                total_views = images.shape[1]

                # Sample observations
                num_views = random.choice(range(total_views + 1))
                if current_training_step == 0 and num_views == 0:
                    num_views = 1  # avoid OpenMPI error

                observation_view_indices = list(range(total_views))
                random.shuffle(observation_view_indices)
                observation_view_indices = observation_view_indices[:num_views]

                if num_views > 0:
                    representation = model.compute_observation_representation(
                        images[:, observation_view_indices],
                        viewpoints[:, observation_view_indices])
                else:
                    representation = xp.zeros(representation_shape,
                                              dtype="float32")
                    representation = chainer.Variable(representation)

                # Sample query
                query_index = random.choice(range(total_views))
                query_images = images[:, query_index]
                query_viewpoints = viewpoints[:, query_index]

                # Transfer to gpu
                query_images = to_gpu(query_images)
                query_viewpoints = to_gpu(query_viewpoints)

                z_t_param_array, mean_x = model.sample_z_and_x_params_from_posterior(
                    query_images, query_viewpoints, representation)

                # Compute loss
                ## KL Divergence
                loss_kld = chainer.Variable(xp.zeros((), dtype=xp.float32))
                for params in z_t_param_array:
                    mean_z_q, ln_var_z_q, mean_z_p, ln_var_z_p = params
                    kld = gqn.functions.gaussian_kl_divergence(
                        mean_z_q, ln_var_z_q, mean_z_p, ln_var_z_p)
                    loss_kld += cf.sum(kld)

                ##Negative log-likelihood of generated image
                loss_nll = cf.sum(
                    gqn.functions.gaussian_negative_log_likelihood(
                        query_images, mean_x, pixel_var, pixel_ln_var))

                # Calculate the average loss value
                loss_nll = loss_nll / args.batch_size
                loss_kld = loss_kld / args.batch_size

                loss = (loss_nll / scheduler.pixel_variance) + loss_kld

                model.cleargrads()
                loss.backward()
                optimizer.update(current_training_step)

                loss_nll = float(loss_nll.data) + math.log(256.0)
                loss_kld = float(loss_kld.data)

                elbo = -(loss_nll + loss_kld)

                loss_mse = float(
                    cf.mean_squared_error(query_images, mean_x).data)

                if comm.rank == 0:
                    printr(
                        "Iteration {}: Subset {} / {}: Batch {} / {} - elbo: {:.2f} - loss: nll: {:.2f} mse: {:.5f} kld: {:.5f} - lr: {:.4e} - pixel_variance: {:.5f} - step: {}  "
                        .format(iteration + 1, subset_loop + 1,
                                subset_size_per_gpu, batch_index + 1,
                                len(iterator), elbo, loss_nll, loss_mse,
                                loss_kld, optimizer.learning_rate,
                                scheduler.pixel_variance,
                                current_training_step))

                total_num_batch += 1
                current_training_step += comm.size
                mean_kld += loss_kld
                mean_nll += loss_nll
                mean_mse += loss_mse
                mean_elbo += elbo

                scheduler.step(current_training_step)
                pixel_var[...] = scheduler.pixel_variance**2
                pixel_ln_var[...] = math.log(scheduler.pixel_variance**2)

            if comm.rank == 0:
                model.serialize(args.snapshot_directory)

        if comm.rank == 0:
            elapsed_time = time.time() - start_time
            mean_elbo /= total_num_batch
            mean_nll /= total_num_batch
            mean_mse /= total_num_batch
            mean_kld /= total_num_batch
            print(
                "\033[2KIteration {} - elbo: {:.2f} - loss: nll: {:.2f} mse: {:.5f} kld: {:.5f} - lr: {:.4e} - pixel_variance: {:.5f} - step: {} - time: {:.3f} min"
                .format(iteration + 1, mean_elbo, mean_nll, mean_mse, mean_kld,
                        optimizer.learning_rate, scheduler.pixel_variance,
                        current_training_step, elapsed_time / 60))
            model.serialize(args.snapshot_directory)
Example #4
0
def main():
    try:
        os.mkdir(args.snapshot_directory)
    except:
        pass

    images = []
    files = os.listdir(args.dataset_path)
    for filename in files:
        image = np.load(os.path.join(args.dataset_path, filename))
        image = image / 255 * 2.0 - 1.0
        images.append(image)

