def test_function(): g = GaussianHF() g.centre.value = 1 g.fwhm.value = 2 g.height.value = 3 nt.assert_equal(g.function(2), 1.5) nt.assert_equal(g.function(1), 3)
def test_integral_as_signal(): s = Spectrum(np.zeros((2, 3, 100))) g1 = GaussianHF(fwhm=3.33, centre=20.) h_ref = np.linspace(0.1, 3.0, s.axes_manager.navigation_size) for d, h in zip(s._iterate_signal(), h_ref): g1.height.value = h d[:] = g1.function(s.axes_manager.signal_axes[0].axis) m = s.create_model() g2 = GaussianHF() m.append(g2) g2.estimate_parameters(s, 0, 100, True) m.multifit() s_out = g2.integral_as_signal() ref = (h_ref * 3.33 * sqrt2pi / sigma2fwhm).reshape(s_out.data.shape) np.testing.assert_almost_equal( s_out.data, ref)
def test_estimate_parameters_binned(): s = Spectrum(np.empty((100,))) axis = s.axes_manager.signal_axes[0] axis.scale = 2. axis.offset = -30 g1 = GaussianHF(50015.156, 23, 10) s.data = g1.function(axis.axis) s.metadata.Signal.binned = True g2 = GaussianHF() g2.estimate_parameters(s, axis.low_value, axis.high_value, True) nt.assert_almost_equal( g1.height.value / axis.scale, g2.height.value) nt.assert_almost_equal(g2.centre.value, g1.centre.value, delta=1e-3) nt.assert_almost_equal(g2.fwhm.value, g1.fwhm.value, delta=0.1)
def test_util_fwhm_get(): g1 = GaussianHF(fwhm=0.33) g1.height.value = 1.0 nt.assert_almost_equal(g1.A, 1.0 * sqrt2pi * 0.33 / sigma2fwhm)
def test_util_fwhm_set(): g1 = GaussianHF(fwhm=0.33) g1.A = 1.0 nt.assert_almost_equal(g1.height.value, 1.0 * sigma2fwhm / ( 0.33 * sqrt2pi))
def test_util_sigma_getset(): g1 = GaussianHF() g1.sigma = 1.0 nt.assert_almost_equal(g1.sigma, 1.0)
def test_util_sigma_get(): g1 = GaussianHF() g1.fwhm.value = 1.0 nt.assert_almost_equal(g1.sigma, 1.0 / sigma2fwhm)
def test_util_sigma_set(): g1 = GaussianHF() g1.sigma = 1.0 nt.assert_almost_equal(g1.fwhm.value, 1.0 * sigma2fwhm)
def test_util_fwhm_getset(): g1 = GaussianHF(fwhm=0.33) g1.A = 1.0 nt.assert_almost_equal(g1.A, 1.0)