    images = np.vstack(images)
    images = images.transpose((0, 3, 1, 2)).astype(np.float32)
    train_dev_split = 0.9
    num_images = images.shape[0]
    num_train_images = int(num_images * train_dev_split)
    num_dev_images = num_images - num_train_images
    images_train = images[:args.batch_size]
    images_dev = images[args.batch_size:]

    xp = np
    using_gpu = args.gpu_device >= 0
    if using_gpu:
        cuda.get_device(args.gpu_device).use()
        xp = cp

    hyperparams = HyperParameters()
    hyperparams.generator_share_core = args.generator_share_core
    hyperparams.generator_share_prior = args.generator_share_prior
    hyperparams.generator_generation_steps = args.generation_steps
    hyperparams.inference_share_core = args.inference_share_core
    hyperparams.inference_share_posterior = args.inference_share_posterior
    hyperparams.layer_normalization_enabled = args.layer_normalization
    hyperparams.pixel_n = args.pixel_n
    hyperparams.chz_channels = args.chz_channels
    hyperparams.inference_channels_downsampler_x = args.channels_downsampler_x
    hyperparams.pixel_sigma_i = args.initial_pixel_sigma
    hyperparams.pixel_sigma_f = args.final_pixel_sigma
    hyperparams.chrz_size = (32, 32)
    hyperparams.save(args.snapshot_directory)
    hyperparams.print()

    model = Model(hyperparams, snapshot_directory=args.snapshot_directory)
    if using_gpu:
        model.to_gpu()

    optimizer = AdamOptimizer(model.parameters,
                              lr_i=args.initial_lr,
                              lr_f=args.final_lr)
    optimizer.print()

    sigma_t = hyperparams.pixel_sigma_i
    pixel_var = xp.full((args.batch_size, 3) + hyperparams.image_size,
                        sigma_t**2,
                        dtype="float32")
    pixel_ln_var = xp.full((args.batch_size, 3) + hyperparams.image_size,
                           math.log(sigma_t**2),
                           dtype="float32")
    num_pixels = images.shape[1] * images.shape[2] * images.shape[3]

    figure = plt.figure(figsize=(20, 4))
    axis_1 = figure.add_subplot(1, 5, 1)
    axis_2 = figure.add_subplot(1, 5, 2)
    axis_3 = figure.add_subplot(1, 5, 3)
    axis_4 = figure.add_subplot(1, 5, 4)
    axis_5 = figure.add_subplot(1, 5, 5)

    for iteration in range(args.training_steps):
        x = to_gpu(images_train)
        loss_kld = 0

        z_t_params_array, r_final = model.generate_z_params_and_x_from_posterior(
            x)
        for params in z_t_params_array:
            mean_z_q, ln_var_z_q, mean_z_p, ln_var_z_p = params
            kld = draw.nn.functions.gaussian_kl_divergence(
                mean_z_q, ln_var_z_q, mean_z_p, ln_var_z_p)
            loss_kld += cf.sum(kld)

        mean_x_enc = r_final
        negative_log_likelihood = draw.nn.functions.gaussian_negative_log_likelihood(
            x, mean_x_enc, pixel_var, pixel_ln_var)
        loss_nll = cf.sum(negative_log_likelihood)
        loss_mse = cf.mean_squared_error(mean_x_enc, x)

        loss_nll /= args.batch_size
        loss_kld /= args.batch_size
        loss = loss_nll + loss_kld
        loss = loss_nll
        model.cleargrads()
        loss.backward()
        optimizer.update(iteration)

        sf = hyperparams.pixel_sigma_f
        si = hyperparams.pixel_sigma_i
        sigma_t = max(sf + (si - sf) * (1.0 - iteration / hyperparams.pixel_n),
                      sf)

        pixel_var[...] = sigma_t**2
        pixel_ln_var[...] = math.log(sigma_t**2)

        model.serialize(args.snapshot_directory)
        print(
            "\033[2KIteration {} - loss: nll_per_pixel: {:.6f} - mse: {:.6f} - kld: {:.6f} - lr: {:.4e} - sigma_t: {:.6f}"
            .format(iteration + 1,
                    float(loss_nll.data) / num_pixels, float(loss_mse.data),
                    float(loss_kld.data), optimizer.learning_rate, sigma_t))

        if iteration % 10 == 0:
            axis_1.imshow(make_uint8(x[0]))
            axis_2.imshow(make_uint8(mean_x_enc.data[0]))

            x_dev = images_dev[random.choice(range(num_dev_images))]
            axis_3.imshow(make_uint8(x_dev))

            with chainer.using_config("train", False), chainer.using_config(
                    "enable_backprop", False):
                x_dev = to_gpu(x_dev)[None, ...]
                _, r_final = model.generate_z_params_and_x_from_posterior(
                    x_dev)
                mean_x_enc = r_final
                axis_4.imshow(make_uint8(mean_x_enc.data[0]))

                mean_x_d = model.generate_image(batch_size=1, xp=xp)
                axis_5.imshow(make_uint8(mean_x_d[0]))

            plt.pause(0.01)
Example #5
0
def main():
    try:
        os.mkdir(args.snapshot_path)
    except:
        pass

    xp = np
    using_gpu = args.gpu_device >= 0
    if using_gpu:
        cuda.get_device(args.gpu_device).use()
        xp = cupy

    dataset = gqn.data.Dataset(args.dataset_path)

    hyperparams = HyperParameters()
    hyperparams.generator_share_core = args.generator_share_core
    hyperparams.generator_share_prior = args.generator_share_prior
    hyperparams.generator_generation_steps = args.generation_steps
    hyperparams.inference_share_core = args.inference_share_core
    hyperparams.inference_share_posterior = args.inference_share_posterior
    hyperparams.pixel_n = args.pixel_n
    hyperparams.pixel_sigma_i = args.initial_pixel_sigma
    hyperparams.pixel_sigma_f = args.final_pixel_sigma
    hyperparams.save(args.snapshot_path)
    hyperparams.print()

    model = Model(hyperparams, snapshot_directory=args.snapshot_path)
    if using_gpu:
        model.to_gpu()

    optimizer = Optimizer(model.parameters,
                          mu_i=args.initial_lr,
                          mu_f=args.final_lr)
    optimizer.print()

    if args.with_visualization:
        figure = gqn.imgplot.figure()
        axis1 = gqn.imgplot.image()
        axis2 = gqn.imgplot.image()
        axis3 = gqn.imgplot.image()
        figure.add(axis1, 0, 0, 1 / 3, 1)
        figure.add(axis2, 1 / 3, 0, 1 / 3, 1)
        figure.add(axis3, 2 / 3, 0, 1 / 3, 1)
        plot = gqn.imgplot.window(
            figure, (500 * 3, 500),
            "Query image / Reconstructed image / Generated image")
        plot.show()

    sigma_t = hyperparams.pixel_sigma_i
    pixel_var = xp.full((args.batch_size, 3) + hyperparams.image_size,
                        sigma_t**2,
                        dtype="float32")
    pixel_ln_var = xp.full((args.batch_size, 3) + hyperparams.image_size,
                           math.log(sigma_t**2),
                           dtype="float32")

    dataset_mean, dataset_std = dataset.load_mean_and_std()

    np.save(os.path.join(args.snapshot_path, "mean.npy"), dataset_mean)
    np.save(os.path.join(args.snapshot_path, "std.npy"), dataset_std)

    # avoid division by zero
    dataset_std += 1e-12

    current_training_step = 0
    for iteration in range(args.training_iterations):
        mean_kld = 0
        mean_nll = 0
        total_batch = 0

        for subset_index, subset in enumerate(dataset):
            iterator = gqn.data.Iterator(subset, batch_size=args.batch_size)

            for batch_index, data_indices in enumerate(iterator):
                # shape: (batch, views, height, width, channels)
                # range: [-1, 1]
                images, viewpoints = subset[data_indices]

                # preprocessing
                images = (images - dataset_mean) / dataset_std

                # (batch, views, height, width, channels) ->  (batch, views, channels, height, width)
                images = images.transpose((0, 1, 4, 2, 3))

                total_views = images.shape[1]

                # sample number of views
                num_views = random.choice(range(total_views))
                query_index = random.choice(range(total_views))

                if num_views > 0:
                    r = model.compute_observation_representation(
                        images[:, :num_views], viewpoints[:, :num_views])
                else:
                    r = xp.zeros((args.batch_size, hyperparams.channels_r) +
                                 hyperparams.chrz_size,
                                 dtype="float32")
                    r = chainer.Variable(r)

                query_images = images[:, query_index]
                query_viewpoints = viewpoints[:, query_index]

                # transfer to gpu
                query_images = to_gpu(query_images)
                query_viewpoints = to_gpu(query_viewpoints)

                h0_gen, c0_gen, u_0, h0_enc, c0_enc = model.generate_initial_state(
                    args.batch_size, xp)

                loss_kld = 0

                hl_enc = h0_enc
                cl_enc = c0_enc
                hl_gen = h0_gen
                cl_gen = c0_gen
                ul_enc = u_0

                xq = model.inference_downsampler.downsample(query_images)

                for l in range(model.generation_steps):
                    inference_core = model.get_inference_core(l)
                    inference_posterior = model.get_inference_posterior(l)
                    generation_core = model.get_generation_core(l)
                    generation_piror = model.get_generation_prior(l)

                    h_next_enc, c_next_enc = inference_core.forward_onestep(
                        hl_gen, hl_enc, cl_enc, xq, query_viewpoints, r)

                    mean_z_q = inference_posterior.compute_mean_z(hl_enc)
                    ln_var_z_q = inference_posterior.compute_ln_var_z(hl_enc)
                    ze_l = cf.gaussian(mean_z_q, ln_var_z_q)

                    mean_z_p = generation_piror.compute_mean_z(hl_gen)
                    ln_var_z_p = generation_piror.compute_ln_var_z(hl_gen)

                    h_next_gen, c_next_gen, u_next_enc = generation_core.forward_onestep(
                        hl_gen, cl_gen, ul_enc, ze_l, query_viewpoints, r)

                    kld = gqn.nn.chainer.functions.gaussian_kl_divergence(
                        mean_z_q, ln_var_z_q, mean_z_p, ln_var_z_p)

                    loss_kld += cf.sum(kld)

                    hl_gen = h_next_gen
                    cl_gen = c_next_gen
                    ul_enc = u_next_enc
                    hl_enc = h_next_enc
                    cl_enc = c_next_enc

                mean_x = model.generation_observation.compute_mean_x(ul_enc)
                negative_log_likelihood = gqn.nn.chainer.functions.gaussian_negative_log_likelihood(
                    query_images, mean_x, pixel_var, pixel_ln_var)
                loss_nll = cf.sum(negative_log_likelihood)

                loss_nll /= args.batch_size
                loss_kld /= args.batch_size
                loss = loss_nll + loss_kld

                model.cleargrads()
                loss.backward()
                optimizer.update(current_training_step)

                if args.with_visualization and plot.closed() is False:
                    axis1.update(
                        make_uint8(query_images[0], dataset_mean, dataset_std))
                    axis2.update(
                        make_uint8(mean_x.data[0], dataset_mean, dataset_std))

                    with chainer.no_backprop_mode():
                        generated_x = model.generate_image(
                            query_viewpoints[None, 0], r[None, 0], xp)
                        axis3.update(
                            make_uint8(generated_x[0], dataset_mean,
                                       dataset_std))

                printr(
                    "Iteration {}: Subset {} / {}: Batch {} / {} - loss: nll: {:.3f} kld: {:.3f} - lr: {:.4e} - sigma_t: {:.6f}"
                    .format(iteration + 1,
                            subset_index + 1, len(dataset), batch_index + 1,
                            len(iterator), float(loss_nll.data),
                            float(loss_kld.data), optimizer.learning_rate,
                            sigma_t))

                sf = hyperparams.pixel_sigma_f
                si = hyperparams.pixel_sigma_i
                sigma_t = max(
                    sf + (si - sf) *
                    (1.0 - current_training_step / hyperparams.pixel_n), sf)

                pixel_var[...] = sigma_t**2
                pixel_ln_var[...] = math.log(sigma_t**2)

                total_batch += 1
                current_training_step += 1
                mean_kld += float(loss_kld.data)
                mean_nll += float(loss_nll.data)

            model.serialize(args.snapshot_path)

        print(
            "\033[2KIteration {} - loss: nll: {:.3f} kld: {:.3f} - lr: {:.4e} - sigma_t: {:.6f} - step: {}"
            .format(iteration + 1, mean_nll / total_batch,
                    mean_kld / total_batch, optimizer.learning_rate, sigma_t,
                    current_training_step))